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We introduce a new family of explicit integrators for stiff Itô stochastic differential equations (SDEs) of weak order two. These numerical methods belong to the class of one-step stabilized methods with extended stability domains and do not suffer from the stepsize reduction faced by standard explicit methods. The family is based on the standard second order orthogonal Runge-Kutta Chebyshev methods (ROCK2) for deterministic problems. The convergence, mean-square and asymptotic stability properties of the methods are analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic partial differential equations are presented and confirm the theoretical results.

Introduction

We consider stiff systems of Itô stochastic differential equations for which standard explicit integrators -e.g., the well-known Euler-Maruyama method -face a sever step size restriction [START_REF] Higham | A-stability and stochastic mean-square stability[END_REF][START_REF] Hairer | Solving ordinary differential equations II. Stiff and differentialalgebraic problems[END_REF][START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF]. Such problems are usually solved numerically by (semi)-implicit methods, which can be expensive for large systems and difficult to implement for complex problems. Recently, a new class of explicit stabilized methods called S-ROCK has been introduced for stiff problems [START_REF] Abdulle | Chebyshev methods for stiff stochastic differential equations[END_REF][START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF]. On the one hand, these methods (fully explicit) are as easy to implement as the Euler-Maruyama method. On the other hand, their extended mean-square stability regions [START_REF] Higham | A-stability and stochastic mean-square stability[END_REF] (for suitable test problems) make them much more efficient than classical explicit methods for stiff problems.

In this paper, we introduce a weak second order family of explicit stabilized integrators based on the second order ROCK2 integrators for deterministic stiff problems. The main feature of the algorithm is that it has an arbitrarily large mean-square stability region that grows quadratically with respect to the number of drift function evaluations. For an efficient implementation, the integrators are derivative free, and the number of diffusion function evaluations is independent of the number of Weiner processes involved, similarly to the methods introduced in [START_REF] Rößler | Second order Runge-Kutta methods for Itô stochastic differential equations[END_REF] . As an additional feature, the proposed methods have a large asymptotic stability region close to the origin.

Up to now, with the exception of [START_REF] Komori | Weak second order S-ROCK methods for stratonovich stochastic differential equations[END_REF], only weak first order explicit stabilized methods have been proposed for stiff stochastic problems. In [START_REF] Komori | Weak second order S-ROCK methods for stratonovich stochastic differential equations[END_REF] an attempt to generalize the S-ROCK methods to weak second order has been proposed. However, this generalization involves the solution of a large number of order conditions and the resulting methods have less favorable mean-square stability properties than the methods proposed in this paper (see e.g., [START_REF] Abdulle | Chebyshev methods for stiff stochastic differential equations[END_REF][START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF]).

This paper is organized as follows. We recall in Section 2 the concept of stabilized methods for stiff SDEs. In Section 3, we introduce our new weak second order explicit stabilized integrators and analyze their weak order of convergence and stability properties. Finally, we present in Section 4 various numerical experiments, both for linear and non-linear stiff SDEs and for a parabolic stochastic partial differential equation (SPDE), that illustrate the efficiency of the proposed methods.

Stabilized stochastic methods

We briefly recall the notions of weak convergence, mean-square and asymptotic stabilities.

Weak stochastic integrators

We consider the Itô stochastic system of differential equations

dX(t) = f (X(t))dt + m r=1 g r (X(t))dW r (t), X(0) = X 0 , (1) 
where X(t) is a random variable with values in R N , f : R N → R N is the drift term, g r : R N → R N , r = 1, . . . , m are the diffusion terms, and W r (t), r = 1, . . . , m are independent onedimensional Weiner processes. The drift and diffusion functions are assumed smooth enough, Lipschitz continuous and to satisfy a growth bound in order to ensure a unique (mean-square bounded) solution of (1) [START_REF] Arnold | Stochastic differential equations: theory and applications[END_REF][START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF]. For the numerical approximation of (1) we consider the discrete map X n+1 = Ψ(X n , h, ξ n ), [START_REF] Abdulle | Chebyshev methods for stiff stochastic differential equations[END_REF] where Ψ(•, h, ξ n ) : R N → R N , X n ∈ R N for n ≥ 0, h denotes the timestep size, and ξ n denotes a random vector. The numerical approximation [START_REF] Abdulle | Chebyshev methods for stiff stochastic differential equations[END_REF], starting from the exact initial condition X 0 of (1) is said to have weak order τ if for all functions1 φ :

R N → R ∈ C 2(τ +1) P (R N , R), |E(φ(X n )) -E(φ(X(t n )))| ≤ Ch τ , (3) 
and to have strong order

τ if E(|X n -X(t n )|) ≤ Ch τ , (4) 
for any t n = nh ∈ [0, T ] with T > 0 fixed, for all h small enough, with constants C independent of h.

Remark 2.1. A well-known theorem of Milstein [START_REF] Milstein | Weak approximation of solutions of systems of stochastic differential equations[END_REF] (see [START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF]Chap. 2.2]) allows to infer the global weak order from the error after one step. Assuming that f, g r ∈ C

2(τ +1) P (R N , R N ), r = 1, . . . , m are Lipschitz continuous, that for all r ∈ N, the moments E(|X n | 2r ) are bounded for all n, h with 0 ≤ nh ≤ T uniformly with respect to all h sufficiently small, and that the local error bound for all φ ∈ C 2(τ +1) P (R N , R) and all initial values X(0) = X 0 satisfies

|E(φ(X 1 )) -E(φ(X(t 1 )))| ≤ Ch τ +1 (5) 
for all h sufficiently small, then the global error bound (3) holds. Here the constant C is again independent of h. For the strong convergence we have the following result [START_REF] Milstein | A theorem on the order of convergence of mean-square approximations of solutions of systems of stochastic differential equations[END_REF]. If the functions f, g r are sufficiently smooth and Lipschitz continuous and

E|X 1 -X(t 1 )| ≤ Ch τ +1/2 and |E(X 1 ) -E(X(t 1 ))| ≤ Ch τ +1 , (6) 
for all initial values X(0) = X 0 , then the global error bound (4) holds.

The simplest method to approximate solutions to (1) is the so-called Euler-Maruyama method

X n+1 = X n + hf (X n ) + m r=1 g r (X n )∆W n,r , (7) 
where ∆W n,r ∼ N (0, h), r = 1, . . . m are independent Weiner increments. This method has strong order 1/2 and weak order 1 for a general system of Itô SDEs [START_REF] Maruyama | Continuous markov processes and stochastic equations[END_REF]. Various higher order weak methods have been considered in the literature [START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF][START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF]. For example, weak second order methods were proposed by Milstein [START_REF] Milstein | A method of second order accuracy integration of stochastic differential equation[END_REF][START_REF] Milstein | Weak approximation of solutions of systems of stochastic differential equations[END_REF], Platen [START_REF] Platen | High-order weak approximation of ito diffusions by markov chains[END_REF], Talay [START_REF] Talay | Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications[END_REF] and Tocino and Vigo-Aguiar [START_REF] Tocino | Weak second order conditions for stochastic Runge-Kutta methods[END_REF], and more recently Runge-Kutta type methods of Rößler [START_REF] Rößler | Runge-Kutta methods for the numerical solution of stochastic diifferential equations[END_REF]. We mention also the extrapolation methods of Talay and Tubaro [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF] and of [START_REF] Kloeden | Extrapolation methods for the weak approximation of Itô diffusions[END_REF] that combines methods with different stepsizes to achieve higher weak order convergence. In [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF], (semi)-implicit weak second order methods with favorable geometric and/or stability properties were introduced using the framework of modified differential equations. This framework could in principle be used to construct higher order weak stabilized methods. Here we follow a different approach based on stabilizing a second weak order scheme originating from the weak second order Taylor method known as the Milstein-Talay method [34]

X 1 = X 0 + hf (X 0 ) + m r=1 g r (X 0 )∆W r + m q,r=1 (g r ) ′ (X 0 )g q (X 0 )I q,r + h 2 2 f ′ (X 0 )f (X 0 ) + 1 2 m r=1 f ′′ (X 0 )(g r (X 0 ), g r (X 0 )) + m r=1 f ′ (X 0 )g r (X 0 )I r,0 + m r=1 (g r ) ′ (X 0 )f (X 0 ) + m q=1 1 2 (g r ) ′′ (X 0 )(g q (X 0 ), g q (X 0 )) I 0,r , (8) 
where I r,0 , I 0,r , I q,r denote the stochastic integrals defined by

I r,0 = t 1 t 0 t t 0 dW r (s)dt, I 0,r = t 1 t 0 t t 0 ds dW r (t), I q,r = t 1 t 0 t t 0 dW q (s)dW r (t). (9) 
Here, we use the notations f ′ (X 0 )• for the first derivative (a linear form) and f ′′ (X 0 )(•, •) for the second derivative (a symmetric bilinear form) of f at the point X 0 and similar notations for the diffusion functions g r . Notice that for notational brevity, we shall always write X 1 and X 0 in place of X n+1 and X n when introducing an integrator. As given above, the method (8) is not practical for implementation: it contains derivatives which are expensive in general, and stochastic integrals that are difficult to simulate. We will discuss these issues in Section 3.1 where we derive a stabilized explicit version of the Milstein-Talay method suitable for stiff problems.

