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Weak second order explicit stabilized methods

for stiff stochastic differential equations

Assyr Abdulle1, Gilles Vilmart2, and Konstantinos C. Zygalakis3

January 14, 2013

Abstract

We introduce a new family of explicit integrators for stiff Itô stochastic differential equa-
tions (SDEs) of weak order two. These numerical methods belong to the class of one-step
stabilized methods with extended stability domains and do not suffer from the stepsize re-
duction faced by standard explicit methods. The family is based on the standard second or-
der orthogonal Runge-Kutta Chebyshev methods (ROCK2) for deterministic problems. The
convergence, mean-square and asymptotic stability properties of the methods are analyzed.
Numerical experiments, including applications to nonlinear SDEs and parabolic stochastic
partial differential equations are presented and confirm the theoretical results.

Keywords: Stiff SDEs, explicit stochastic methods, stabilized methods, orthogonal Runge-
Kutta Chebyshev, S-ROCK.

AMS subject classification (2010): 65C30, 60H35, 65L20

1 Introduction

We consider stiff systems of Itô stochastic differential equations for which standard explicit in-
tegrators – e.g., the well-known Euler-Maruyama method – face a sever step size restriction
[15, 13, 17]. Such problems are usually solved numerically by (semi)-implicit methods, which can
be expensive for large systems and difficult to implement for complex problems. Recently, a new
class of explicit stabilized methods called S-ROCK has been introduced for stiff problems [2, 4].
On the one hand, these methods (fully explicit) are as easy to implement as the Euler-Maruyama
method. On the other hand, their extended mean-square stability regions [15] (for suitable test
problems) make them much more efficient than classical explicit methods for stiff problems.

In this paper, we introduce a weak second order family of explicit stabilized integrators based
on the second order ROCK2 integrators for deterministic stiff problems. The main feature of the
algorithm is that it has an arbitrarily large mean-square stability region that grows quadratically
with respect to the number of drift function evaluations. For an efficient implementation, the
integrators are derivative free, and the number of diffusion function evaluations is independent
of the number of Weiner processes involved, similarly to the methods introduced in [31] . As an
additional feature, the proposed methods have a large asymptotic stability region close to the
origin.

Up to now, with the exception of [19], only weak first order explicit stabilized methods have
been proposed for stiff stochastic problems. In [19] an attempt to generalize the S-ROCK methods
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to weak second order has been proposed. However, this generalization involves the solution of
a large number of order conditions and the resulting methods have less favorable mean-square
stability properties than the methods proposed in this paper (see e.g., [2, 4]).

This paper is organized as follows. We recall in Section 2 the concept of stabilized methods for
stiff SDEs. In Section 3, we introduce our new weak second order explicit stabilized integrators
and analyze their weak order of convergence and stability properties. Finally, we present in
Section 4 various numerical experiments, both for linear and non-linear stiff SDEs and for a
parabolic stochastic partial differential equation (SPDE), that illustrate the efficiency of the
proposed methods.

2 Stabilized stochastic methods

We briefly recall the notions of weak convergence, mean-square and asymptotic stabilities.

2.1 Weak stochastic integrators

We consider the Itô stochastic system of differential equations

dX(t) = f(X(t))dt+
m∑

r=1

gr(X(t))dWr(t), X(0) = X0, (1)

where X(t) is a random variable with values in R
N , f : R

N → R
N is the drift term, gr :

R
N → R

N , r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m are independent one-
dimensional Weiner processes. The drift and diffusion functions are assumed smooth enough,
Lipschitz continuous and to satisfy a growth bound in order to ensure a unique (mean-square
bounded) solution of (1) [7, 17]. For the numerical approximation of (1) we consider the discrete
map

Xn+1 = Ψ(Xn, h, ξn), (2)

where Ψ(·, h, ξn) : RN → R
N , Xn ∈ R

N for n ≥ 0, h denotes the timestep size, and ξn denotes a
random vector. The numerical approximation (2), starting from the exact initial condition X0 of

(1) is said to have weak order τ if for all functions1 φ : RN → R ∈ C
2(τ+1)
P (RN ,R),

|E(φ(Xn))− E(φ(X(tn)))| ≤ Chτ , (3)

and to have strong order τ if
E(|Xn −X(tn)|) ≤ Chτ , (4)

for any tn = nh ∈ [0, T ] with T > 0 fixed, for all h small enough, with constants C independent
of h.

