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Asymptotic enumeration of Eulerian circuits
for graphs with strong mixing properties

M.I. Isaev

Abstract

We prove an asymptotic formula for the number of Eulerian circuits
for graphs with strong mixing properties and with vertices having even
degrees. The exact value is determined up to the multiplicative error
O(n~1/%%¢), where n is the number of vertices.

1 Introduction

Let G be a simple connected graph all of whose vertices have even degrees.
An Eulerian circuit in G is a closed walk (see, for example, [2]) which uses
every edge of G exactly once. Two Eulerian circuits are called equivalent if
one is a cyclic permutation of the other. It is clear that the size of such an
equivalence class equals the number of edges of graph G. Let EC(G) denote
the number of equivalence classes of Eulerian circuits in G.

The problem of counting the number of Eulerian circuits in an undirected
simple graph (graph without loops and multiple edges) is complete for the
class #P, i.e. the existence of a polynomial algorithm for this problem
implies the existence of a polynomial algorithm for any problem in the class
#P and, in particular, the equivalence of the classes P and NP. (see [3]).
In other words, the problem of counting the number of Eulerian circuits is
difficult in terms of the complexity theory. Moreover, it should be noted
that in contrast to many other hard problems of counting on graphs (see, for
example, [1], [10]), even approximate and probabilistic polynomial algorithms
for counting the number of Eulerian circuits have not been obtained for the
general case and are known only for some special classes of graphs with low
density, see [4] and [13].



As concerns the class of complete graphs K,,, the exact expression of the
number of Eulerian circuits for odd n is unknown (it is clear that EC(K,,) = 0
for even n) and only the asymptotic formula was obtained (see [11]): as
n — oo with n odd

n—1)2 n—1 n-2 —1 n
EC(Kn) — 2( 2) T 2 n 2 ((n 5 . 1)') <1 + O(n71/2+€)) _

_n2 11 (n=2)(nt+l) _
5 T n 2 (1 + O(TL 1/2+5)>

(1.1)
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for any fixed ¢ > 0.

In [5] the analytic approach of [11] was generalized. This approach is
based on expression of the result in terms of a multidimensional integral and
its estimation as dimension tends to infinity. In particular, the asymptotic
behaviour of the number of Eulerian circuits was determined for graphs with
large algebraic connectivity. This class of graphs we mean as the class of
graphs having strong mixing properties.

There are several classic graph parameters which express mixing proper-
ties of graphs: the algebraic connectivity, the Cheeger constant (isoperimet-
ric number), the spectral gap between the 1 and the second largest eigenvalue
of the transition probability of the random walk on a graph. It should be
noted that, using any of these parametres, one can get equivalent definitions
of the class of graphs having strong mixing properties (for more detailed
information, see [7]).

In addition, it is shown in [7] that a random graph in the Gilbert graph
model G(n,p) (each possible edge occurs in a graph with n vertices indepen-
dently with probability p) for n — oo and fixed p > 0 has strong mixing
properties with probability close to 1 (with the exception of some exponen-
tially small of n value).

In the present work we continue studies of [5], [7], [11]. We prove an
asymptotic formula for the number of Eulerian circuits of graphs having
strong mixing properties. This result is presented in detail in Section 2 of
the present work.

Actually, the estimation of the number of Eulerian circuits was reduced
in [5] to estimating of an n-dimensional integral which is close to Gaussian-
type. We partly repeat this reduction in Sections 3, 8 of the present paper.
In addition, we develop an approach for estimating of integrals of such a type
in Sections 4, 6, 7. We prove the main result in Section 5.



An orientation of edges of a graph such that at each vertex the number of
incoming and outgoing edges are the same is called it Eulerian orientation.
In [6] the asymptotic behaviour of the number of Eulerian orientations was
determined for graphs having strong mixing properties. Apparently, proceed-
ing from the results of [6] and the estimates of the present work, it is possible
to prove the asymptotic formula for the number of Eulerian orientations given
in [7]. In a subsequent paper we plan to develop this approach.

2 Main result

Let G be an undirected simple graph with vertex set VG = {vy,va,...,v,}
and edge set EG. We define n x n matrix @) by

-1, {vj, v} € EG,

0, otherwise,

where n = |V G| and d; denotes the degree of v; € VG. The matrix Q = Q(G)
is called the Laplacian matriz of the graph G. The eigenvalues A\; < Ay <

. < A\, of the matrix () are always non-negative real numbers and the
number of zero eigenvalues of () coincides with the number of connected
components of G, in particular, \; = 0. The eigenvalue Ay = A\(G) is
called the algebraic connectivity of the graph G. In addition, the following
inequalities hold:

min d;. (2.2)

2mind; —n+2< Ay <
J n—1 j

For more information on the spectral properties of graphs see, for example, [8]
and [12].

An acyclic connected subgraph of the graph Gd which includes all of its
vertices is called a spanning tree of G. According to Kirchhoff’s Matrix-Tree-
Theorem, see [9], we have that

1
t(G) = g)\Q}\g te )\n = det MH, (23)

where ¢(G) denotes the number of spanning trees of the graph G and My,
results from deleting the first row and the first column of Q.



We call the graph G as y-mixing graph, v > 0, if
the algebraic connectivity Ao = Ao (G) > 7|V G]. (2.4)
The main result of the present work is the following theorem.

Theorem 2.1. Let G be an undirected simple graph with n vertices vy, vs, . . ., Uy
having even degrees. Let G be a y-mixing graph for some v > 0. Then

EC(G) = (14 6(Q)) e <2EGI—”T‘17T—"T‘H/t(G) ﬁ (% - 1) !) ,

1 1 1 \°
Kec = - Z ( - ) ’
4 {0y € BG dj +1 dk +1

(2.5)

where EG denotes the edge set of G, d; is the degree of vertex v;, t(G) is the
number of spanning trees of G and for any e > 0

6(G)] < Cn~2Fe, (2.6)
where constant C > 0 depends only on v and .

Proof of Theorem 2.1 is given in Section 5. This proof is based on results
presented in Sections 3, 4.