Stability concepts for SDEs

In practice it is not only the order of convergence that guarantees an efficient approximation of an SDE, but also the long-time behavior of the solution. Stability properties of the exact and the numerical solutions are important to understand this behavior. Widely used characterizations of stability for SDEs are the mean-square and the asymptotic stability (in the large) [START_REF] Arnold | Stochastic differential equations: theory and applications[END_REF][START_REF] Hasminskii | Stochastic stability of differential equations[END_REF]. The former measures the stability of moments, the latter measures the overall behavior of sample paths. In particular, we have the following definitions. The steady solution X ≡ 0 of (1) with f (0) = g r (0) = 0, r = 1, . . . , m is called stochastically asymptotically stable in the large if there exists δ > 0 such that

lim t→∞ |X(t)| = 0 with probability 1 for all |X 0 | < δ, (10) 
mean-square stable if there exists δ > 0, such that

lim t→∞ E(|X(t)| 2 ) = 0 for all |X 0 | < δ. (11) 

The stochastic scalar test equation with multiplicative noise

To gain insight on the stability behavior of a numerical method, we consider a class of linear scalar test problems widely used in the literature [START_REF] Saito | Stability analysis of numerical schemes for stochastic differential equations[END_REF][START_REF] Higham | A-stability and stochastic mean-square stability[END_REF][START_REF] Burrage | Numerical methods for strong solutions of stochastic differential equations: an overview[END_REF][START_REF] Tocino | Mean-square stability of second-order Runge-Kutta methods for stochastic differential equations[END_REF],

dX(t) = λX(t)dt + µX(t)dW (t), X(0) = 1, (12) 
in dimensions N = m = 1, with fixed complex scalar parameters λ, µ. The exact solution of ( 12), given by X(t) = exp((λ + |µ| 2 < 0 .

We name the domains S M S SDE ⊂ S AS SDE the mean-square and asymptotic stability domains of the test equation [START_REF] Gard | Introduction to stochastic differential equations[END_REF], respectively.

Notice that the justification of the test equation ( 12) is delicate for multi-dimensional systems. Already for multi-dimensional linear systems dX = AXdt + m r=1 B r XdW r (t), where A, B r are N × N matrices and dW r are independent one-dimensional Weiner processes, it is difficult to extend the stability analysis of numerical integrators if A and B r , r = 1, . . . , m do not commute and can thus not be simultaneously diagonalized. This has been investigated in [START_REF] Saito | Mean-square stability of numerical schemes for stochastic differential systems[END_REF][START_REF] Rathinasamy | Mean-square stability of second-order Runge-Kutta methods for multi-dimensional linear stochastic differential systems[END_REF] but these studies do not allow for an easy characterization of stability criterion. Using the theory of stochastic stabilization and destabilization [START_REF] Mao | Stochastic stabilization and destabilization[END_REF] an attempt to generalize the linear test equation has been proposed in [START_REF] Buckwar | Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations[END_REF], where two sets of test equations with N = m = 2 and N = m = 3 have been studied. The conclusion of these studies is that the stability behavior of the Euler-Maruyama method (or its generalization obtained by using the θ method for the drift term) is essentially captured by the test equation [START_REF] Gard | Introduction to stochastic differential equations[END_REF]. We mention however that for linear systems with a non normal drift, the additional test equations in [START_REF] Buckwar | Towards a systematic linear stability analysis of numerical methods for systems of stochastic differential equations[END_REF] capture stability behaviors (in particular in the pre asymptotic regime) of a numerical scheme that cannot be seen by studying [START_REF] Gard | Introduction to stochastic differential equations[END_REF]. This phenomenon is well known for ODEs (see [START_REF] Hairer | Solving ordinary differential equations II. Stiff and differentialalgebraic problems[END_REF]IV.11]).

Stability of numerical integrators for SDEs

We now look for conditions such that a numerical method (2) applied to the linear test problem [START_REF] Gard | Introduction to stochastic differential equations[END_REF] yields numerically stable solutions. Similarly to the continuous case we say that the numerical method (2) applied to ( 12) is said to be • numerically asymptotically stable if lim n→∞ |X n | = 0 with probability 1;

• numerically mean-square stable if lim n→∞ E(|X n | 2 ) = 0.
Applying a numerical method to the test SDE [START_REF] Gard | Introduction to stochastic differential equations[END_REF] usually yields [START_REF] Higham | A-stability and stochastic mean-square stability[END_REF] the following one step difference equation

X n+1 = R(p, q, ξ n )X n , (13) 
where p = λh, q = µ √ h, and ξ n is a random variable (e.g. a Gaussian ξ n ∼ N (0, 1) or a discrete random variable). Once this difference equation is formulated, it is not difficult to define the domains of mean-square and asymptotic stability of the numerical method applied to the test SDE [START_REF] Gard | Introduction to stochastic differential equations[END_REF]. In particular, for the numerical mean-square stability, we have [START_REF] Higham | A-stability and stochastic mean-square stability[END_REF] lim

n→∞ E(|X n | 2 ) = 0 ⇐⇒ (p, q) ∈ S M S
num where S M S num := (p, q) ∈ C2 ; E|R(p, q, ξ)

| 2 < 1 , (14) 
and for the numerical asymptotic stability, assuming R(p, q, ξ) = 0 with 2 probability 1 and

E((log |R(p, q, ξ)|) 2 ) < ∞, it is shown in [15, Lemma 5.1] the equivalence lim n→∞ |X n | = 0 with probability 1 ⇐⇒ (p, q) ∈ S AS num := (p, q) ∈ C 2 ; E(log |R(p, q, ξ)|) < 0 . ( 15 
)
We denote S AS num , S M S num , respectively, the above domains of asymptotic and mean-square stability. If we restrict (p, q) ∈ R 2 then the domains of stability S AS num ∩ R 2 , S M S num ∩ R 2 are called regions of stability.

Weak second order explicit stabilized methods

In this section we introduce the S-ROCK2 algorithm for systems of SDEs (1) in the most general setting for non-commutative noise of arbitrary dimension m. The method is obtained by a combination of an efficient weak second order Milstein-Talay scheme with a stabilization procedure based on the second order deterministic stabilized Runge-Kutta method ROCK2.