Remark 2.1. A well-known theorem of Milstein [25] (see [27, Chap. 2.2]) allows to infer the global

weak order from the error after one step. Assuming that f, gr ∈ C
2(τ+1)
P (RN ,RN ), r = 1, . . . ,m

are Lipschitz continuous, that for all r ∈ N, the moments E(|Xn|2r) are bounded for all n, h with
0 ≤ nh ≤ T uniformly with respect to all h sufficiently small, and that the local error bound for

all φ ∈ C
2(τ+1)
P (RN ,R) and all initial values X(0) = X0 satisfies

|E(φ(X1))− E(φ(X(t1)))| ≤ Chτ+1 (5)

1Here and in what follows, Cℓ

P (R
N ,R) denotes the space of ℓ times continuously differentiable functions RN → R

with all partial derivatives with polynomial growth.
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for all h sufficiently small, then the global error bound (3) holds. Here the constant C is again
independent of h. For the strong convergence we have the following result [26]. If the functions
f, gr are sufficiently smooth and Lipschitz continuous and

E|X1 −X(t1)| ≤ Chτ+1/2 and |E(X1)− E(X(t1))| ≤ Chτ+1, (6)

for all initial values X(0) = X0, then the global error bound (4) holds.

The simplest method to approximate solutions to (1) is the so-called Euler-Maruyama method

Xn+1 = Xn + hf(Xn) +
m∑

r=1

gr(Xn)∆Wn,r, (7)

where ∆Wn,r ∼ N (0, h), r = 1, . . .m are independent Weiner increments. This method has strong
order 1/2 and weak order 1 for a general system of Itô SDEs [23]. Various higher order weak meth-
ods have been considered in the literature [17, 27]. For example, weak second order methods were
proposed by Milstein [24, 25], Platen [28], Talay [34] and Tocino and Vigo-Aguiar [37], and more
recently Runge-Kutta type methods of Rößler [30]. We mention also the extrapolation methods
of Talay and Tubaro [35] and of [18] that combines methods with different stepsizes to achieve
higher weak order convergence. In [3], (semi)-implicit weak second order methods with favorable
geometric and/or stability properties were introduced using the framework of modified differential
equations. This framework could in principle be used to construct higher order weak stabilized
methods. Here we follow a different approach based on stabilizing a second weak order scheme
originating from the weak second order Taylor method known as the Milstein-Talay method [34]

X1 = X0 + hf(X0) +
m∑

r=1

gr(X0)∆Wr +
m∑

q,r=1

(gr)′(X0)g
q(X0)Iq,r

+
h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)
+

m∑

r=1

f ′(X0)g
r(X0)Ir,0

+
m∑

r=1

(
(gr)′(X0)f(X0) +

m∑

q=1

1

2
(gr)′′(X0)(g

q(X0), g
q(X0))

)
I0,r, (8)

where Ir,0, I0,r, Iq,r denote the stochastic integrals defined by

Ir,0 =

∫ t1

t0

∫ t

t0

dWr(s)dt, I0,r =

∫ t1

t0

∫ t

t0

ds dWr(t), Iq,r =

∫ t1

t0

∫ t

t0

dWq(s)dWr(t). (9)

Here, we use the notations f ′(X0)· for the first derivative (a linear form) and f ′′(X0)(·, ·) for
the second derivative (a symmetric bilinear form) of f at the point X0 and similar notations
for the diffusion functions gr. Notice that for notational brevity, we shall always write X1 and
X0 in place of Xn+1 and Xn when introducing an integrator. As given above, the method (8)
is not practical for implementation: it contains derivatives which are expensive in general, and
stochastic integrals that are difficult to simulate. We will discuss these issues in Section 3.1 where
we derive a stabilized explicit version of the Milstein-Talay method suitable for stiff problems.

2.2 Stability concepts for SDEs

In practice it is not only the order of convergence that guarantees an efficient approximation of
an SDE, but also the long-time behavior of the solution. Stability properties of the exact and the
numerical solutions are important to understand this behavior. Widely used characterizations of
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stability for SDEs are the mean-square and the asymptotic stability (in the large) [7, 14]. The
former measures the stability of moments, the latter measures the overall behavior of sample
paths. In particular, we have the following definitions. The steady solution X ≡ 0 of (1) with
f(0) = gr(0) = 0, r = 1, . . . ,m is called stochastically asymptotically stable in the large if there
exists δ > 0 such that

lim
t→∞

|X(t)| = 0 with probability 1 for all |X0| < δ, (10)

mean-square stable if there exists δ > 0, such that

lim
t→∞

E(|X(t)|2) = 0 for all |X0| < δ. (11)

