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Mean-square A-stable diagonally drift-implicit integrators of

weak second order for stiff Itô stochastic differential equations

Assyr Abdulle1, Gilles Vilmart2, and Konstantinos C. Zygalakis1,3

September 5, 2012

Abstract

We introduce two drift-diagonally-implicit and derivative-free integrators for stiff sys-
tems of Itô stochastic differential equations with general non-commutative noise which
have weak order 2 and deterministic order 2, 3, respectively. The methods are shown to
be mean-square A-stable for the usual complex scalar linear test problem with multiplica-
tive noise and improve significantly the stability properties of the drift-diagonally-implicit
methods previously introduced [K. Debrabant and A. Rössler, Appl. Num. Math., 59(3-
4), 2009].
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1 Introduction

Consider the system of Itô stochastic differential equations

dX(t) = f(X(t))dt+

m
∑

r=1

gr(X(t))dWr(t), (1)

where X(t) is a random variable with values in R
d, f : R

d → R
d is the drift term, gr :

R
d → R

d, r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m are independent
one-dimensional Wiener processes. The drift and diffusion functions are assumed smooth
enough, Lipschitz continuous and to satisfy a growth bound in order to ensure a unique
(mean-square bounded) solution of (1) [4]. Except for some very special cases, (1) cannot be
solved analytically and numerical methods are needed. The accuracy of a numerical solution is
usually measured in terms of strong error (the rate at which the mean of the error norm decays)
and weak error (the rate at which the difference between the mean of a smooth functional of the
exact and the numerical solutions decays) [11]. Besides the strong and weak error, the stability
of a numerical integrator is an essential issue for many problems. In the case of numerical
methods for ordinary differential equations (ODEs) this is a very well studied problem and
one desirable property is the so-called A-stability, especially when dealing with stiff problems

1ANMC, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzer-
land,Assyr.Abdulle@epfl.ch
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[8]. More precisely, considering the linear test problem dX = λXdt, λ ∈ C, whose solution is
stable if and only if limt→+∞X(t) = 0 ⇐⇒ λ ∈ SODE :=

{

λ ∈ C;ℜ(λ) < 0
}

and applying a
Runge-Kutta method to it leads to the one step difference equation Xn+1 = R(p)Xn, where
the stability function R(p) is a rational function of p = λh. The numerical method is then
stable for this problem if and only if limn→∞Xn = 0 ⇐⇒ p ∈ Snum :=

{

p ∈ C; |R(p)| < 1
}

,
and the method is called A-stable if and only if SODE ⊆ Snum.

For SDEs, different measures of stability are of interest and in this paper we focus on mean-
square stability [16] and mean-square A-stability [10] (the generalization of the A-stability for
ODEs to SDEs). One considers the following test problem [16, 10, 5, 18]

dX = λXdt+ µXdW (t), X(0) = 1, (2)

in dimensions d = m = 1, with fixed complex scalar parameters λ, µ. The exact solution
of (2), given by X(t) = exp((λ + 1

2
µ2)t + µW (t)), is mean-square stable if and only if

limt→∞ E
(

|X(t)|2
)

= 0 and mean-square stability can be characterized as the set of (λ, µ) ∈ C
2

such that ℜ(λ)+ 1
2
|µ|2 < 0, that will be called SMS

SDE [16, 10]. Another measure of stability that
will be briefly mentioned in this paper is that of asymptotic stability. In particular, the solu-
tion of (2) is said to be stochastically asymptotically stable if and only if limt→∞ |X(t)| = 0,
with probability 1. Asymptotic stability can be characterized as the the set of (λ, µ) ∈ C

2

such that ℜ
(

λ− 1
2
µ2

)