Remark 2.1. For the case of the complete graph we have that:

n(n —1)

)\2<Kn) =n, EKn = 9

, HK,) =n"2, K= 0. (2.7)
We obtain that the result of Theorem 2.1 for the case of the complete graph
is equivalent to (1.1).

3 Reduction to the integral

A directed tree with root v is a connected directed graph 7" such that v € VT
has out- degree zero, and each other vertex has out-degree one. Thus, T is a
tree which has each edge oriented towards v.

Let G be a connected undirected simple graph with n vertices vy, vo, ..., v,
having even degrees. Note that for every spanning tree T" of the graph GG and
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any vertex v, € VG there is only one orientation of the edges of T" such that
we obtain a directed tree with root v,. We denote by 7, the set of directed
trees with root v, obtained in such a way.

We recall that (see Section 4 and formulas (4.6), (4.7) of [5]):

“T1( 4 _ 1)1gEelniipong, (3.1)
Jj=1 2
where for any r € N, r < n,

S = / H cos A Z H (14 itanAjy) de, (3.2)

Un(m/2) {vj,ve e EG TeTr (vjv,)EET
where Aj; = & — & and

Un(p) = {(&1,62, ..., &) €R™ ¢ g <pforall j=1...n}. (3.3)

We approach the integral by first estimating it in the region which is the
asymptotically significant one. In what follows, we fix some small constant
€ > 0. Define

—{£eU,(r/2): & — &klw <7V for any 1 < 5k < n}

& — e =minlg; — &+t Y

and let Sy denote the contribution to S of E e Vo

n

So = %Z / H cos Ay Z H (1+itanAjy) €. (3.5)

T:1Un(7r/2) {vj v }€EG TeTr (vjvL)EET
In this section we use standart notation f = O(g) as n — oo which
indicates that there exist ¢,ny > 0 such that for n > ng the inequality
|f] < c|g]| holds..

Under assumptions of Theorem 2.1, we have that as n — oo
S = (1+ O (exp(—cn*®))) Sy (3.6)

for some ¢ > 0 depending only on . For the proof of (3.6), see Theorem 6.3
of [5].



Let X
W=Q'=(@Q+J)", (3.7)

where @ is the Laplacian matrix and J denotes the matrix with every entry
1. Let & = (a1, ...,a;,) € R be defined by

Ozj‘ = Wjj~ (38)
Let

R(E) = tr(A(E)WAW), (3.9)

where tr(-) is the trace fucntion, A(§) denotes the diagonal matrix whose
diagonal elements are equal to corresponding components of the vector Qg.

The sum over 7, in the integrand of (3.2) can be expressed as a determi-
nant, according to the following theorem of [14], which is a generalization of
aforementioned Kirchhoff’s Matrix-Tree-Theorem:

Theorem 3.1. Let wy, (1 < j,k <n, j# k) be arbitrary. Define the n x n

matriz A by
Ay = I . D 3.10
w={ g L (3.10)
the sum being over 1 < r < n with r # j. For any r with 1 < r <mn, let
M, denote the principal minor of A formed by removing row r and column

r. Then
det M, => " J[ wir (3.11)
T (’l}j,vk)GET
where the sum is over all directed trees T with VT = {vy, v, ..., v,} and root
Uy

Using formulas (3.2) and (3.6), Theorem 3.1 and the Taylor series ex-
pansion of cos Aj;, and tan Ajxin the region Vj, one can obtain the following
proposition:

Proposition 3.1. Let the assumptions of Theorem 2.1 hold. Then asn — co

So=(14+0 (n_1/2+65)) 2712712~ det Q Int, (3.12)
Int = / exp igTQ&—lgTQg—i E Aj +1R(3 de,
2 12 A’ ’
{'Uj,Uk}EEG

Un(n—1/2+s)
(3.13)
where Q, & and R(§) are the same as in (3.7), (3.8) and (3.9), respectively.
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We prove in detail Proposition 3.1 in Section 8. Actually, this proof was

implicitly given in [5] (see Lemma 5.3 of [5]).

Thus, we get that to prove Theorem 2.1 it remains only to estimate the

integral Int of (3.12).

4 Asymptotic estimates of integrals

We fix constants a, b, > 0. In this section we use notation f = O(g) meaning

that |f] < c|g| for some ¢ > 0 depending only on a, b and e.
Let p > 1 be a real number and ¥ € R™. Let

n 1/p
a1, = (zw) |
j=1

For p = oo we have the maximum norm

17| o = maxfa;].
j
The matrix norm corresponding to the p-norm for vectors is

AZ
4], = sup A
#2017,

One can show that for symmetric matrix A and p > 1
IA][, > [IAll, -
For invertible matrices define the condition number

io(A) = 4], - A7 = |44 = 1.

(4.2)

(4.3)

(4.4)

(4.5)

Let I be identity n x n matrix and A = I + X be such a matrix that:

A is positive definite symmetric matrix,
[ Xjrl <a/n, Xj=0, A7 <b.

Note that

1AM < 11All2 < 1Al = [|Allr = meZIAjkI =0(1).
k=1

7

(4.6)

(4.7)



We recall that (see Lemma 3.2 of [6] ), under assumptions (4.6),

foo(A) = p1(A) = O(p2(A)).

Using (4.4), (4.6), (4.7) and (4.8), we obtain the following lemma:

Lemma 4.1. Let A satisfy (4.6). Then
A oo = A7l = O(1),
[ Xl = O(n™h),

where
A -T=AY-A)=-A"X.