2.2.1 The stochastic scalar test equation with multiplicative noise

To gain insight on the stability behavior of a numerical method, we consider a class of linear
scalar test problems widely used in the literature [32, 15, 9, 36],

dX(t) = λX(t)dt+ µX(t)dW (t), X(0) = 1, (12)

in dimensions N = m = 1, with fixed complex scalar parameters λ, µ. The exact solution of (12),
given by X(t) = exp((λ + 1

2µ
2)t + µW (t)), is stochastically asymptotically stable if and only if

limt→∞ |X(t)| = 0 with probability 1, equivalently (λ, µ) ∈ SAS
SDE with

SAS
SDE :=

{
(λ, µ) ∈ C

2 ; ℜ
(
λ− 1

2
µ2

)
< 0

}
,

and mean-square stable if and only if limt→∞ E
(
|X(t)|2

)
= 0, equivalently (λ, µ) ∈ SMS

SDE with

SMS
SDE :=

{
(λ, µ) ∈ C

2 ; ℜ(λ) + 1

2
|µ|2 < 0

}
.

We name the domains SMS
SDE ⊂ SAS

SDE the mean-square and asymptotic stability domains of the
test equation (12), respectively.

Notice that the justification of the test equation (12) is delicate for multi-dimensional systems.
Already for multi-dimensional linear systems dX = AXdt +

∑m
r=1BrXdWr(t), where A,Br are

N × N matrices and dWr are independent one-dimensional Weiner processes, it is difficult to
extend the stability analysis of numerical integrators if A and Br, r = 1, . . . ,m do not commute
and can thus not be simultaneously diagonalized. This has been investigated in [33, 29] but
these studies do not allow for an easy characterization of stability criterion. Using the theory of
stochastic stabilization and destabilization [22] an attempt to generalize the linear test equation
has been proposed in [8], where two sets of test equations with N = m = 2 and N = m = 3
have been studied. The conclusion of these studies is that the stability behavior of the Euler-
Maruyama method (or its generalization obtained by using the θ method for the drift term) is
essentially captured by the test equation (12). We mention however that for linear systems with
a non normal drift, the additional test equations in [8] capture stability behaviors (in particular
in the pre asymptotic regime) of a numerical scheme that cannot be seen by studying (12). This
phenomenon is well known for ODEs (see [13, IV.11]).

2.2.2 Stability of numerical integrators for SDEs

We now look for conditions such that a numerical method (2) applied to the linear test problem
(12) yields numerically stable solutions. Similarly to the continuous case we say that the numerical
method (2) applied to (12) is said to be
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• numerically asymptotically stable if limn→∞ |Xn| = 0 with probability 1;

• numerically mean-square stable if limn→∞ E(|Xn|2) = 0.

Applying a numerical method to the test SDE (12) usually yields [15] the following one step
difference equation

Xn+1 = R(p, q, ξn)Xn, (13)

where p = λh, q = µ
√
h, and ξn is a random variable (e.g. a Gaussian ξn ∼ N (0, 1) or a discrete

random variable). Once this difference equation is formulated, it is not difficult to define the
domains of mean-square and asymptotic stability of the numerical method applied to the test
SDE (12). In particular, for the numerical mean-square stability, we have [15]

lim
n→∞

E(|Xn|2) = 0 ⇐⇒ (p, q) ∈ SMS
num where SMS

num :=
{
(p, q) ∈ C

2 ;E|R(p, q, ξ)|2 < 1
}
, (14)

and for the numerical asymptotic stability, assuming R(p, q, ξ) 6= 0 with2 probability 1 and
E((log |R(p, q, ξ)|)2) < ∞, it is shown in [15, Lemma 5.1] the equivalence

lim
n→∞

|Xn| = 0 with probability 1 ⇐⇒ (p, q) ∈ SAS
num :=

{
(p, q) ∈ C

2 ; E(log |R(p, q, ξ)|) < 0
}
.

(15)
We denote SAS

num,SMS
num, respectively, the above domains of asymptotic and mean-square stability.

If we restrict (p, q) ∈ R
2 then the domains of stability SAS

num ∩R
2,SMS

num ∩R
2 are called regions of

stability.

3 Weak second order explicit stabilized methods

In this section we introduce the S-ROCK2 algorithm for systems of SDEs (1) in the most general
setting for non-commutative noise of arbitrary dimension m. The method is obtained by a
combination of an efficient weak second order Milstein-Talay scheme with a stabilization procedure
based on the second order deterministic stabilized Runge-Kutta method ROCK2.