< 0.
Applying a numerical method to the test SDE (2) usually yields the following one step

difference equation [10]
Xn+1 = R(p, q, ξn)Xn, (3)

where p = λh, q = µ
√
h, and ξn is a random variable. We can then characterize the mean-

square stability domain of the method as

lim
n→∞

E(|Xn|2) = 0 ⇐⇒ SMS
num :=

{

(p, q) ∈ C
2 ;E(|R(p, q, ξ)|2) < 1

}

. (4)

A characterization of the numerical asymptotic stability domain can also be derived, assuming
R(p, q, ξ) 6= 0 with probability1 1 and E((log |R(p, q, ξ)|)2) < ∞, as [10, Lemma 5.1] the set
(p, q) ∈ C

2 such that E(log |R(p, q, ξ)|) < 0. Finally, a numerical integrator is called mean-
square A-stable if SMS

SDE ⊆ SMS
num. If we restrict (p, q) ∈ R

2 then the domains of mean-square
or asymptotic stability are called regions of stability.

Mean-square A-stable numerical method are necessarily drift-implicit and it is shown in
[10] that the stochastic θ-methods, which have strong order 1/2 and weak order 1 for general
SDEs of the type (1) are mean square A-stable for θ ≥ 1/2. In [9] it is shown that A-stable
methods which have strong and weak order 1 can be built using the θ-method, with mean-
square A-stability achieved for θ ≥ 3/2 (notice that such methods might have large error
constants and are usually not used in the deterministic case). We mention that a class of
strong order one implicit schemes for stiff SDEs, based on the so-called Balanced method,
were recently proposed in [3] with the aim of achieving large asymptotic stability regions.
High order strong methods for SDEs are usually difficult to implement due to the need of
computing numerically involved stochastic integrals. In contrast higher order weak methods
are easier to simulate as the stochastic integrals can in this case be replaced by discrete
random variables. However, constructing mean-square A-stable higher order integrators is a

1Notice that if R(p, q, ξ) = 0 with a non-zero probability, then (3) is clearly numerically asymptotically
stable.
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non trivial task. In [13] a method of ROW type [7] of weak second order is proposed for Itô
SDEs that is mean-square stable under the assumption of real diffusion coefficient. Recently,
a class of singly diagonally drift-implicit Runge-Kutta methods of weak second order was
proposed in [6]. These methods, called SDIRK in the numerical ODE literature [8, Chap.
IV.6] are of interest because they are cheaper to implement than fully drift-implicit methods
(see also the discussion in Section 2). However, none of the weak second order diagonally
implicit Runge-Kutta methods proposed in [6] are mean square A-stable. Moreover except
for the variation of the θ-Milstein method for Itô SDEs that was proposed in [1], we are not
aware of any other weak second order mean-square A-stable integrator.

In this paper we derive a class of singly diagonally drift-implicit integrators of weak second
(indexed by parameter γ), that we call S-SDIRK methods, for multidimensional SDEs with
non-commutative noise. These methods have the same computational cost as the methods
derived in [6], but much better stability properties. More precisely, for a particular choice
of γ, the mean-square A-stability for general parameters (p, q) ∈ C

2 can be proved. For
another choice of γ that leads to a third order method for deterministic problems, the mean-
square A-stability can be checked numerically. Comparison with the methods derived in [6]
is discussed and numerical experiments on a nonlinear test problem with non-commutative
noise corroborate the weak order two of convergence predicted by our analysis. Finally, a
new stabilization procedure introduced in this paper also allows to improve the stability of
the strong and weak order 1 methods introduced in [9] based on the θ-method. In particular,
mean-square A-stable methods for any value θ ≥ 1/2 are constructed.