We use the following notation:

< g>po= /g(ﬁ)ep@dﬁﬁ,

Q
where g, ' are some functions on R". For r > 0 let
< g ZFr=< 0 ZFUn(rn®);
where
Un(p) ={(01,02,...,0,) € R" : |6;| <pforall j=1...n}
We use functions of the following type:

— —

F(0) = —0T A6+ H(H),

(4.8)

(4.9)
(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

where A satisfy (4.6). Let consider the following assumptions on function H,

which we will need further:

ﬁ 4T AG
H()SCI )
n
H(6 g3 + 110
0 g) SCQII 12 + 11000
o0 n

For the case when H = 0 we use notations:

<g>o=<g>rq <g>=<g>rr <g>=<(¢g>ic0-

(4.16)

(4.17)

(4.18)



Lemma 4.2. Let Q C R" be such that U,(rin®) C Q C U,(ran®) for some
ro > 11 > 0. Let A satisfy (4.6) and assumptions (4.16), (4.17) hold for
some cq,¢co > 0. Then

<1>9= (140 (exp(—c3n™))) < 1>, (4.19)
<1>pe=0(<1>), (4.20)
1
<0 >po= 5 <1>ro +0(n~ 1) < 1 >, (4.21)
3
< 0 >po= 1 <1>re +0(n 1) < 1> (4.22)
and, for k # 1:
< 6,0, >pa= O(TL_H_Sa) <1>, (423)
< 916913 >pa= O(’n_l—”a) <1>, (424)
1
< 00} >po= 1 <1 >ko +O(n 1) <1 >, (4.25)

where F' is defined by (4.15) and c3 = c3(r1,72, ¢1, C2,a,b,€) > 0.
In addition, for any vector p'= (p1,p2, - ..pn) € R, [[pllec = O(n"1/2),

T
< Gpe’® PR s =

_ i AL 0T F—ipk Oy

=5 > pi(AT ) <e > (F-impepe T (4.26)
j#k.§<n

+O0(n 1) < 1>,
where (A1) denotes (j, k)-th element of the matriz A~*.

Proof of Lemma 4.2 is given in Section 6.

5 Proof of Theorem 2.1

The Laplacian matrix @ of the graph G ( defined in (2.1)) has the eigenvector
[1,1,...,1]T, corresponding to the eigenvalue A\; = 0. Let Q = Q+ J, where
J denotes the matrix with every entry 1. Note that ) and Q have the same
set of eigenvectors and eigenvalues, except for the eigenvalue corresponding



to the eigenvector [1,1,...,1]T, which equals 0 for Q and n for Q. Using
(2.3), we find that

1 det Q
tG) = g)\g)\g Ce A, = poa (5.1)
Using (4.4), we get that
A =110l < 11Q12 < IRl = mJaXZ\ij\ =n. (5.2)
k=1
Then, we find that
1 1
1
=—< —. 5.3
107 =3 < = (53)
Using (2.2), we get that
n—1
n—1>d; > X\ >~v(n—1), (5.4)
where d; is the degree of v;. Consider the integral of Proposition 3.1:
R R()\ -
_ ;T ;T 4
Int = / exp (z f- 5808 - > Ajk+7>dg,
Un(n=1/2+¢) {vj,ve }EEG (55)

R(§) = w(AQ'AE)Q ™),

where A(g) denotes the diagonal matrix whose diagonal elements are equal
to corresponding components of the vector Q§ and & is the vector composed
of the diagonal elements of QL.

Let define £(6) = (&1(0), &(6 ) . £(0)) by
O =/ (di +1)/2&. (5.6)

Then we can rewrite (5.5) in notations of Section 4:

i 1
Int = Q ]1_[1 W) (5.7)
where p'= (p1,pa,- .- Dn),
I
ARV YF) o
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a7 Lo AT AL
0" A0 = 9 ( ) Qg( )v A]k - \/(dj T 1)(dk )Q]k7 (5'10)
H(0) = —li > AL+ R(é( )), (5.11)
{vj, v }eEG
Q={FcR":£0) € U,(n 7))}, (5.12)

We aim to reduce, using Lemma 4.2, expression Int of (5.7) to

S, n/2 271' n/2 M
<1 >:/e—5”9d9— T ,/ d;j+1)/2. (5.13)

R

Our argument is as follows: first we have to verify that all assumptions of

Lemma 4.2 hold, then we will gradually get rid of the oscillating term e 5,

R(f(e) and the residual term —5 3> Af.

{vj,vk}GEG
Further, we always use notation f = O(g) meaning that |f| < c|g| for
some constant ¢ > 0 depending only on ~ and ¢.

quadratic term

5.1 Assumptions of Lemma 4.2

Combining (5.3), (5.4), (5.6), (5.10) and (5.12), we get that
A satisty (4.6) and U,(rn°) C Q C Uy,(ran®) (5.14)

for some a, b, 71,79 >0 dependmg only on 7.
Let “(k) = (e § e )) € R" be defined by e = d;k, where §j; is the

Kronecker delta. Due to the linearity of A(€) and tr( ), we find that

R(£(0)) = £(0)"RE(0) = 07 50, (5.15)
where
Ry, = tr(A(@) Q' A(EM)Q ™),
- Ry (5.16)
T VG n2d+ )2
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We use the following inequalities for n x n matrices X, Y":

[t (XY)] < (| X s 1Y s,

T (5.17)
XY [las < [[X]asl[Y ]2,
where || - || gs denotes the Hilbert-Schmidt norm,
X zs = \l DD Xl (5.18)
j=1 k=1

Combining (5.2), (5.3), (5.15)-(5.17), we find that

M RE < IME)Q s AE)Q lus <
< AG) sl AEN s Q75 = 1Q& 121 Q&IIIQ M5 < (5.19)
< QISR 31 I=l1E ]l = OVl lIE 2.

Using (5.2), (5.10), (5.11) and (5.19), we obtain that

— - = - =

H(0) < R(£(0)) = £(0)"RE(9) = O(L)[I€(0)]13 =

CNTOE(D . (5.20)
— 0(1)% — O(n~H)97 Af.
Let (Q *A(€)Q 1) denote the (k, k)-th element of the matrix Q~'A(£)Q L.
For any 1 < k < n, we have that

ORE) _ . (aA(q)QlA(f)Ql) — ot (A(ak>)Q*1A(3Q’1

—

= 20 (Q M AEQ e + 20 (AQT'AEQ ).