3.1 Efficient derivative free explicit Milstein-Talay method

We briefly discuss the Milstein-Talay method (8) and explain an efficient implementation of (8)
that will be helpful to understand our new S-ROCK2 methods. First it is well-known that one
can replace the stochastic integrals Ir,0, I0,r, Iq,r by discrete random increments without altering
the weak order. Consider independent discrete random variables χr, ξr, r = 1, . . . ,m satisfying

P(χr = ±1) = 1/2, P(ξr = ±
√
3) = 1/6, P(ξr = 0) = 2/3, (16)

then both Ir,0 and I0,r can be replaced by h3/2ξr and Iq,r can be replaced by

Jq,r =





h(ξrξr − 1)/2 if q = r
h(ξqξr − χq)/2 if r < q
h(ξqξr + χr)/2 if r > q.

(17)

The weak approximation (17) involving 2m− 1 discrete random variables3 was first proposed in
[25] (see also [27, p. 96, eq. (1.25)]). The weak second order method (8) with discrete random

2Notice that if R(p, q, ξ) = 0 with a non-zero probability, then (13) is clearly numerically asymptotically stable.
3Notice that χ1 is not used in (17) but involved in (21) below.
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increments then reads (see e.g. [27, p. 103, eq. (2.18)])

X̂1 = X0 + hf(X0) +
√
h

m∑

r=1

gr(X0)ξr +

m∑

q,r=1

(gr)′(X0)g
q(X0)Jq,r

+
h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)

(18)

+
m∑

r=1

(
(gr)′(X0)f(X0) +

1

2

m∑

q=1

(gr)′′(X0)(g
q(X0), g

q(X0)) + f ′(X0)g
r(X0)

)h3/2ξr
2

.

We next briefly discuss derivative free methods. First, using additional Runge-Kutta stages allows
to remove f ′f, f ′gr, f ′′(gr, gr) without altering the weak order two of (18),

K1 = X0 + hf(X0), K2 = K1 +
√
h

m∑

r=1

gr(X0)ξr,

X̃1 = X0 +
h

2

(
f(K2) + f(X0)

)
+

m∑

q,r=1

(gr)′(X0)g
q(X0)Jq,r

+
√
h

m∑

r=1

(
gr(X0) +

h

2
(gr)′(X0)f(X0) +

h

4

m∑

q=1

(gr)′′(X0)(g
q(X0), g

q(X0))
)
ξr. (19)

Next, we use the following approximation first proposed in [31] to construct efficient derivative
free second order methods,

m∑

q,r=1

(gr(X0))
′gq(X0)Jq,r =

1

2

m∑

r=1

[
gr
(
X0 +

m∑

q=1

gq(X0)Jq,r

)
− gr

(
X0 −

m∑

q=1

gq(X0)Jq,r

)]
+O(h3).

(20)
Again, this approximation does not alter the weak second order of the method and requires only
3 evaluations of each function gr. Notice that in contrast, a naive finite difference approximation

e.g., 1
2h

∑m
q,r=1

[
gr
(
x+ hgq(x)

)
− gr

(
x− hgq(x)

)]
Jq,r, would require 2m+1 evaluations of each

function gr at the points x, x± hgq(x). Finally, replacing the last line in (19) by
√
h

2

m∑

r=1

(
gr
(X0 +K1

2
+

√
h

2

m∑

q=1

gq(X0)χq

)
+ gr

(X0 +K1

2
−
√

h

2

m∑

q=1

gq(X0)χq

))
ξr, (21)

we obtain the scheme

K1 = X0 + hf(X0), K2 = K1 +
√
h

m∑

r=1

gr(X0)ξr,

X̄1 = X0 +
h

2

(
f(X0) + f(K2)

)
+

1

2

m∑

r=1

(
gr
(
X0 +

m∑

q=1

gq(X0)Jq,r

)
− gr

(
X0 −

m∑

q=1

gq(X0)Jq,r

))

+

√
h

2

m∑

r=1

(
gr
(X0 +K1

2
+

√
h

2

m∑

q=1

gq(X0)χq

)
+ gr

(X0 +K1

2
−
√

h

2

m∑

q=1

gq(X0)χq

))
ξr. (22)

Each step of the above scheme necessitates only five evaluations of the diffusion functions gr, r =
1, . . . ,m, independently of the dimensionm. The method (22) – a modification of the second order
method in [17, eq. (2.7) Chap. 14] – seems not to have appeared in the literature, in particular
the finite difference discretisation (21) seems new. We give here a direct proof of its weak order
two that will be useful in what follows.
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Lemma 3.1. Consider the system of SDEs (1) with f, gr ∈ C6
P (R

N ,RN ), Lipschitz continuous.
Then the derivative free Milstein-Talay method (22) for the approximation of (1) satisfies

|E(φ(X(nh)))− E(φ(X̄n))| ≤ Ch2, 0 ≤ nh ≤ T

for all φ ∈ C6
P (R

N ,R), where C is independent of n, h.