2 Mean-square A-stable diagonally drift-implicit integrators

Instead of considering the general framework of stochastic Runge-Kutta methods [12, 15] we
derive our S-SDIRK methods by stabilizing the simplest Taylor based method of weak second
order, namely the Milstein-Talay method [17] following the methodology developed in [2] for
explicit stabilized stochastic methods. Consider

K̄1 = X0 + hf(X0),

K̄2 = K̄1 +
√
h

m
∑

r=1

gr(X0)ξr,

X̄1 = X0 +
h

2

(

f(X0) + f(K̄2)
)

+

m
∑

r=1

gr
(

X0 + K̄1

2

)√
hξr (5)

+
1

2

m
∑

r=1

(

gr
(

X0 +
m
∑

q=1

gq(X0)Jq,r
)

− gr
(

X0 −
m
∑

q=1

gq(X0)Jq,r
)

)

+
1

4

√
h

m
∑

r=1

(

gr(X0 +
√
h

m
∑

q=1

gq(X0)χq)− 2gr(X0) + g(X0 −
√
h

m
∑

q=1

gq(X0)χq)
)

ξr,

where

Jq,r =







h(ξrξr − 1)/2, if q = r,
h(ξqξr − χq)/2, if r < q,
h(ξqξr + χr)/2, if r > q,

(6)
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and χl, ξl, l = 1 . . . m are independent discrete random variables satisfying respectively

P(χl = ±1) = 1/2, P(ξl = ±
√
3) = 1/6, P(ξl = 0) = 2/3. (7)

The method (5) is obtained from a second weak order Taylor method [17] replacing stochastic
integrals with discrete random increments and derivatives by finite differences. Notice that
each step of the above derivative-free scheme only involves five evaluations of the functions gr,
r = 1, . . . ,m, independently of the dimension m of the Wiener processes, thanks to suitable
finite differences involving also noise terms, as first proposed in [15]. A direct proof of the
weak second order of the method (5) can easily be established and we refer to [2, Lemma 3.1]
for details. However, as it can be seen in Figure 1, this method (5) has a very restricted mean-
square stability domain, which results in a stepsize restriction in the case of stiff problems.

Milstein-Talay method, see (5)

q²

p

-5 -4 -3 -2 -1 0 1
0

1

2

3

4

Figure 1: Mean-square stability region (dark gray) and asymptotic stability region (dark and
light grays).

In order to relax this restriction, one needs to stabilize the method (5). There are two
alternatives ways for doing this: use stabilized explicit integrators [2], or use implicit integra-
tors, and in particular diagonally drift-implicit ones, which, as mentioned above, is the focus
of this paper.

Diagonally implicit Runge-Kutta methods In the case of numerical methods for ODEs,
diagonally implicit Runge-Kutta methods are integrators of the form

Ki = Y0 +

i
∑

j=1

aijhf(Kj), Y1 = Y0 +

s
∑

i=1

bihf(Ki), (8)

where s is the number of internal stages, and aij, bi are the coefficients of the method. The ad-
vantage of diagonally implicit Runge-Kutta methods over fully implicit Runge-Kutta methods
is that one can treat one internal stage after the other (nonlinear systems of size d×d) instead
of solving the full nonlinear system of size (d · s)× (d · s). An additional advantage is that the
values for the internal stages already computed can be used to find a good starting value for
the next implicit stage that needs to be computed [8]. Moreover, choosing identical diagonal
coefficients aii = γ permits to use at each step a single LU-factorization for all quasi-Newton
iterations in all internal stages of the method. In this case the corresponding methods are
called singly diagonally implicit Runge-Kutta methods (SDIRK).
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New weak order two diagonally implicit A-stable integrators We introduce the
following stabilized integrator of weak order two for the integration of (1).

K1 = X0 + γhf(K1),

K2 = X0 + (1− 2γ)hf(K1) + γhf(K2),

K∗
1 = X0 + β1γhf(K1) + β2γhf(K2),

K∗
2 = X0 + γhf(K1) +D−1(K∗

1 −X0),

X1 = X0 +
h

2
f(K1) +

h

2
f
(

K2 +
√
h

m
∑

r=1

gr(K∗
2 )ξr

)

+
√
h

m
∑

r=1

gr
(

K∗
1 +

(1

2
− 2γ

)

hf(K∗
2 )
)