) B (5.21)

where A is the diagonal matrix with the diagonal elements Aj; = Ae®),; in
the case of j # k and Ay, = 0. In particular, we have that

Al < 1. (5.22)

—

Since A(€) is diagonal matrix, we get that

| (QAE)Q ™) ik] = [k A )i [( Q]2 < dil|AE) 2] (@)l (5:23)
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where (Q ) is the k-th column of the matrix Q. Note that

Q™ ellz < Q7 2 1Q(Q™illz = 1Ql2- (5.24)

We also note that . . .
A2 = Q€] < 2n[|€]|- (5.25)
Combining (5.3), (5.4), (5.22)-(5.25), we get that
tr (AQTAEQ™) | < nllAQ A2 <
SMMMMHHWWE—()MI (5.26)
d( Q' MEQ ik = O()€]l
Using (5.4), (5.6), (5.15), (5.21) and (5.26) for all 1 < k < n, we obtain that

. OR(E .
2R = | 22O — o).
b oo (5.27)
201581 = ||ZZEON - _ o141
8 o0
For any 1 < k < n, we have that
8 3 3
%, Z Aj| < 42 AP = On)||€]12, (5.28)
{vj,m}EEG
Combining (5.6) and (5.28), we find that
0 4 —1\19113
pY- Z ALl =0Mm )] (5.29)
{vj,vl}eEG 0o
Using (4.10), the fact that
AL (A
(Q@ Yk = (5.30)
T+ 1)/24/(dy +1)/2

and (5.4), we get that

1Plloc = sup il O(n'?)|Qall = O(n~"?),  (5.31)

1<k<n \/(dj +1)/2 -

13



where vector p'is the same as in (5.8).

Putting together (5.10), (5.14), (5.20), (5.27), (5.29) and (5.31), we get
that all assumptions of Lemma 4.2 with data (5.8)- (5.12) hold for some
constants a, b, 1,19, 1, co > 0 depending only on ~.

5.2 Oscillating term

Let define pt*) = (pgk),pgc), e ,p;gk)) € R" as follows:

w _ J 0, forj <k,
b= { pj, otherwise. (5.32)

Let i
i, L1
FOG) = F(0) - 5 > 005 (5.33)
Note that .
FO9) = F(6). (5.34)
Using (5.31) and the fact that

0 — -
207 2P0 = 2030 = O™ el (5.35)
7j=1

we find that all assumptions of Lemma 4.2 hold for the case when we take
function F®(6) instead of the function F(6), vector 5¥) instead of vector F
and for some constants a, b, ry, 19, c1,co > 0 depending only on 7.
Note that
e = 0] =0(n°). (5.36)

Taking into account (5.31) and using the Taylor series expansion, we get that
eiPrOE — o=3PRO% | ippBy + O(n’3/2+3€), g c 0. (5.37)

Using (5.31) and (4.20), (4.26) for F*~Y and p*~Y  we find that

0T (k)

1 < Ore > pt-1) 0=
" g 5.38
_ _% Z pi(A™Y) 0 < e 2] > o0 FO(3/*5) < 1 >, (5.38)
j=k+1

14



Combining (4.20), (5.37) and (5.38), we obtain that

T 5(k—1)
< P > pk-1) 0 =
p n
k -1 0T
- (1 2 > pi(A )jk) <e”7 >pu +
j=k+1

+ 03 < 1>,
Using (4.10), (5.8), (5.10) and (5.31), we note also that

pipk(A™ )ik = BiBu(@Q@ )i = O(n™?), j #k,
pr Y pi(A)p=0m™).
i#k,j<n
Using (5.34), (5.40) and (5.39) for k = 1,2...n, we get that

7
< e'? >po=C1<1>pmq +0(n 1/2+5€) <1>,

where

clzexp< Z Z Bi(@Q M@) =

k=1 j=k+1

n

1:[ <1 -5 > (A‘l)jkpj> +0(n™) =0(1).

]=k+1

(5.39)

(5.40)

(5.41)

(5.42)

Taking into account (5.31) and using the Taylor series expansion, we get

that
e 2Pt =1 — —p,ﬁk + 02, fdeq.

Combining (5.43) and (4.20), (4.21) for F®®) we get that

1
<1 >p) 0= (1 — sz) <1 > pk-1) 0 +O(n_2+45) <1l>.

Using (5.31), (5.34) and (5.44) for k =1,2...,n, we find that
<1>pmg=Co<1>pq+0(n 1) <1 >,

where

- 52 - 1 2 —1
Cy = exp (-Zm> =11 (1 - Zpk) +0(n Y =0().

k=1 k=1

15
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5.3 Quadratic term

Let define 8% = (6%,6%, ... 6%) € R™ as follows:

) <
ok _ { 0, forj <k, (5.47)

J 0;, otherwise.

Le
t F*(0) = —0T Af + H*(6),
H@) = S Aot SREP). (5.48)

{Ujvvk}eEG

In absolutely similar way as given in Subsection 5.1, we find that all assump-
tions of Lemma 4.2 hold for the case when we take F*(0) instead of F(f) for
some constants a, b, 71,72, ¢y, co > 0 depending only on ~.

Note that

—

F°(6) = F(6), (5.49)
R(E(0%)) = &(6")" RE(OF) = 0 S6*, (5.50)

where matrices R, S are the same that in (5.15), (5.16).
Combining (5.48), the Mean Value Theorem and (5.27), we get that

FE6) — P = 5| REP) — REG)| =
1 |0R(E(5) - (5:51)
—5 Tekek :O(” )||0||oov

where 6% lies on the segment between 5~ and 6%. Using (5.36), (5.51) and
the Taylor series expansion, we get that

—

eFk—l(eﬂ)ka(é) — 1+ ka1<9) . Fk(e) + O<n72+4€) _

1 : - 5.52
=1+ éSkke,% + Z Sjkejé’k + O(n_2+4e), 0 € Q. ( )
j=kt1
Using (5.4), (5.16), (5.19), we find that
:720 -1 _(k)QZO 71. 55
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Since (5.27) imply that ||S]|e = O(n™1), using (4.23), we get that

n
< | sup <00, >pr-1g | Z |Sjkl =

k<j=n =kt 1

=0 )|[S]lc = O(n~).

n
Z Sjk < Hﬂk > k-1

j=k+1

Combining (4.20), (4.21), (5.52) and (5.54), we obtain that
1
<1>pr10= <1 + Zskk) <1>prg +O(N ™) < 1> .