Efficient derivative free explicit Milstein-Talay method

We briefly discuss the Milstein-Talay method (8) and explain an efficient implementation of (8) that will be helpful to understand our new S-ROCK2 methods. First it is well-known that one can replace the stochastic integrals I r,0 , I 0,r , I q,r by discrete random increments without altering the weak order. Consider independent discrete random variables χ r , ξ r , r = 1, . . . , m satisfying

P(χ r = ±1) = 1/2, P(ξ r = ± √ 3) = 1/6, P(ξ r = 0) = 2/3, (16) 
then both I r,0 and I 0,r can be replaced by h3/2 ξ r and I q,r can be replaced by

J q,r =    h(ξ r ξ r -1)/2 if q = r h(ξ q ξ r -χ q )/2 if r < q h(ξ q ξ r + χ r )/2 if r > q. ( 17 
)
The weak approximation (17) involving 2m -1 discrete random variables 3 was first proposed in [START_REF] Milstein | Weak approximation of solutions of systems of stochastic differential equations[END_REF] (see also [27, p. 96, eq. (1.25)]). The weak second order method (8) with discrete random increments then reads (see e.g. [27, p. 103, eq. (2.18)])

X1 = X 0 + hf (X 0 ) + √ h m r=1 g r (X 0 )ξ r + m q,r=1 (g r ) ′ (X 0 )g q (X 0 )J q,r + h 2 2 f ′ (X 0 )f (X 0 ) + 1 2 m r=1 f ′′ (X 0 )(g r (X 0 ), g r (X 0 )) (18) 
+ m r=1 (g r ) ′ (X 0 )f (X 0 ) + 1 2 m q=1 (g r ) ′′ (X 0 )(g q (X 0 ), g q (X 0 )) + f ′ (X 0 )g r (X 0 ) h 3/2 ξ r 2 .
We next briefly discuss derivative free methods. First, using additional Runge-Kutta stages allows to remove f ′ f, f ′ g r , f ′′ (g r , g r ) without altering the weak order two of ( 18),

K 1 = X 0 + hf (X 0 ), K 2 = K 1 + √ h m r=1 g r (X 0 )ξ r , X 1 = X 0 + h 2 f (K 2 ) + f (X 0 ) + m q,r=1 (g r ) ′ (X 0 )g q (X 0 )J q,r + √ h m r=1 g r (X 0 ) + h 2 (g r ) ′ (X 0 )f (X 0 ) + h 4 m q=1 (g r ) ′′ (X 0 )(g q (X 0 ), g q (X 0 )) ξ r . ( 19 
)
Next, we use the following approximation first proposed in [START_REF] Rößler | Second order Runge-Kutta methods for Itô stochastic differential equations[END_REF] to construct efficient derivative free second order methods,

m q,r=1 (g r (X 0 )) ′ g q (X 0 )J q,r = 1 2 m r=1 g r X 0 + m q=1 g q (X 0 )J q,r -g r X 0 - m q=1
g q (X 0 )J q,r + O(h 3 ).

(20) Again, this approximation does not alter the weak second order of the method and requires only 3 evaluations of each function g r . Notice that in contrast, a naive finite difference approximation e.g., 1 2h m q,r=1 g r x + hg q (x)g r xhg q (x) J q,r , would require 2m + 1 evaluations of each function g r at the points x, x ± hg q (x). Finally, replacing the last line in [START_REF] Komori | Weak second order S-ROCK methods for stratonovich stochastic differential equations[END_REF] by

√ h 2 m r=1 g r X 0 + K 1 2 + h 2 m q=1 g q (X 0 )χ q + g r X 0 + K 1 2 - h 2 m q=1 g q (X 0 )χ q ξ r , (21) 
we obtain the scheme

K 1 = X 0 + hf (X 0 ), K 2 = K 1 + √ h m r=1 g r (X 0 )ξ r , X1 = X 0 + h 2 f (X 0 ) + f (K 2 ) + 1 2 m r=1 g r X 0 + m q=1 g q (X 0 )J q,r -g r X 0 - m q=1 g q (X 0 )J q,r + √ h 2 m r=1 g r X 0 + K 1 2 + h 2 m q=1 g q (X 0 )χ q + g r X 0 + K 1 2 - h 2 m q=1 g q (X 0 )χ q ξ r . ( 22 
)
Each step of the above scheme necessitates only five evaluations of the diffusion functions g r , r = 1, . . . , m, independently of the dimension m. The method ( 22) -a modification of the second order method in [17, eq. (2.7) Chap. 14] -seems not to have appeared in the literature, in particular the finite difference discretisation (21) seems new. We give here a direct proof of its weak order two that will be useful in what follows.

Lemma 3.1. Consider the system of SDEs (1) with f, g r ∈ C 6 P (R N , R N ), Lipschitz continuous. Then the derivative free Milstein-Talay method [START_REF] Mao | Stochastic stabilization and destabilization[END_REF] for the approximation of (1) satisfies

|E(φ(X(nh))) -E(φ( Xn ))| ≤ Ch 2 , 0 ≤ nh ≤ T for all φ ∈ C 6 P (R N , R), where C is independent of n, h.
Proof. We show that |E(φ( X1 )) -E(φ(X(t 1 )))| ≤ Ch 3 and conclude by Remark 2.1. Since, we already know [START_REF] Talay | Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications[END_REF] that

|E(φ( X1 )) -E(φ(X(t 1 )))| ≤ Ch 3
, where X1 is the weak Milstein-Talay method [START_REF] Kloeden | Extrapolation methods for the weak approximation of Itô diffusions[END_REF], it remains to show that

|E(φ( X1 )) -E(φ( X1 ))| ≤ Ch 3 . ( 23 
)
We first observe that

h 2 (f (K 2 ) + f (X 0 )) = hf (X 0 ) + h 2 2 f ′ (X 0 )f (X 0 ) + 1 2 m r=1 f ′′ (X 0 )(g r (X 0 ), g r (X 0 )) + m r=1 f ′ (X 0 )(g r (X 0 )) h 3/2 ξ r 2 + h 2 R 1 + h 5/2 R 2 + O(h 3 ), where R 1 = 1 4 m p,q=1 f ′′ (X 0 )(g p (X 0 ), g q (X 0 ))(ξ p ξ q -δ p,q
) and δ p,q is the Kronecker delta function. As E(ξ p ξ q ) = δ r,s we have E(R 1 ) = 0. Noticing E(ξ p ξ q ξ r ) = E(ξ p ) = 0 for all indices p, q, r, we have also E(R 2 ) = 0, where

R 2 = 1 2 m r=1 f ′′ (X 0 )(g r (X 0 ), f (X 0 ))ξ r + 1 12 m p,q,r=1 f ′′′ (X 0 )(g p (X 0 ), g q (X 0 ), g r (X 0 ))ξ p ξ q ξ r .
Second, a Taylor expansion of the quantity (21) yields

m r=1 g r X 0 + K 1 2 √ hξ r + h 3/2 4 m q,r=1 (g r ) ′′ (X 0 )(g q (X 0 ), g q (X 0 ))ξ r + h 3/2 R 3 + h 5/2 R 4 + O(h 3 ),
where R 3 = 1 4 m p,q,r=1 (g r ) ′′ (X 0 )(g q (X 0 ), g p (X 0 ))(χ q χ pδ q,p )ξ r which yields E(R 3 ) = 0 using E((χ q χ p -δ q,p )ξ r ) = 0. In addition, using R 4 = 1 8 m p,q,r=1 (g r ) ′′′ (X 0 )(g p (X 0 ), g q (X 0 ), f (X 0 ))χ p χ q ξ r yields E(R 4 ) = 0. Third, we see that

m r=1 g r X 0 + K 1 2 √ hξ r = m r=1 √ hg r (X 0 ) + 1 2 h 3/2 (g r ) ′ (X 0 )f (X 0 ) ξ r + h 5/2 R 5 + O(h 3 ), ( 24 
)
where

R 5 = 1 8 m r=1 (g r ) ′′ (X 0 )(f (X 0 ), f (X 0 ))ξ r , which yields E(R 5 ) = 0.
Combining these estimates with [START_REF] Komori | Strong first order S-ROCK methods for stochastic differential equations[END_REF], we obtain

X1 -X1 = h 3/2 R 3 + h 2 R 1 + h 5/2 (R 2 + R 4 + R 5 ) + O(h 3 ). ( 25 
) Using X1 -X1 = O(h 3/2 ), a Taylor expansion yields φ( X1 ) -φ( X1 ) = φ ′ ( X1 )( X1 -X1 ) + O(h 3 ).
Setting G = m r=1 g r (X 0 )ξ r , we further Taylor expand the quantity φ ′ ( X1 ) and obtain, using [START_REF] Milstein | Weak approximation of solutions of systems of stochastic differential equations[END_REF],

φ( X1 ) -φ( X1 ) = φ ′ (X 0 + √ hG + hf (X 0 ) + O(h 3/2 ))( X1 -X1 ) + O(h 3 ) = φ ′ (X 0 )( X1 -X1 ) + h 2 φ ′′ (X 0 )(G, R 3 ) + h 5/2 φ ′′ (X 0 )(G, R 1 ) + h 5/2 φ ′′ (X 0 )(f (X 0 ), R 3 ) + h 5/2 2 φ ′′′ (X 0 )(G, G, R 3 ) + O(h 3 ).
We notice that E(φ ′ (X 0 )( X1 -X1 )) = O(h 3 ) and each of the other above terms have expectancy zero (for the terms involving both G and R 3 , we use the independence of the random variables χ q , ξ r ). This proves the local error estimate [START_REF] Maruyama | Continuous markov processes and stochastic equations[END_REF]. To conclude the proof of the global error estimate by using Remark 2.1, it remains to check that for all r ∈ N the moments E(|X n | 2r ) are bounded uniformly with respect to all h small enough for all 0 ≤ nh ≤ T . We use here the approach of [27, Lemma 2.2, p. 102] which states that it is sufficient to show

|E( Xn+1 -Xn | Xn )| ≤ C(1 + | Xn |)h, | Xn+1 -Xn | ≤ M n (1 + | Xn |) √ h, ( 26 
)
where C is independent of h and M n is a random variable with moments of all orders bounded uniformly with respect to all h small enough. These estimates are a straightforward consequence of the definition [START_REF] Mao | Stochastic stabilization and destabilization[END_REF] of the scheme and the linear growths of f, g (a consequence of their Lischitzness).