ξr

+
1

2

m
∑

r=1

[

gr
(

K∗
2 +

m
∑

q=1

gq(K∗
2 )Jq,r

)

− gr
(

K∗
2 −

m
∑

q=1

gq(K∗
2 )Jq,r

)]

+

√
h

4

m
∑

r=1

[

gr
(

K∗
2 +

√
h

m
∑

q=1

g(K∗
2 )χq

)

− 2gr(K∗
2 ) + gr

(

K∗
2 −

√
h

m
∑

q=1

g(K∗
2 )χq

)]

ξr, (9)

where β1 = 2−5γ
1−2γ , β2 = γ

1−2γ and ξr, χr, Jq,r satisfy (7) and (6) respectively. For γ = 0,

we have K∗
1 = K∗

2 = X0 and K∗
1 + 1−4γ

2
hf(K∗

2 ) = X0 + (h/2)f(X0) and we recover the
explicit Miltsein-Talay method (5). For the stage K∗

2 , we use D
−1 to stabilize K∗

1 −X0, where
D = I−γhf ′(X0). This stabilization procedure (used in numerical ODE to stabilize the error
estimator of an integrator) is well-known in ODEs and has been introduced by Shampine
[8, Sect. IV.8], its use for SDEs is motivated in Remark 3.1 below. We emphasize that it
does not represent a computational overhead as the LU -factorization of D needed to compute
D−1(K∗

1 − X0) is already available from the solution of the nonlinear system for the stages
(K1,K2) (see Remark 2.1).

We shall consider two choices for γ that yield mean-square A-stable integrators:

• the S-SDIRK(2,2) method for the value γ = 1−
√
2
2

which gives a weak order 2 A-stable
method with deterministic order 2;

• the S-SDIRK(2,3) method for the value γ = 1
2
+

√
3
6

which gives an weak order 2 A-stable
method with deterministic order 3.

We notice that the value of γ for the S-DIRK(2,3) yields in the deterministic case a method of
order 3 which is strongly A-stable, i.e. |R(∞)| < 1, while the value of γ for the S-DIRK(2,2)
yields a method of order 2 which is L-stable, i.e. it is A-stable and R(∞) = 0. L-stability is
desirable in the case of very stiff deterministic problems as it permits to damp the very high
frequencies.

Complexity In addition to the solution of the deterministic two stage SDIRK method
(which yields the stages (K1,K2)) one step of the scheme (9) costs one evaluation of the drift
function f , and 6 evaluations of each diffusion functions gr, and the generation of 2m random
variables. The cost is similar to the diagonally implicit methods proposed in [6] (in particular
the number of evaluation of the diffusion functions gr, r = 1, . . . ,m is independent of the
number of Wiener processes m).

Remark 2.1. We emphasize that the computation of D−1(K∗
1 −X0) in the scheme (9) does

not represent any computational overhead. Indeed, as for any deterministic or stochastic
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diagonally implicit method [8, 6], the usual procedure is to compute the LU -factorization of
D = I− γhf ′(X0) (f

′(X0) is usually further approximated by finite differences) and make the
quasi-Newton iterations

LU(Kk+1
i −Kk

i ) = −Kk
i +X0 + δ2i(1− 2γ)hf(K1) + γhf(Kk

i ), i = 1, 2, (10)

where δ2i is the Kronecker delta function. The same LU -factorization is then used to compute
D−1(K∗

1 −X0) by solving
LUY = K∗

1 −X0,

whose cost in negligible: the cost of evaluating K∗
2 ,f(K

∗
2) is the same as one iteration of (10).