Using (5.49), (5.53) and (5.55) for k =1,2...,n, we find that
<1>pq=C03<1>png+0(n 1) <1 >,
where

Cs = exp ( 2(dy, + 1)) o

k=1

(1 + iskk) +0(n™1) = 0O(1).

1

5.4 Residual term
For a subset © of EG we define

- 1
He(0) = T Z A?k-

{vj YUk }69

(5.55)

(5.56)

(5.57)

(5.58)

In absolutely similar way as given in Subsection 5.1, we find that all assump-

—

—

tions of Lemma 4.2 hold for the case when we take Fig(f) instead of F'(6) for

some constants a, b, 71,72, ¢y, co > 0 depending only on ~.
Note that

Fra(d) = F™(0),
464 4630 46%6?
A?k: - 2_4 32]k 12+6 o -
(d; +1) (dj + 1)3/2(dy, + 1)V (d; +1)(dy, + 1)
49}’;@- N 49;
(di +1)32(d; + DY2  (dy, + 1)%
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Combining (4.22), (4.24), (4.25), (5.4) and (5.60), we get that

SN R (I N ! +
sk TFeR T\ 4 (d; + 1) T 4(dy + 1)(dy + 1)
(5.61)
+ 54 <1>p0+0n*) <1 >
4 (dy 1+ 1) o '
Using (4.20) and (5.61), we get that
<e B >pg= Py < 1>p0+0n 7)< 1>, (5.62)
where
1 1 1
Pp=1-— - — . 5.63
i A(d;+ 1) 2(dj+ 1) (dp+1)  4(dy, + 1)2 (5.63)
Note that ]
- 5 <Pp<l (5.64)

Using (4.20), (5.62), we can gradually remove all the edges from the residual
term Hgq and obtain that

<1>pee= ] Pr<l>a+0(n ) <1>. (5.65)
{Ujmk}EEG
Combining (4.19) and (5.65), we get that
<1>paa=Ci<1>4+0n ") < 1>, (5.66)
where
1 1 1
Cy=exp | —- Z ( + ) . (5.67)
4 (o) o e BG dj +1 dp +1
Combining (5.41), (5.45), (5.56), (5.59) and (5.66), we find that
< el > po= C1CoC5C, < 1> +0(n 27 < 1> . (5.68)

Taking into account (4.10), (5.10), (5.42), (5.46), we get that:

FrQ71 5 =a"Q"Q N (Q+ J)a - a"QQ ' Ja = (5.69)




Using again (4.10), (5.10), we find that

~

Ry, = tr(A(@*) Q' A(E*) Q) =

= 2 A (@@ i (€)@ = 1+ O(n7), (5:70)
n R n -
C3 = exp (; Q(dkkjl)> = exp (kl 2<dk+1)> +0(n ") =
( ) (5.71)
1 1 1 B
= exp 5 {U,-ﬂ;}eEG’ ((dj + 1)2 + (dk + 1)2) + O(TL )

Putting together (3.1), (3.6), (3.12), (5.1), (5.7), (5.13) and (5.66)-(5.71),
we obtain (2.5) and (2.6) for n > ng(v,e) > 0 (with the exponent 7e instead
of €). Estimate (2.6) for n < ng can be fulfilled by choice of sufficiently large
constant C.

6 Proof of Lemma 4.2

In this section we use notation f = O(g) meaning that |f| < ¢|g| for some
¢ > 0 depending only on ry, 79, c1, c2,a,b and ¢.
Let

— —

6(0) = (61(0), $2(0), ..., du(0)) = AF. (6.1)
0,

According to (4.6), A = I+X, X;; = 0, and so for some g; ( 9) = g1(0s, . ...,6,)

—

07 AG = ¢2(0) + g1(6). (6.2)

Using (4.6), (6.2) and estimating insignificant parts of Gaussian integral of
the following type:

/ (max{|z|, k1 })* e @*2  dg, (6.3)
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we find that for r > 0, s >0

<1l > = / G115, 7ag =
R?’L

+oo +oo +oo
= [ [t [ [dle o, ) dos...db (6
— (14O (exp(-car™))) [ |8l "B
|61(0)|<rne
where ¢y = ¢4(r, €, s) > 0. Combining similar to (6.4) expressions for ¢1, ¢o, . .. Pp,

we get that

[ W% = (140 (exp(—esn®) < Wil > (65)

[16(0)]| oo <rn*

where ¢5 = ¢5(r,&,s) > 0. Combining (4.9), (6.1) and (6.5) with s = 0, we
obtain (4.19).
Using (4.16), we find that

| <1>pa| < /|eF<5>|d5g /e—é’TA5+%@’TA5d§: O(<1>). (6.6
Q

R

In order to prove (4.21) - (4.25) we use the following two lemmas. The
proofs of them are given in Section 7.

Lemma 6.1. Let Q@ C R" be such that U,(rin®) C Q C Uy(ran®) for some
ro > 11 > 0. Let A satisfy (4.6) and assumptions (4.16) and (4.17) hold for
some constants c1,co > 0. Let P = P(x) = O(|z|®) for some fized s > 0.
Then for any T(8) such that |T(8)] < P(||0]|~) :

—

< T(0) >rmo= O (exp(—cgn™)) <1 >, (6.7)

— —

and for any T(6) = T(61,...,65_1,0s1, . ..,0n) such that T(8) < P(||0]|s):

— —

< BOT0) >ra= + < T(0) >ra +0(n~1) < [T(

: )
+0 (exp(—cen™)) < 1>,

20



< OUOTO) >ra= | < T0) > +0074) < )] >ra+ (o
40 (exp —cgn® )) <1>,
< (0T (0) >pa= O(n ) <|T(0)] >ro + (6.10)
+0 (exp(—cgn™)) <1 >,
< GUOT(6) >po=O(n) <|T(0)] >ra + (6.11)
+0 (exp(—cgn™)) <1 >,

where function F is defined by (4.15), vector gb(@) is defined by (6.1) and
constant cg = cg(r1,79, €1, Cy a, b, e, P) > 0.