Stabilization procedure

All the second order methods considered in this paper (drift implicit or explicit) applied to the linear test problem ( 12) have a stability function ( 13) of the form

R(p, q, ξ) = A(p) + B(p)qξ + C(p) q 2 2 ξ 2 -1 , (27) 
where ξ is either a Gaussian random variable N (0, 1) or a three points discrete random variable [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF]. The numerical mean-square stability domain [START_REF] Hasminskii | Stochastic stability of differential equations[END_REF] for methods having the above stability function can be characterized by [START_REF] Higham | A-stability and stochastic mean-square stability[END_REF] S M S num = (p, q) ∈ C

2 ; |A(p)| 2 + |B(p)q| 2 + 1 2 |C(p)q 2 | 2 < 1 , (28) 
while assuming here a three points discrete random variable is used (see ξ r in (16)), the numerical asymptotic stability domain can be characterized straightforwardly by the criteria (15) from [START_REF] Higham | A-stability and stochastic mean-square stability[END_REF] 4 ,

S AS num = (p, q) ∈ C 2 ; 2/3 log |R(p, q, 0)| + 1/6 log |R(p, q, √ 3)| + 1/6 log |R(p, q, - √ 3)| < 1 = (p, q) ∈ C 2 ; A(p) + C(p)q 2 2 -3B 2 (p)q 2 A(p) - 1 2 C(p)q 2 4 < 1 . (29) 
For example, for the weak Milstein-Talay method ( 18) and its derivative free version [START_REF] Mao | Stochastic stabilization and destabilization[END_REF], we have

A(p) = 1 + p + 1 2 p 2 , B(p) = 1 + p, C(p) = 1. ( 30 
)
Since visualizing the domains of stability for (p, q) ∈ C 2 is difficult we restrict ourselves to study the case where (p, q) ∈ R 2 . It can be seen in Figure 1 that the weak Milstein-Talay method (18) has restricted mean-square and asymptotic stability regions. This is expected for classical explicit methods and our goal is to introduce a stabilization procedure that permits to enlarge them significantly. We first define for a > 0 the following "portion of the true mean-square stability region"

S M S a = {(p, q) ∈ (-a, 0) × R ; p + 1 2 |q| 2 < 0}, (31) 
Milstein-Talay method, see (30
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Figure 1: Mean-square stability region (dark gray) and asymptotic stability region (dark and light grays) of the explicit second order Milstein-Talay method with stability function [START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF]. and define for a given method

ℓ = sup{a > 0 ; S M S a ⊂ S M S num }, d = sup{a > 0 ; (-a, 0) × {0} ⊂ S M S num }, ( 32 
)
where d is the size of the stability domain along the deterministic p-axis (observe that d ≥ ℓ). For the Milstein-Talay method we have ℓ = 0, d = 2. In contrast, the S-ROCK2 methods (see (44), Section 3.3) have values ℓ, d increasing quadratically with the stage parameter s. In turn, the ratio of stability versus work increases linearly, while for classical explicit methods it is bounded.

Weak order one S-ROCK methods [START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF] For ordinary differential equations (ODEs),

dX(t) dt = f (X(t)), X(0) = X 0 , (33) 
a well-know stabilization procedure for the Euler method has been proposed in [START_REF] Van Der Houwen | On the internal stage Runge-Kutta methods for large m-values[END_REF]. Its construction is based on the classical Chebyshev polynomials T s (cos x) = cos(sx). Given an integer s ≥ 1, the number of stages, and a damping parameter η ≥ 0, we define the following Runge-Kutta method (first order Chebyshev method) with step size h by the following explicit recursion where

K 0 = X 0 , K 1 = X 0 + h ω 1 ω 0 f (K 0 ), K j = 2h T j-1 (ω 0 ) T j (ω 0 ) f (K j-1 ) + 2ω 0 T j-1 (ω 0 ) T j (ω 0 ) K j-1 - T j-2 (ω 0 ) T j (ω 0 ) K j-2 , j = 2, . . . , s (34) 
X 1 = K s , ω 0 = 1 + η s 2 , ω 1 = Ts(ω 0 ) T ′ s (ω 0 )
. Applied to the linear test problem dX(t)/dt = λX(t) the method (34) gives X 1 = R s (p)X 0 , where p = λh and where R s (p), called the stability function (polynomial) of the method, is given by R s (p) = T s (ω 0 + ω 1 p)/T s (ω 0 ). We emphasize that [START_REF] Talay | Efficient numerical schemes for the approximation of expectations of functionals of the solution of a SDE and applications[END_REF] denotes in fact a family of methods indexed by the stage number s. A crucial property of the methods (34) is

|R s (p)| ≤ 1 for all p ∈ (-d s , 0), (35) 
with d s ≃ C • s 2 , for s large enough, where C depends on the damping parameter η (for η = 0, C = 2). Thus, the length d s of the stability domain

S := {p ∈ C; |R(z)| ≤ 1} (36) 
of the methods increases quadratically with s on the negative real axis. This quadratic growth of the stability domain is the key feature of such methods compared to standard explicit integrators.

The idea for stabilizing the Euler-Maruyama ( 7) is now simply to damp its stability function R(p, q, ξ) = 1 + p + qξ, obtained by applying [START_REF] Arnold | Stochastic differential equations: theory and applications[END_REF] to (12) using R s (p) (with a value of the damping η optimized for each s, see [START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF]). The corresponding Runge-Kutta type scheme reads [START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF] 

K 0 = X 0 , K 1 = X 0 + h ω 1 ω 0 f (K 0 ), K j = 2h T j-1 (ω 0 ) T j (ω 0 ) f (K j-1 ) + 2ω 0 T j-1 (ω 0 ) T j (ω 0 ) K j-1 - T j-2 (ω 0 ) T j (ω 0 ) K j-2 , j = 2, . . . , s X 1 = K s + m r=1 g r (K s )∆W r . (37) 
The method (37) will be denoted by S-ROCK(1/2,1). Another method of strong order 1 and weak order 1 has been considered in [START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF]. Using the approximation (20) from [START_REF] Rößler | Second order Runge-Kutta methods for Itô stochastic differential equations[END_REF], a multi-dimensional derivative free version, denoted S-ROCK(1,1), can be obtained straightforwardly by replacing the last line in (37) by

X 1 = K s + m r=1 g r (K s )∆W r + 1 2 m r=1 g r K s + m q=1 g q (K s )I q,r -g r K s - m q=1 g q (K s )I q,r ,
where I q,r are defined in [START_REF] Burrage | Numerical methods for strong solutions of stochastic differential equations: an overview[END_REF] and by considering a larger damping η as discussed in [START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF] (see also the related work [START_REF] Komori | Strong first order S-ROCK methods for stochastic differential equations[END_REF]). It turns out that S-ROCK(1/2,1) and S-ROCK(1,1) include a portion of the true mean-square stability region that scales like ℓ s ≃ 0.33 • s 2 and ℓ s ≃ 0.19 • s 2 , respectively.