Remark 2.2. The stabilization procedure used in the method (9) can also be used to improve
the stability of the strong order one methods studied in [10] by considering the following variant
of the stochastic θ-method

K1 = X0 + (1− θ)hf(X0) + θhf(K1),

K2 = X0 + θ(2− θ)(1− θ)hf(X0) + θ2(2− θ)hf(K1) + θ2D−1hf(K1), (11)

X1 = K1 +
√
h

m
∑

r=1

gr(K2)ξr +
1

2

m
∑

r=1

(

gr
(

K2 +
m
∑

q=1

gq(K2)Iq,r
)

− gr
(

K2 −
m
∑

q=1

gq(K2)Iq,r
)

)

,

where ξr ∼ N (0, 1) are independent random variables, and Iq,r are the multiple stochastic

integrals Iq,r =
∫ h
0

(∫ s
0
dWq(t)

)

dWr(s). Here, D = I−θhf ′(X0). In the case of a commutative
noise, these multiple stochastic integrals do not need to be simulated and can be simply replaced
by h(ξqξr − δqr)/2, where δqr is the Kronecker delta function. The advantage of the integrator
(11) is that it can be shown to be mean-square A-stable for all θ ≥ 1/2 (see Remark 3.4). In
contrast, the strong order one θ-Milstein method, whose stability has been analyzed in [10], is
mean-square A-stable only for θ ≥ 3/2 and these values of θ yield large error constants.

We next show that the integrator (9) has weak second order.

Theorem 2.3. Consider the SDE (1) with f, gr ∈ C6
P (R

d,Rd), Lipschitz continuous. Then,
for all fixed γ 6= 1/2, the integrator (9) satisfies

|E(φ(X(nh))) − E(φ(X̄n))| ≤ Ch2, 0 ≤ nh ≤ T,

for all φ ∈ C6
P (R

d,R), where C is independent of n, h.

Proof. We base our proof on a well-known theorem by Milstein [14], which states that under
our smoothness assumptions a local weak error estimate of order r + 1 guarantees a weak
order of convergence r. Since the derivative free Milstein-Talay method (5) is already of weak
second order (see [2, Lemma 3.1] for a short direct proof), it is sufficient to show that

|E(φ(X1))− E(φ(X̄1))| ≤ Ch3, (12)

where X1, X̄1 are the one step numerical approximations given by (9) and (5), respectively.
A Taylor expansion argument shows

K∗
2 = X0 + 3γhf(X0) +O(h2), K∗

1 +
1− 4γ

2
hf(K∗

2 ) = X0 +
h

2
f(X0) +O(h2),
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and
K1 = X0 + γhf(X0) +O(h2), K2 = X0 + (1− γ)hf(X0) +O(h2),

from which we deduce

h

2
f(K1) +

h

2
f(K2 +

√
h

m
∑

r=1

gr(K∗
2 )ξr) +

√
h

m
∑

r=1

gr(K∗
1 +

1− 4γ

2
hf(K∗

2 ))ξr =

h

2

(

f(X0) + f(K̄2)
)

+

m
∑

r=1

gr
(

X0 + K̄1

2

)√
hξr + h5/2R1 +O(h3), (13)

where E(R1) = 0. Furthermore, we notice that the last two lines of (5) and (9) are identical,
with the exception that X0 is replaced by K∗

2 . This induces a perturbation of the form
h2R2 + h5/2R3 +O(h3) where E(R2) = E(R3) = 0 and E(R2ξr) = 0 for all r (a consequence
of E(Jq,rξj) = 0 for all indices q, r, j). We deduce

X1 − X̄1 = h2R2 + h5/2(R1 +R3) +O(h3).

Using X̄1 = X0 +
√
h
∑m

r=1 g
r(X0)ξr +O(h), we obtain

φ(X1)− φ(X̄1) = φ′(X̄1)(X1 − X̄1) +O(h3),

= φ′(X0)(h
2R2 + h5/2(R1 +R3)) + h5/2

m
∑

r=1

φ′′(X0)(g
r(X0)ξr, R2) +O(h3).