Lemma 6.2. Let assumptions of Lemma 6.1 hold and sy, S, . . ., s, € NU{0},

M(Z) =it - alm,

" (6.12)
s=s+...+s,>0.
Let

sk =0 and |{j:s; # 0} <3. (6.13)

Then . o
< o OYM(H(0)) >pa= O(sn 1TEe) < 1 > (6.14)

Using (4.10), we find that
Ok = b + 016, ||dllo = On™"). (6.15)

Combining (6.6), (6.15), Lemma 6.1 and Lemma 6.2, we obtain that:

—

<0p(0)? >po=< (@135)2 >pa=

) (Z <0 >ra+ > | < 0;,(0)05,(0) >ra |> (6.16)

J1#£72

= (O0OMn ™ H+0Mm")) <1>=0(m"""") < 1>,

21



< 6u(0)* >pa =< (G 9)* >ra=0n""))_ < ¢;(0)* >pa +

J

n Z <¢]1 5 ‘2( ) >raot

J1#£72

)Y 1< 6 (0005 (0) >ra |+

J1#j2

+O(n™Y) D 1< 05,(0)05,(0)¢5,(0)* >ra [+
J1FJ2773
+Om™) Y 1< 5,(0)8,(0)85,(0)5,(0) >ra | =
J1FJ2F 374
— (O<n73>+0(n72+45) 4 O<n73+75) 4 O<n72+75>+
+ O(n*”%)) <1>=0n"") < 1>,
where . .
Or(0) = O — o (0).
According to (4.6), we have that

—

0k(0) = 0(01, ..., Or—1,0k11,...,0,)

(6.17)

(6.18)

(6.19)

Using (6.6), (6.15), (6.16), (6.17), (6.19) and Lemma 6.1, we obtain that:

—

< 6(0)0(0) >pa =
= O(n™144) < |04(0)| >ra +O (exp(—cgn®)) < 1 >=
=0 ) < 1>,

CDL

)? >rpa=
Pr(0 ) >po +0(n 115 < 1 >=

< b3 >po=< (¢n(0 ) k(

<1>pq+0(n ') <1 >.

l\DI»—A/\

— —

< qbk(ﬁ)ék(ﬁ)?’ >EQ =
= O(n™1H%) < |04(0)* >r0 +O (exp(—cen®)) < 1 >=
= O0(n 1) < 1>,
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~ o 1 o
< ¢k(9)25k(0)2 >po= <§ + O(Tl_1+4€)) < 519(0)2 >pa +

+0 (exp(—cgn™)) <1 >=
=0Mm ') <1 >,

(6.23)

—

< ¢n(0 ) K(0) >pa0 =
= O0(n™ %) < |5k(§)| >pq +0 (exp( cen? )) <1>= (6.24)
— O<n71+7e) <1 >,

— —

<0y >pa=< (x(0)+0x(0))" >r0=
=< o(0)* >pa +0(n™T) <1>=  (6.95)

:Z<1>FQ+O( I I

In a similar way as in (6.16), (6.17), using (6.20) - (6.24), we find that

< 5k(_)>9l >EQ = O(nil) Z < ¢]<§)el >FEO=

(6.26)
- (O(n’”%) + O(n*1+5€)) <1>=0(n %) < 1>,
<5/€()8l >FQ— _2 Z<¢] 91 >po +
O(n™?) Z | < 6,,(0)5,(0)67 >pq | = (6.27)
N#j2

- (0<n*1+2€) + o<n*1+7€)) <1>=0m ) < 1>,

—

< 5k< )93 >FEO=

Z < 6;(0)0; >ra +O(n") < &i(0)6} >pa= (6.28)
J#l
_ (O(nflJr?e) 4 O<n71+4€)) <1>= O(n*1+7€> <1>.

Using (6.6), (6.19), (6.26)-(6.28) and Lemma 6.1, we obtain that:

—

< $(0)0k(6)6] >ro= O(n™"**) < [6,(0)67] >pa +
+0 (exp(—cgn™)) <1 >= (6.29)
=0 ") < 1>,
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< erl >rpo=< <¢k‘( ) ( ))91 >E0= O( _1+5E) <1 >, (630)

15
< 040} >po=< (¢(0) + 5,(0))0; >po=O(n™ ") < 1 >, (6.31)
0 + 5,
2
l

< 0207 >pa =< (61,(0) + 0,(0))%607 >pga
)%

=< gbk( ro 01T <1 >=
= 2 < 6f) + 8 >pa 1O <15= O
— i <1>pa+0n ") <1 >.
Since ||p]lec = O(n~/?), using the fact that
e =14 0(n 17%), feq, (6.33)
and (6.6), we get that
< O T S o= 0 TP S0 £ ORI < 1>, (6.34)

where [ = F — §pk02 It is clear that F” satisfy all assumptions of Lemma
6.1. For any p' = (p}, ph,...,pl,) € R such that ||§]|cc = O(n~/2), we have
that

el =1 4 iplf, 4+ O(n~1F%), el =140V, heQ.  (6.35)
Using (6.6), (6.8) and (6.10) with F” instead of F, (6.35), we get that
< ¢l(*) TP —ip0; > pr o= O(n*1+4€) <1>,
< Gu(B)5,(B)e T S o= O(n ) < 1>,
< ¢u(0 )91629 il > =< i ( ) or7 ity >Fo Tt
< B0 @) T > = (6:50)

]_ oy
— 5 < 619 ' —ip,0 > +O(7’I,71+5€) <1>=

1 T~
=5 < 77 S p g +O(nV2) < 1 >

Combining (6.35) and (6.36), we find that

< (0 ) i0F >pra=< ¢ (0 ) i07 P ~ipify >pro +

+ sz <GB0 T S g TO(THE) < 1>= (6.37)

= 5271 i >pg +0M ) < 1>
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Using (4.9), (6.1) and (6.37), we get that

T =
< leze P> 0=

6.38
:_Zpl - lk<€l€p>F/Q‘|‘O( T < 1> (6.38)

Combining (6.34) and (6.38) for i = 7 — pxé*), we obtain (4.26).