Second order stabilization Similarly as for the weak order one S-ROCK method, the idea is to stabilize the weak second order method [START_REF] Mao | Stochastic stabilization and destabilization[END_REF]. We start with a deterministic stabilized second order Chebyshev method. Recall that the derivation of optimal stability functions suitable for the stabilization of second order (deterministic method) is a non trivial task and various strategies have been proposed [START_REF] Lebedev | Explicit difference schemes with time-variable steps for solving stiff systems of equations[END_REF][START_REF] Van Der Houwen | On the internal stage Runge-Kutta methods for large m-values[END_REF][START_REF] Abdulle | Second order Chebyshev methods based on orthogonal polynomials[END_REF][START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF]. We choose here the second order orthogonal Runge-Kutta Chebyshev methods (ROCK2) introduced in [START_REF] Abdulle | Second order Chebyshev methods based on orthogonal polynomials[END_REF]. The idea is to search for a stability polynomial

R s (p) = w 2 (p)P s-2 (p), (38) 
where P s-2 (p) is a member family of polynomials {P j (z)} j≥0 orthogonal with respect to the weight function w 2 (x) 2 √ 1-x 2 . The polynomial P s-2 has degree s -2, while w 2 is a positive polynomial of degree two (depending on s). One constructs the polynomials w 2 such that R s satisfies [START_REF] Abdulle | Second order Chebyshev methods based on orthogonal polynomials[END_REF] 

R s (p) = 1 + p + p 2 2 + O(p 3 ), (39) 
together with a large stability interval [START_REF] Talay | Expansion of the global error for numerical schemes solving stochastic differential equations[END_REF], increasing as ≃ 0.81 • s 2 along the negative real axis. Thanks to the recurrence relation of the orthogonal polynomials {P j (z)} j≥0 , a method of order two for [START_REF] Saito | Mean-square stability of numerical schemes for stochastic differential systems[END_REF] based on a recurrence formula can be constructed5 Figure 2: Comparison of polynomials involved in ROCK2 and S-ROCK2 for s = 13. Polynomials R s,α (solid lines), P s-2 (αp) (dashed lines). We also include the polynomial P s (αp) in the right picture (dotted lines).

K 0 = X 0 , K 1 = K 0 + µ 1 hf (K 0 ), K j = µ j hf (K j-1 ) -ν j K j-1 -κ j K j-2 , j = 2, • • • , s -2, K s-1 = K s-2 + 2τ hf (K s-2 ), X 1 = K s-2 + 2σ - 1 2 hf (K s-2 ) + 1 2 hf (K s-1 ). ( 40 
The parameters µ j , k j (depending on s) are obtained from the three-term recurrence relation [5, eq. ( 24)-( 25)] of the orthogonal polynomials {P j (z)} j≥0 , while σ, τ (that also depend on s) satisfy w 2 (p) = 1 + 2σp + τ p 2 and are chosen such that (39) holds.

In preparation for the extension of the ROCK2 methods to stochastic problems, we now explain a novel strategy to introduce damping in the scheme (40). The idea is to consider the following scheme for a fixed scalar parameter α.

K 0 = X 0 , K 1 = K 0 + αµ 1 hf (K 0 ), K j = αµ j hf (K j-1 ) -ν j K j-1 -κ j K j-2 , j = 2, • • • , s -2, K s-1 = K s-2 + 2τ α hf (K s-2 ) X 1 = K s-2 + 2σ α - 1 2 hf (K s-2 ) + 1 2 hf (K s-1 ). (41) 
Notice that for α = 1, we recover the original ROCK2 method (40). Applied to the linear test problem dX/dt = λX, X(0) = X 0 this method yields (setting p = hλ and X 0 = 1)

X 1 = (1 + 2σ α p + τ α p 2 )P s-2 (αp) =: R s,α (p). ( 42 
)
Lemma 3.2. The method (41) has second order for the system of ODEs (33) for any α provided

σ α = 1 -α 2 + ασ, τ α = (α -1) 2 2 + 2α(1 -α)σ + α 2 τ. (43) 
Proof. Recall that for second order deterministic methods, standard Runge-Kutta order conditions for linear and nonlinear problems are identical. From [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF] we deduce the relation

P ′ s-2 (0) = 1 -2σ and 1 2 P ′′ s-2 (0) = 1 2 -τ -2σ(1 -2σ).
Imposing the second order condition to (42) yields

(1 + 2σ α p + τ α p 2 )(1 + P ′ s-2 (0)αp + 1 2 P ′′ s-2 (0)(αp) 2 + O(p 3 )) = 1 + p + p 2 2 + O(p 3 ),
which is equivalent to the relations (43).

In Figure 2, we plot, for s = 13, the polynomials P s-2 (αp) and R s,α (p) (defined in (42)) involved in the standard ROCK2 method (α = 1, left picture) and the S-ROCK2 method (α ≃ 1.615 right picture) introduced in the next section. It can be seen that increasing α reduces the amplitude of the oscillations of R s,α (p). The appropriate choice of α is discussed below.

The S-ROCK2 methods

We introduce here our new explicit stabilized integrator, obtained by stabilizing the Milstein-Talay method ( 22) with (41). S-ROCK-2 integrator of weak order two Given X 0 , compute X 1 as follows.

K 0 = X 0 , K 1 = K 0 + αµ 1 hf (K 0 ), K j = µ j αhf (K j-1 ) -ν j K j-1 -κ j K j-2 , j = 2, • • • , s, K * s-1 = K s-2 + 2τ α hf (K s-2 ) + √ h m r=1 g r (K s )ξ r , X 1 = K s-2 + 2σ α - 1 2 hf (K s-2 ) + 1 2 hf (K * s-1 ) + 1 2 m r=1 g r K s + m q=1 g q (K s )J q,r -g r K s - m q=1 g q (K s )J q,r + √ h 2 m r=1 g r K s-1 + h 2 m q=1 g q (K s )χ q + g r K s-1 - h 2 m q=1 g q (K s )χ q ξ r . ( 44 
)
where α = 1/(2P ′ s-1 (0)) and σ α , τ α are given by ( 43). Here, the constants µ j , ν j , κ j , σ, τ depend on s and are the same as for the standard deterministic ROCK2 integrator (40). Numerical computations show that the S-ROCK2 method includes a portion of the true mean-square stability region S M S ℓ that grows with the stage number as ℓ S-ROCK2 ≃ 0.42(s + 2) 2 . The computational complexity of one step of the S-ROCK2 method with stepsize h is reported in Table 1 and compared to s steps with stepsize h/s of the weak second order Milstein-Talay method [START_REF] Mao | Stochastic stabilization and destabilization[END_REF]. As observed, one step of the S-ROCK2 method (44) requires at each step #f = s+2 evaluations of the drift function, #g r = 5 evaluations of the diffusion functions g r , r = 1, . . . , m, and #random = 2m simulations of independent discrete random variables, independently of the dimensions N, m of the considered SDE. The main feature of our S-ROCK2 integrators is that the mean-square stability region sizes ℓ s , d s grow quadratically with respect to the computational work #f + #g r , while ℓ s = 0 and d s grows only linearly for the standard explicit methods. Remark 3.3. (Diagonal noise) When N = m and (g 1 (x), . . . , g N (x)) = diag(g 1 (x 1 ), . . . , g N (x N )) is a diagonal matrix where g k (x) depends only on x k , one can replace the two last lines of (44

) by G = G 1 , . . . , G N T where G k = 1 2 g k K s,k + g k (K s,k )J k,k -g k K s,k -g k (K s,k )J k,k + √ h 2 g k (K s-1,k + h 2 g k (K s,k )) + g k (K s-1,k - h 2 g k (K s,k )) ξ k for all k = 1, . . . , m.
We next prove that the method (44) has indeed weak second order.