We deduce that (12) holds and this completes the proof. �

We now illustrate Theorem 2.3 numerically. In particular, we consider the following non-
linear test SDE with non-commutative noise with 10 independent driving Wiener processes,

dX(t) = −X(t)dt+
10
∑

j=1

a−1
j

√

X(t) + b−1
j dWj(t), X(0) = 1,

where the values of the constants aj , j = 1, . . . , 10 are respectively 10, 15, 20, 25, 40, 25, 20, 15,
20, 25, and the values of bj, j = 1, . . . , 10 are respectively 2, 4, 5, 10, 20, 2, 4, 5, 10, 20. For this
problem, by applying Itô’s formula to φ(x) = x2, taking expectations and using the fact that
E(X(t)) = e−t, one calculates

E(X2(t)) = (68013 + 458120e−t + 13873867e−2t)/14400000. (14)

We apply the S-SDIRK methods to the problem (14) and approximate E(X2(T )) up to the
final time T = 1 using 109 realisations and different step sizes h. In Figure (2), we plot the
weak convergence rates for E(X2(T )) at time T = 1 for the new integrators S-SDIRK(2,2)
(solid lines), S-SDIRK(2,3) (dashed lines). For comparison, we also include the Milstein-Talay
method (dashed-dotted lines). We note here that the same set of random numbers is used for
all the three integrators. We observe the expected lines of slope 2 (compare with the reference
slope in dotted lines) which confirm the weak order two of the methods predicted by Theorem
2.3. In addition, we also observe that the method S-SDIRK(2,3) which has deterministic order
3 is about three times more accurate than S-SDIRK(2,2) for stepsizes of size h ≃ 10−1.
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Figure 2: Weak convergence plots for the nonlinear problem (14) for Milstein-Talay method
(5) (dashed-dotted line), S-SDIRK(2,2) (solid line) and S-SDIRK(2,3) (dashed line). Second
moment error at final time T = 1 versus the stepsize h, where 1/h = 1, 2, 3, 4, 6, 8, 11, 16.

3 Mean-square A-stability

In this section, we study the mean-square stability of the integrators S-SDIRK(2,2) and S-
SDIRK(2,3). The stability functions (3) have the form

R(p, q, ξ) = A(p) +B(p)qξ + C(p)q2
ξ2 − 1

2
,

where P(ξ = ±
√
3) = 1/6,P(ξ = 0) = 2/3, and

A(p) =
1 + (1− 2γ)p + (γ2 − 2γ + 1/2)p2

(1− γp)2
, B(p) =

1 + (1− 3γ)p

(1− γp)3
, C(p) =

1

(1− γp)3
.

(15)
We deduce for all p, q ∈ C,

E(|R(p, q, ξ)|2) = |A(p)|2 + |B(p)|2|q|2 + |C(p)|2 |q|
4

2
=: S(p, q). (16)

Remark 3.1. We observe that by removing the term involving D−1 in the S-SDIRK methods
(9), the denominators of B(p) and C(p) would scale at best as (1−γp)2. The resulting methods
would no longer be mean-square A-stable.

In Figure 3 we visualize the mean-square and asymptotic stability regions for S-SDIRK(2,2)
and compare them with the ones of the diagonally-implicit methods introduced in [6](in par-
ticular with DDIRDI5 (c1 = c2 = 1)). The dashed lines {|p| = q2/2} indicate for p < 0
and p > 0 respectively the boundaries of the mean-square and asymptotic stability regions
for the exact solution. As we can observe, the mean-square stability regions (dark gray) of
S-SDIRK(2,2) are much bigger than the ones of DDIRDI5, and include the ones of the exact
solution. This relates with the fact that DDIRDI5 and the class of weak second order methods
introduced in [6] are not mean-square A-stable as shown in [2], whereas S-SDIRK(2,2) is a
mean-square A-stable integrator, as proved in the next theorem.
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DDIRDI5 (c1 = c2 = 1) [6]
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Figure 3: Mean-square stability region (dark gray) and asymptotic stability region (dark and
light grays) for DDIRDI5 [6] (left pictures) and S-SDIRK(2,2) (right pictures).