7 Proofs of Lemma 6.1 and Lemma 6.2

In this section we continue use notation f = O(g) meaning that |f| < ¢|g|
for some ¢ > 0 depending only on 71,79, ¢y, co,a,b and €.
Let
0% = (61,...,05-1,0,0041,....6,). (7.1)

Proof of Lemma 6.1. Using (4.9), (6.1) and (6.5), we find that

| < T >pmaq | < /‘Pmﬂ;p5”%§:o@mm —cgn®)) <1>. (7.2)

R\Q
For simplicity, let k£ = 1. Using (7.2), we get that

< H(O)T(6) >pa= /(]5 (VT (Bs, ..., 0,)e 0 ATHHO) gg —

Q

/ gbl 92, o 0h)e —0TAH®) gf’ 1 O (exp( —cn’? )) <1>, (7.3)
Un(ra2n®)

p=1234.

Combining (4.17) and the Mean Value Theorem, we find that for § € U, (ryn°)

—

H(0) — H(OW) = O(n~ "), (7.4)
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Using (6.2), we get that

/ ROT s, .., 0.)e" 7 Ddf 1 O (exp(—con™)) <1 >=
Un (ranf)
ron® ront
= / e / ’f‘e— g1(02,....0,)+H(OD)
—7ron® —ront (7 5)

/ @PeAOTHO-HE) g0 | dg, ... d,,

p=0,1,2,3,4.

Combining (4.9) and (7.4), we find that for 60 € U, (ryn?)

/ e —¢2(0)+H(0)—H(OW) )dh, =

+oo
= /gbzl’e¢%(5)d91+0(exp(—67n2€)) /6¢%(§)d91+ (7.6)

N / (b,l,e,d)g(é’) <€H(§)7H(§(1)) _ 1) do,, p=0,1,2,3,4,

|¢1(0)|<r3n®

where ¢; = ¢7(r9, €1, C2,a,b,€) > 0, r3 = r3(r9, €1, C2,a,b,€) > 0.
For p = 2,4, we have that:

+00 1 +00
/gbfe‘b%(@)dﬁl =3 / e 10 qp,,

(7.7)

/ pe 1@ gp, —2 / 01O qp,
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/ e <€H<é’>fH(5“>> _ 1) 6, —

|1(0)|<rsn®
400

=0+ [ dheiPp, =

—00

(7.8)
+o0
:()(n1+4e)/€d>%(9)d917

for M € Un(ran®), p=0,2,4.

Combining (7.2)-(7.8), we obtain (6.8) and (6.9).
For p =1, 3, we have that:

+oo
/ e dp, =0 (7.9)

/ e (BHO—H@U) _ 1) 6, —

|$1(0)|<rsne

_ / 6, Pe-AO@ (eHw)fH(W) _ 1) 49,

0<¢1(0)<rsn®

—

_ / ¢y [Pe= 3 <6H(*>—H(0“>> _ 1) 40, —
, (7.10)

r3n®<¢1(0)<0

=O0(n ') / 1 [Pe= 1O e, =
$120

—+00
— O(n1+4) / B g,

—00

for 0 € U, (ryn®), p=1,3.
Combining (7.2)-(7.6), (7.8), (7.9), (7.10), we obtain (6.8) and (6.9). ]
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—

Proof of Lemma 6.2. Let T'(0) satisfy

T(0)] = O(||f]]s),
aT(0) B . I, (7.11)
2, = O(sn )2}615|T( ), 0 €.

Combining (6.10) and (7.11), we get that

— —

< o(0)T(0) >ro=
=< G T(O™) > + < Gr(0)(T(0) — T(EW) > po=
—< pp(OT(OW)) >pg +0(sn™ ") < sup |0 T(0)] >po= (7.12)

=)
= O(sn~ %) < sup |T ()] >po +0 (exp(—cgn™)) <1 > .
=)
Using (4.6), we find that for 6 € Q)
M(6(6° 55(0° L
78 (6(6)) = O(sn*7F) Z 09, (%) = O(sn %) sup |[M(4(0))].  (7.13)
00y, fao 00y, e

Combining (6.6) and(7.12), we obtain (6.14) ]

8 Proof of Proposition 3.1

In this section we use notation f = O(g) meaning that |f| < ¢|g| for some
constant ¢ > 0 depending only on v and €.

The following lemma will be applied to estimate the determinant of a
matrix close to the identity matrix /.

Lemma 8.1. Let ||| denote any matriz norm. Let X be such an nxn matriz
that || X|| < 1. Then for fized m > 2

det(T + X) = exp (Tnz (‘12”1 (X7 + Em(X)> | (8.1)

where tr(-) is the trace function and
n |IX™

|[En(X)] < 7 X (8.2)
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The proof of Lemma 8.1 is based on estimation the trace of the matrix
In(/ + X)), using the representation as a convergent series. Lemma 8.1 was
also formulated and proved in [11].

We have that

— %i/ H cos Ajj Z H (1+itanAjy) dg, (8.3)

r=1y. {vju}€EG T€Tr (vjuL)€ET
where Aj, = & — & and

Vo ={£ € Un(n/2): |&§ — &lr < n™/** for anyl < j k < n},

€5 — Selw = min|¢; — & + . (8.4)

Since the integrand is invariant under uniform translation of all the {;’s mod

m, we can fix Y & = 0 and multiply it by the ratio of its range 7 to the

length n=/2 of the vector 1[1,1,...,1]7. Thus, for any 1 < r < n, we get
that
So = mn'/? / T(€) dL,
n LAVoNUn (n=1/2+) (8.5)
1 .
EZ H cosAij H (1+itanAjy),
r=1 (vj,v;)EEG TeTr (vj,vg)EET
where L denotes the orthogonal complement to the vector [1,1,...,1]T.
Let define n x n matrix B by
—tan Ajy, for {v;, v, } € EG,
o > tanAy, for k=j,
Bjk o l:(vj,0)EEG ’ (86)
0 otherwise .