Theorem 3.4. Consider the SDE (1) with f, g r ∈ C 6 P (R N , R N ), Lipschitz continuous. Then the S-ROCK2 method (44) for the approximation of (1) satisfies

|E(φ(X(nh))) -E(φ(X n ))| ≤ Ch 2 , 0 ≤ nh ≤ T for all φ ∈ C 6 P (R N , R), where C is independent of n, h.
Proof. Noticing that K j = X 0 + αP ′ j (0)hf (X 0 ) + O(h 2 ) and using Lemma 3.2 yields

K s-2 + 2σ α - 1 2 hf (K s-2 ) + 1 2 hf (K s-2 + 2τ α hf (K s-2 )) = X 0 + hf + h 2 2 f ′ f (X 0 ) + O(h 3 ). The choice α = 1/(2P ′ s-1 (0)) yields K s-1 = X 0 + h 2 f (X 0 ) + O(h 2 ). We deduce X 1 -X1 = h 2 R 1 + h 5/2 R 2 + O(h 3 )
, where X1 is defined by the derivative free Milstein-Talay method ( 22) and

R 1 = αP ′ s (0) m q,r=1 (g r ) ′′ (g q , f ) + (g r ) ′ (g q ) ′ f J q,r R 2 = αP ′ s (0) 2 m r=1 f ′ (g r ) ′ f ξ r + α 2 P ′′ s-1 (0) m r=1 (g r ) ′ f ′ f ξ r + αP ′ s (0) 4 m p,q,r=1
(g r ) ′′′ (g p , g q , f ) + 2(g r ) ′′ ((g p ) ′ f, g q ) χ p χ q ξ r where in R 1 , R 2 the functions f, g r and their differentials are evaluated at

X 0 . Observing E(R 1 ) = E(R 1 ξ r ) = E(R 2 )
= 0 for all r, we obtain the weak estimate ( 23) for X 1 , X1 , and we conclude the proof of Theorem 3.4 using Remark 2.1, similarly to the end of the proof of Lemma 3.1. We refer to the proof of [START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF]Thm. 4.2] for details on deriving the estimates [START_REF] Milstein | A theorem on the order of convergence of mean-square approximations of solutions of systems of stochastic differential equations[END_REF] in the context of stochastic stabilized explicit integrators.

Remark 3.5. Consider the integrator X1 obtained from (44) by replacing the ξ r by independent Gaussian variables, i.e., ξ r ∼ N (0, 1). This integrator has then strong order one in the case of a commutative noise (notice that in this case the left-hand side of (20) becomes independent from the values of the χ r random variables). In the general case of non-commutative noise, if one further replaces the discrete random variables J q,r by the usual multiple stochastic integrals (9), then X1 remains of strong order one. Indeed, using Remark 2.1 and owing to the second weak order of (44) one only needs to show the first inequality of (6). Furthermore instead of comparing X1 to X(t 1 ) it is sufficient to compare X1 to (8) as this latter method is known to have strong order one. The remaining calculations are straightforward.

Stability analysis

We now focus on the mean-square and asymptotic stability properties of our new explicit weak second order integrator.

Proposition 3.6. Consider the S-ROCK2 method (44) applied to the linear test equation [START_REF] Gard | Introduction to stochastic differential equations[END_REF]. The numerical asymptotic stability domain S AS num defined in (15) is given by (29) and the numerical mean-square stability domain S M S num defined in ( 14) is given by [START_REF] Platen | High-order weak approximation of ito diffusions by markov chains[END_REF] where the polynomial functions A(p), B(p), C(p) are defined by

A(p) = P s-2 (αp)(1 + 2σ α p + τ α p 2 ), B(p) = P s-1 (αp) + p 2 P s (αp), C(p) = P s (αp). (45) 
Proof. Follows from noticing that applied to the linear test problem [START_REF] Gard | Introduction to stochastic differential equations[END_REF], the method (44) yields [START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF] with A(p), B(p), C(p) given by (45). (
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Figure 3: Comparison of S-ROCK2 (solid lines) and the weak order one S-ROCK methods (1, 1) (dashed lines), ( 1 2 , 1) (dotted lines). Left picture: optimal stage parameter s as a function of √ ℓ, where ℓ is given by [START_REF] Saito | Stability analysis of numerical schemes for stochastic differential equations[END_REF]. Right picture: stability efficiency c(s) = ℓ s /s 2 .

In Figure 4 we plot asymptotic (light gray) and mean-square (dark gray) stability regions for different values of the stage number s. In all cases, we observe the inclusions

S M S num ∩ R 2 ⊂ S AS num ∩ R 2 .
The dotted lines where p < 0 correspond to the boundary of the true mean-square stability region, while the dotted lines where p > 0 (see bottom pictures) correspond to the boundary of the true asymptotic stability region (given by p + |q| 2 /2 = 0 and pq 2 /2 = 0, respectively). In the bottom pictures we zoom close to the origin and observe that the asymptotic stability region contains the mean square stability region. Furthermore, a large portion of the true asymptotic stability region is included in the numerical one close to the origin, {(p, q) ∈ R

2 ; |p| ≤ 1, |p| < |q| < 2.7} ⊂ S AS
num . We briefly comment the ideas behind the definition of the scheme (44) that allow favorable mean-square stability properties. Recall that the deterministic stability functions A(p) oscillates around the negative real axis (see top left picture in Figure 2). If the absolute value of the local maxima and minima of A(p) are close to one, then in view of (28) we will have gaps in the meansquare stability domains (in the regions where A(p) is bounded). We therefore have to damp this term by introducing and tuning the value of α as explained before in Section 3.2. Next it can be observed that the polynomials P s-2 (p), P s-1 (p), P s (p) oscillates around zero with a small amplitude of size O(p -2 ) along the real axis. These polynomials are thus good candidates to damp the Milstein term which corresponds to the q 2 term in the stability function [START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF]. However, simply working with the polynomials P s-2 (p) leaves a gap in the mean-square stability regions close to the origin near to the extrema of P s-2 (p). For this reason, we consider instead the polynomial P s (p) to damp the Milstein term which has the advantage that P ′ s (0) > P ′ s-2 (0) (faster decay near the origin). The additional advantage of considering simultaneously the three polynomials P s-2 , P s-1 , and P s is that their extrema close to the origin do not coincide. This permits to avoid a gap in the mean-square stability domain close to the origin. The polynomials P s-1 , P s (corresponding to the internal stages K s-1 , K s in (44)) are obtained by computing two additional stages compared to the deterministic ROCK2 (41) method.

Comparison with other stiff integrators

Comparison with S-ROCK method In Figure 3 we plot the length ℓ defined in [START_REF] Saito | Stability analysis of numerical schemes for stochastic differential equations[END_REF] of the portion of the true mean-square stability region S M S ℓ as a function of the number of stages used. As we can see the behaviour of the S-ROCK2 method is ℓ ≃ Cs 2 similarly to the S-ROCK methods of weak order 1 discussed in Section 3.2. Furthermore, once can also see that the S-ROCK2 method is actually more efficient from a stability point of view, since the stability efficiency factor c(s) = ℓ s /s 2 converges numerically to about 0.42 for large s, which is larger than the S-ROCK(1/2,1/2) and S-ROCK(1,1) values of 0.33 and 0.19, respectively. Comparison with a class of diagonally drift-implicit Runge-Kutta methods [START_REF] Debrabant | Diagonally drift-implicit runge-kutta methods of weak order one and two for itô sdes and stability analysis[END_REF] We have already discussed the asymptotic and mean-square stability properties of the Milstein-Talay method [START_REF] Mao | Stochastic stabilization and destabilization[END_REF], which has restricted mean-square and asymptotic stability regions (see Figure 1). We next consider the weak second-order diagonally implicit Runge-Kutta method (DDIRDI5) derived in [START_REF] Debrabant | Diagonally drift-implicit runge-kutta methods of weak order one and two for itô sdes and stability analysis[END_REF] with the following aims: reducing the computational cost of a fully drift-implicit method such as the modified θ-Milstein method [START_REF] Abdulle | High order weak methods for stochastic differential equations based on modified equations[END_REF], and improving the stability domains compared to explicit methods. For these method we have (see Fig. 5 for an example with c 1 = c 2 = 1)

A(p) = 1 + p 1 + (1/2 -c 1 -c 2 )p (1 -c 1 p)(1 -c 2 p) , B(p) = 1 + p 1 -(c 1 + c 2 )p/2 (1 -c 1 p)(1 -c 2 p) , C(p) = 1. ( 46 
)
Even though the mean-square stability domain has been improved close to the deterministic p axis, it can be seen that this method does not cover a portion of the true mean square stability region. Here as for the explicit Milstein-Talay method, we have ℓ = 0. This can be seen in Figure 5, where S M S num ∩ R 2 (dark gray) is strictly contained below the curve p + |q| 2 = 0 (see dashed lines), which is the boundary of the true mean-square stability region. In fact, the proposition below shows that ℓ = 0 for the whole class of integrators satisfying (46). Notice however that its deterministic stability domain size defined in ( 32) is d = ∞ in particular for c 1 = c 2 ≥ 1/4, a feature shared by all reasonable implicit integrators for stiff ODEs. [START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF] given by (46) (compare with Fig. 4).

when applied to the linear test equation [START_REF] Gard | Introduction to stochastic differential equations[END_REF]. A necessary condition for ℓ = 0 in (32) is

1 + 2B ′′ (0) -4C ′ (0) ≤ 0. ( 47 
)
In particular, for the class of integrators with stability function given by (46), we have ℓ = 0 for all c 1 , c 2 ≥ 0.