Theorem 3.2. The integrator S-SDIRK(2,2) is mean-square A-stable.

Proof. Since S(p, q) given by (16) is an increasing function of |q|2, we set for z ∈ C, s(z) :=
S(z,

√
−2ℜz) and the method is mean-square A-stable if and only if

sup
ℜz<0

s(z) = sup
ℜz<0

(

|A(z)|2 + 2|B(z)|2(−ℜz) + 2|C(z)|2(ℜz)2
)

≤ 1. (17)

Using γ = 1−
√
2/2 and putting z = x+ iy, a calculation yields

∂s(z)

∂y
= y

a1(x)y
4 + a2(x)y

2 + a3(x)

|1− γz|8 , (18)

where

a1(x) = 35
√
2− 99/2,

a2(x) = (−99 + 70
√
2)x2 + (−198

√
2 + 280)x − 17 + 12

√
2,

a3(x) = (35
√
2− 99/2)x4 + (−198

√
2 + 280)x3 + (64

√
2− 91)x2 + (6

√
2− 8)x.

It can be checked that ai(x) < 0 for all x < 0 and all i = 1, 2, 3. For a given x < 0, we
consider (18) as a function of y, say g(y) and we observe that g(0) = 0 and g(y) > 0, for all
y < 0, g(y) < 0, for all y > 0. Thus, since s(x+ iy) is a smooth function of y that tends to
zero for y → ∞, we deduce

sup
ℜz=x

s(z) = s(x), for all x < 0. (19)

Finally, an elementary study of the quantity s(x) as a function of the real parameter x < 0
yields s(x) ≤ 1. This implies the bound (17) and concludes the proof. �
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Remark 3.3. Using (17), it can be checked numerically that the integrator S-SDIRK(2,3)
is mean-square A-stable (see an illustration for real (p, q) in Figure 4). A rigorous proof is
however more tedious to derive because (19) does not hold for this integrator (notice that the
scheme is not L-stable for deterministic problems).

Remark 3.4. For the strong order one θ-methods (11) a simple calculation gives for the
stability function (16),

S(p, q) =
∣

∣

∣

1 + (1− θ)p

1− θp

∣

∣

∣

2

+
q2

|1− θp|4 +
q4

2|1− θp|4 .

Similarly as in Theorem 3.2 the mean-square A-stability of (11) can be proved for θ ≥ 1/2.

S-SDIRK(2,3)
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Figure 4: Mean-square stability region (dark gray) and asymptotic stability region (dark and
light grays) of S-SDIRK(2,3).

We now exhibit the advantage of our method over the Milstein-Talay method (5) and the
weak second order drift-implicit methods considered in [6]. In particular, we consider the
linear test problem (2) and compare the behaviour of the three different methods for a range

SDE test problem: dX(t) = λX(t)dt+ µX(t)dW (t)
mean-square stepsize restriction for mean-square stability

method A-stability −λ = µ2 = 5 −λ = µ2 = 50 −λ = µ2 = 500
Milstein-Talay (5) no h ≤ 0.236 h ≤ 0.0236 h ≤ 0.00236

DDIRDI5 (c1 = c2 = 1) [6] no h ≤ 0.0829 h ≤ 0.00829 h ≤ 0.000829
S-SDIRK (2,2) or (2,3) yes no restriction no restriction no restriction

Table 1: Comparison of mean-square stability constraints.

of parameters λ, µ for which the solution of (2) is mean-square stable. As we can see, even
for a moderate stiff problem (−λ = µ2 = 5) in contrast to the S-SDIRK methods introduced
here, there is quite a big stepsize restriction in order for the numerical solution to be mean-
square stable for the Milstein-Talay and the DDIRDI5 methods. Furthermore, as expected
we observe that the stepsize restriction for the other two methods becomes more severe as we
increase the stiffness of the problem.
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