Using Theorem 3.1 with the matrix () + ¢B, we get that

Y II +itandy)=> M, (8.7)

r=1T€Tr (vj,vg)EET
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where M, denotes the principal minor of A formed by removing row r and
column r. Since the vector [1,1,...,1]7 is the common eigenvector of the
matrices () and B, corresponding to the eigenvalue 0, we find that

Z M. — det( Q + ZB)’ (8.5)

where Q = Q + J and J denotes the matrix with every entry 1. Note that

1A <7V £ e Von Uy (n~Y%9), (8.9)
|| B]|1 —maXZ|B]k\ = 0(n"*%), £eU,(n~*), (8.10)
k=1

Let ® = BQ~'. Using (4.9), (5.4), (5.30) and (8.10), we get that
19/l < [[BILIQ7Mly = O(n~/*), '€ Up(n/*+). (8.11)

Using Lemma 8.1 with the matrix ¢®, we find that

det(I 4+iP) = exp (itr@ (n_1/2+35)) . £ U, (n7 7). (8.12)

Let
B = Bgrew + Bdiag7 (813>

where Bgje, is the skew-symmetric matrix and Bg,g is the diagonal matrix.
Since () is the symmetric matrix

tI'(Bskew@il) = 0. (814)
Using (8.9), we find that
HBdiGQ - A||2 = O<n71/2+3€)7 ge Un(n71/2+€)7 (815>

where A denotes the diagonal matrix whose diagonal elements are equal to
the components of the vector Q. Combining (5.3) and (8.15), we get that

< 1| Baiag — All2]|Q 72 = O(n~1/275),
ge Un(nfl/ﬂe).

tr ((Bdwg _ A)Q*l)

(8.16)
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Using (8.14) and (8.16), we obtain that

o — tr(BdmgCrl) _ tr(AQfl) + O(n*1/2+3s) — (8.17)
=&Qa+om ), e, |

where @ is the vector composed of the diagonal elements of the matrix Q*I.
Using the property of the trace function

tr(XY) = tr(YX), (8.18)
we have that

tI“IDQ = tl"(BSker_l)z + tl"(BdiagQ_l)Q + 2tr (Bsker_leiagQ_1> : (819)

Since Bgpew 18 the skew-symmetric matrix and Qledmngl is the symmetric
matrix, we find that

tr (BskerileiagQil) = 0. (820)
According to (5.17), we have that

X < [|X|[s,

; (8.21)
| XY |as < || Xas||Y |2

Therefore we get that
tr(Bsker_l)Q S ||Bsker_1||%{S' (822)
Combining (5.3) and (8.9), we obtain that

||Bsker_1||HS < ||Q_1||2||Bskew||HS = O(n_1/2+6)7 ge VYO (823)
Using (5.3), (8.9) and (8.15), we get that

tr ((Baiog = N)Q By Q1) | < 52
< )| Q7" 31/(Baiag — M)l2l| Baiagll2 = O(n™%), €€ W,
and
tr ( (Baiag — N)Q  (Baiag — NQ7)| <
r diag diag = (8 25)

< ]| Q M 3l1(Baiag — Mls = O(n™>*%), &€ Vi
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Combining (8.18), (8.24) and (8.25), we obtain that
tr(Bgiag@ )% = tr(AQ 12 + O(n1H%), £ e V. (8.26)
Combining (8.19), (8.20), (8.22), (8.23) and (8.26), we obtain that
trd? = tr(AQ~ )2 + O(n~ %), £e V. (8.27)

Using (8.17) and (8.27) in (8.12), we get that

det(I + 1®) = exp <z 6T Qa + (/\+—1)2 + O(n_1/2+45)> . eV, (8.29)

By Taylor’s theorem we have that for E eW

H cos Ajp =

(Uj;l)k)EEG
] ] (8.29)
_ —1+6¢
(vjvp)EEG (vjvr)EEG
Note also that .
> oA =QE (8.30)
(vjvE)EEG

Putting together (8.5) forr =1,2...,n, (8.7), (8.8), (8.28), (8.29), (8.30),
we obtain that

So = mn~*?det Q (Int' + O (n~/?+6¢) Int”) , (8.31)
where
Int' = / exp(i €7Qa + F(€))dL
LNVoNUy, (n—1/2+¢)
= [ aL (8.52)
LNVoNUy, (n=1/2+¢)
F(&) = —2€106— L S Al + iR
2 12 ik g TR
{Ujvvk}eEG
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where R(¢) = tr(A(§)Q " AE)Q™), }
Let Pr(¢) be the orthogonal projection & onto the space L, where L de-

notes the orthogonal complement to the vector [1,1,...,1]7. Note that
Pr(¢) = £ — &ML 1,...,1]", (8.33)
where
gt (8.34)
n
Thus 1
Un(Gn5%) {g" . Pr(€) € Vpn Un(n’l/”s)} (8.35)

We also note that . .

Q€ = QPr(¢). (8.36)
Therefore the integrand of (8.32) does not change under the substitution of
vector € by vector Pr(€) and

“+o0
Int’ = / eipr‘”F@dE / e 2" g =
Pr(§)e LNVoNUy (n—1/2+¢) e (837)
1/2 -
_n / (i €1QEFE) g
V2T

Pr(£)eVonUn (n—1/2+¢)

+oo
Int” = / eF(g)dé?/ / e 2" dy =
) —0o0

Pr(§)eLNVoNU, (n—1/2+¢

1/2 -
_n/ / F O
V2
Pr(§)eVonUy (n—1/2+¢)
Using notations (5.6) - (5.11), and formulas (4.20), (8.35), (5.68), we get
that

(8.38)

nl/2 nl/2
Int' = (14 O (exp(—c7n™))) mlm, Int” = 0(1)E1m, (8.39)

where c; > 0 depends only on v and ¢.
Combining (8.31) and (8.39), we obtain (3.12).
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