Proof. Using that E|R(p, q, ξ)| 2 can be written as an increasing function of q 2 (see ( 28)), we have sup

(p,q)∈S M S ℓ E(|R(p, q, ξ)| 2 ) = sup p∈(-ℓ,0) E(|R(p, -2p, ξ)| 2 ).
Using the weak order two assumption, we have A(p) = 1+p+p Remark 3.8. Notice that if C(p) = 1, then the numerical mean-square stability domain is bounded in the q direction by |q| 4 /2 < 1. This can be observed in Figure 5 where the meansquare stability region S M S num ∩ R 2 (dark gray) of the DDIRDI5 method is bounded vertically by

|q| 2 < √ 2.
Comparison with a family of weak second order explicit integrators [START_REF] Komori | Weak second order S-ROCK methods for stratonovich stochastic differential equations[END_REF] A family of explicit stabilized integrators for stiff Stratonovitch systems of SDEs has been introduced recently in [START_REF] Komori | Weak second order S-ROCK methods for stratonovich stochastic differential equations[END_REF]. Although the stability domain of these methods grows quadratically along the p-axis, with d s ≃ 0.54s 2 (according to the left pictures in [19, Fig. 3]), it can be observed that the mean-square stability domain contains uncontrolled gaps for |q| 2 > √ 2 and we thus have ℓ s ≤ √ 2 for all stage parameter s. This makes the algorithm in [START_REF] Komori | Weak second order S-ROCK methods for stratonovich stochastic differential equations[END_REF] robust with respect to mean-square stability only in the case of small noises.

Numerical experiments

We now present various different numerical experiments with our newly constructed methods. In Section 4.1 we confirm the order of weak convergence of the S-ROCK2 method on two different non-linear problems. Then, in Section 4.2, we test the performance of the S-ROCK2 method for a non-linear stiff problem and compare it to other weak second order methods, while in Section 4.3 we present numerical results for a stochastic PDE arising from Neurosciences.

Weak convergence rates

We start our numerical investigations by considering two non-stiff non-linear SDEs. The first one is

dX(t) = 1 4 X(t) + 1 2 X(t) 2 + 1 dt + X(t) 2 + 1 2 dW (t), X(0) = 0. (48) 
The exact solution is 

X(t) = sinh(t/2 + W (t)/ √ 2), it satisfies E (arcsinh X(t)) 2 = t 2 /4 + t/2.
The second test problem is another nonlinear SDE [START_REF] Debrabant | Diagonally drift-implicit runge-kutta methods of weak order one and two for itô sdes and stability analysis[END_REF] with 10 independent driving Weiner processes, For this problem by applying Itô's formula to φ(x) = x 2 , taking expectations and using the fact that E(X(t)) = e t , one calculates

dX(t) = X(t)dt + 10 j=1 a -1 j X(t) + b -1 j dW j (t), X (0) 
E(X 2 (t)) = (-68013 -458120e t + 14926133e 2t )/14400000. (49) 
We apply the S-ROCK2 method to both problems (48) and (49) and approximate respectively E (arcsinh X(T )) 2 and E(X 2 (T )) up to the final time T = 1 using 10 9 realisations and different step sizes h. We plot the results in Figure 6 and observe that the S-ROCK2 method converges with weak second order for both problems, which confirms the statement of Theorem 3.4. We plot the results for s = 13 (solid lines) and s = 104 stages (dashed lines) using the same set of generated random numbers. The fact that the obtained curves are nearly identical illustrates that the error constants of the S-ROCK2 methods are nearly independent of the stage number of the integrator, similarly to the standard deterministic ROCK2 integrator (40).

A nonlinear stiff problem

To illustrate the advantage of including a whole "portion" of the mean-square stability region of the linear test problem [START_REF] Gard | Introduction to stochastic differential equations[END_REF] we consider the following nonlinear scalar problem with a onedimensional noise, of non-linear PDEs called the Hodgkin-Huxley equations [START_REF] Hodgkin | A quantitative description of membrane current and its application to conduction and excitation in nerve[END_REF], but in certain ranges of values of V, this system of PDEs can be well approximated by the cable equation [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF].In particular, if the neuron is subject to a uniform input current density over the dendrites and if certain geometric constraints are satisfied, then the electric potential satisfies the following linear cable equation with uniform input current density.

dX(t) = -λX(t)(1 -X(t))dt -µX(t)(1 -X(t))dW (t), X ( 
∂V ∂t (x, t) = ν ∂ 2 V ∂x 2 (x, t) -βV (x, t) + σ(V (x, t) + V 0 ) Ẇ (x, t), 0 ≤ x, t ≤ 1, (51) 
∂V ∂x (0, t) = ∂V ∂x (1, t) = 0, t > 0, V (x, 0) = V 0 (x), 0 ≤ x ≤ 1, where Ẇ (x, t) = ∂ 2 ∂x∂t w(x, t) is a space-time white noise meant in the Itô sense. Here we have assumed that the distance between the origin (or soma) to the dendritic terminals is 1, and that the soma is located at x = 0. Furthermore, the white noise term is describing the effect of the arrival of random impulses and the multiplicative noise structure depicts the fact that the response of the neuron to a current impulse may depend on a local potential [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]. The quantity of interest is the threshold time τ = inf{t > 0; V (t, 0) > λ}, (52) since when the potential at the soma (somatic depolarization) exceeds the threshold λ the neuron fires an action potential.

The SPDE (51) yields, after space discretization with finite differences [START_REF] Davie | Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations[END_REF] the following stiff system of SDE where V (x i , t) ≈ u i , with x i = i∆x, ∆x = 1/N ,

du i = ν u i+1 -2u i + u i-1 ∆x 2 dt -βu i dt + σ u i + V 0 √ ∆x dw i , i = 0, . . . , N, (53) 
where the Neumann condition imposes u -1 = u 1 and u N +1 = u N -1 . Here w 0 , . . . w N are independent standard Weiner processes, and dw i indicates Itô noise. We consider the initial condition V 0 (x) = -70 + 20 cos(5πx)(1x) and the constants ν = 10 -2 , σ = 4 • 10 -3 , β = 1, V 0 = 10, λ = -40. We consider the time interval (0, T ) with T = 1. Notice that the noise in ( 53) is in diagonal form, so we can apply Remark 3.3. We now plot the empirical histograms for the threshold time τ calculated over 10 7 realisations of (53). 

Conclusion

In this paper, we introduced a new family of weak second order explicit stabilized methods, called S-ROCK2, well suited for the integration of stochastic stiff problems. These methods with extended stability regions are shown to be more efficient than standard explicit second order solvers for stiff (mean-square stable) problems, and more efficient than a class of diagonally implicit methods introduced in [START_REF] Debrabant | Diagonally drift-implicit runge-kutta methods of weak order one and two for itô sdes and stability analysis[END_REF]. The main idea behind the derivation of these methods is to express the S-ROCK2 integrator as a perturbation of the standard Milstein-Talay method. In [START_REF] Abdulle | Mean-square A-stable diagonally drift-implicit integrators with high order for stiff Ito systems of stochastic differential equations with noncommutative noise[END_REF], we show how these ideas can be applied to construct, to the best of our knowledge, the first diagonally drift implicit mean-square A-stable method of weak second order.
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  Deterministic ROCK2 (s = 13, α = 1) p S-ROCK2 (s = 13, α ≃ 1.615)
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 24 Figure 4: Mean-square stability regions (dark gray) and asymptotic stability regions (dark and light grays) of S-ROCK2 for s + 2 = 8, 15, 30, and 127 stages, respectively.
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 375 Figure5: Mean-square stability region (dark gray) and asymptotic stability region (dark and light grays) of the implicit DDIRDI5 with stability function[START_REF] Milstein | Stochastic numerics for Mathematical Physics. Scientific Computing[END_REF] given by (46) (compare with Fig.4).
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 2 2+O(p 3 ) and B(p) = 1+p+O(p 2 ), a Taylor expansion yields E(|R(p, √ -2p, ξ)| 2 ) = 1 + (4C ′ (0) -2B ′′ (0) -1)p 3 + O(p 4 ) which is smaller than 1 for small -p > 0 only if (47) holds. For the class of integrators (46), we have 1 + 2B ′′ (0) -4C ′ (0) = 1 + 2(c 1 + c 2 ) > 0, so the condition (46) is violated.

f e r e n c e s l o p e 2 Figure 6 :

 26 Figure6: S-ROCK2 method with s = 13 stages (solid lines) and s = 104 (dashed lines). Weak error at final time T = 1 versus the stepsize h for problems (48), (49), where 1/h = 1, 2,3, 4, 6, 8, 11, 16. 

= 1 ,

 1 with non-commutative noise, where the values of the constants a j , j = 1, . . . , 10 are respectively 10, 15, 20, 25, 40, 25, 20, 15, 20, 25, and the values of b j , j = 1, . . . , 10 are respectively 2, 4, 5, 10, 20, 2, 4, 5, 10, 20.

  0) = 0.95, (50) on time interval (0, T ) of length T = 10, which is derived from a population dynamics model[START_REF] Gard | Introduction to stochastic differential equations[END_REF] Chap. 6.2] (see also[START_REF] Abdulle | S-ROCK methods for stiff Ito SDEs[END_REF] Example 5.2]). Notice that if one linearizes this problem close to ∆t = 1/50, ∆x = 1/200. Solution V (x, t) as a function of x, t.

  ∆t = 1/50, ∆x = 1/200, fixed x = 0.
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 7 Figure 7: Samples of realisations of the SPDE (51) (discretized in space) using S-ROCK2 with s + 2 = 8 stages (resp. 11) for ∆x = 1/150 (resp. ∆x = 1/200). Figures (a),(b): solutions as functions of x at fixed times t = 0, 0.2, 0.4, . . . , 1.0 (increasing with time, from bottom to top).Figure (d): solution as a function of t for x = 0.

  Figure 7: Samples of realisations of the SPDE (51) (discretized in space) using S-ROCK2 with s + 2 = 8 stages (resp. 11) for ∆x = 1/150 (resp. ∆x = 1/200). Figures (a),(b): solutions as functions of x at fixed times t = 0, 0.2, 0.4, . . . , 1.0 (increasing with time, from bottom to top).Figure (d): solution as a function of t for x = 0.
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 8 Figure 8: Density plots of the threshold time (52) in the SPDE (51) for various space mesh sizes ∆x = 1/200, 1/400. The four curves in each plot correspond respectively to ∆t = 1/50, 1/100, 1/200, 1/400, 1/800 (light to dark gray).

Table 1 :

 1 

			work		stability	
	integrator	#f	#g r #random	d s	ℓ s
	s steps of Milstein-Talay (22)	2s	5s	2ms	2s	0
	one step of S-ROCK2 (44)	s + 2	5	2m	≃ 0.42(s + 2) 2 ≃ 0.42(s + 2) 2

Computational complexity for an SDE in dimensions N (drift) and m (diffusion).

Here and in what follows, C ℓ P (R N , R) denotes the space of ℓ times continuously differentiable functions R N → R with all partial derivatives with polynomial growth.

Notice that if R(p, q, ξ) = 0 with a non-zero probability, then (13) is clearly numerically asymptotically stable.

Notice that χ1 is not used in[START_REF] Kloeden | Numerical solution of stochastic differential equations[END_REF] but involved in[START_REF] Lebedev | Explicit difference schemes with time-variable steps for solving stiff systems of equations[END_REF] below.

In[START_REF] Rathinasamy | Mean-square stability of second-order Runge-Kutta methods for multi-dimensional linear stochastic differential systems[END_REF], we set log 0 := -∞. Notice that for ξ ∼ N (0, 1) numerical asymptotic stability domains S AS num are more difficult to characterize[START_REF] Higham | A-stability and stochastic mean-square stability[END_REF].

The two last stages of the method are written is a slightly different way as in the ROCK2 method[START_REF] Abdulle | Second order Chebyshev methods based on orthogonal polynomials[END_REF]] as (40) is more convenient for an extension to stochastic integrators. We emphasize that it has the same order and stability properties as the ROCK2 method[START_REF] Abdulle | Second order Chebyshev methods based on orthogonal polynomials[END_REF]].
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parameters: ε = 10 -3 , λ = -4 method stepsize work E(X(1) 2 ) -1 E(|X(1)|) -1 Milstein-Talay h = 1/25 #f = 500, #g = 1250 ∞ (unstable) ∞ (unstable) Milstein-Talay h = 1/30 #f = 600, #g = 1500 -1.1e-2 (stable) -1.1e-2 (stable) S-ROCK2(s = 5) h = 1/4 #f = 280, #g = 200 3.3e-7 (stable) 1.7e-7 (stable) the steady solution X(t) = 1, it yields the linear test problem [START_REF] Gard | Introduction to stochastic differential equations[END_REF]. Here, the initial condition X(0) = 0.95 is chosen close to this stationary solution. We consider the parameters λ < 0, µ = -λ(2ε) for which the linear test problem ( 12) is asymptotic and mean-square stable because λ + |µ| 2 /2 = -ε/2 < 0. Recall that for this linear test problem, the S-ROCK2 method is meansquare stable provided |λ|h < ℓ s , as studied in Section 3.3, while the Milstein-Talay method [START_REF] Kloeden | Extrapolation methods for the weak approximation of Itô diffusions[END_REF] or ( 22) is mean-square stable only if h is small enough. We consider two cases.

Case ε ≪ 1

We consider first the case where λ < 0 is a constant of moderate size, e.g. λ = -4, while ε > 0 is small. Considering the linear test equation ( 12), the S-ROCK2 method is stable provided h|λ| < ℓ s , and the stepsize h = 1/4 can be used independently of the smallness of ε. In contrast, for the weak second order Milstein-Talay method, a calculation shows that the mean-square stability condition becomes h|λ| ≤ ε/4 + O(ε 2 ), and the number of steps needed for a stable integration grows like O(4λε -1 ) as ε → 0.

Case |λ| ≫ 1

We next consider the case where ε = 1 and |λ| ≫ 1. The S-ROCK method is stable provided h|λ| < ℓ s ≃ Cs 2 and the minimal number of steps needed for a stable integration grows like O( |λ|) as λ → ∞. In contrast, for the weak second order Milstein-Talay method, a calculation yields the mean-square stability condition h|λ| ≤ 2, and the number of steps of the method for a stable integration grows like O(|λ|) as λ → -∞.

We observe in Table 2 the spectacular improvement of the efficiency when switching from the weak second order Milstein-Talay method ( 22) to the S-ROCK2 methods applied to the nonlinear SDE (50). Indeed, considering three different sets of parameters λ, ε, we observe in all cases that the S-ROCK2 allows one to use a much larger timestep that for the Milstein-Talay method. This significantly reduces the computational cost of each sample, measured in terms of the number of evaluations of the drift and the noise (see #f, #g r ). We highlight that for the considered parameters ε, λ a sever step size restrictions similar to the explicit Milstein-Talay method would be obtained for the drift-implicit integrators DDIRDI5 of [START_REF] Debrabant | Diagonally drift-implicit runge-kutta methods of weak order one and two for itô sdes and stability analysis[END_REF] as discussed in Section 3.4, because their mean-square stability domain is bounded on the q axis by |q| 2 ≤ √ 2 (see Rem. 3.8 and Fig. 5).

Electric potential in a neuron

Although our analysis applies only to systems of SDEs, we consider here an SPDE model for the propagation of an electric potential V (x, t) in a neuron [START_REF] Walsh | An introduction to stochastic partial differential equations[END_REF]. This potential is governed by a system