Proof. We show that |E(φ(X̄1)) − E(φ(X(t1)))| ≤ Ch3 and conclude by Remark 2.1. Since, we
already know [34] that |E(φ(X̂1)) − E(φ(X(t1)))| ≤ Ch3, where X̂1 is the weak Milstein-Talay
method (18), it remains to show that

|E(φ(X̄1))− E(φ(X̂1))| ≤ Ch3. (23)

We first observe that

h

2
(f(K2) + f(X0)) = hf(X0) +

h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)

+
m∑

r=1

f ′(X0)(g
r(X0))

h3/2ξr
2

+ h2R1 + h5/2R2 +O(h3),

where R1 =
1
4

∑m
p,q=1 f

′′(X0)(g
p(X0), g

q(X0))(ξpξq−δp,q) and δp,q is the Kronecker delta function.
As E(ξpξq) = δr,s we have E(R1) = 0. Noticing E(ξpξqξr) = E(ξp) = 0 for all indices p, q, r, we
have also E(R2) = 0, where

R2 =
1

2

m∑

r=1

f ′′(X0)(g
r(X0), f(X0))ξr +

1

12

m∑

p,q,r=1

f ′′′(X0)(g
p(X0), g

q(X0), g
r(X0))ξpξqξr.

Second, a Taylor expansion of the quantity (21) yields

m∑

r=1

gr
(X0 +K1

2

)√
hξr +

h3/2

4

m∑

q,r=1

(gr)′′(X0)(g
q(X0), g

q(X0))ξr + h3/2R3 + h5/2R4 +O(h3),

where R3 = 1
4

∑m
p,q,r=1(g

r)′′(X0)(g
q(X0), g

p(X0))(χqχp − δq,p)ξr which yields E(R3) = 0 using

E((χqχp−δq,p)ξr) = 0. In addition, usingR4 =
1
8

∑m
p,q,r=1(g

r)′′′(X0)(g
p(X0), g

q(X0), f(X0))χpχqξr
yields E(R4) = 0. Third, we see that

m∑

r=1

gr
(X0 +K1

2

)√
hξr =

m∑

r=1

(√
hgr(X0) +

1

2
h3/2(gr)′(X0)f(X0)

)
ξr + h5/2R5 +O(h3), (24)

where R5 = 1
8

∑m
r=1(g

r)′′(X0)(f(X0), f(X0))ξr, which yields E(R5) = 0. Combining these esti-
mates with (20), we obtain

X̄1 − X̂1 = h3/2R3 + h2R1 + h5/2(R2 +R4 +R5) +O(h3). (25)

Using X̄1− X̂1 = O(h3/2), a Taylor expansion yields φ(X̄1)−φ(X̂1) = φ′(X̂1)(X̄1− X̂1)+O(h3).
Setting G =

∑m
r=1 g

r(X0)ξr, we further Taylor expand the quantity φ′(X̂1) and obtain, using (25),

φ(X̄1)− φ(X̂1) = φ′(X0 +
√
hG+ hf(X0) +O(h3/2))(X̄1 − X̂1) +O(h3)

= φ′(X0)(X̄1 − X̂1) + h2φ′′(X0)(G,R3) + h5/2φ′′(X0)(G,R1)

+ h5/2φ′′(X0)(f(X0), R3) +
h5/2

2
φ′′′(X0)(G,G,R3) +O(h3).
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We notice that E(φ′(X0)(X̄1 − X̂1)) = O(h3) and each of the other above terms have expectancy
zero (for the terms involving both G and R3, we use the independence of the random variables
χq, ξr). This proves the local error estimate (23). To conclude the proof of the global error
estimate by using Remark 2.1, it remains to check that for all r ∈ N the moments E(|Xn|2r)
are bounded uniformly with respect to all h small enough for all 0 ≤ nh ≤ T . We use here the
approach of [27, Lemma 2.2, p. 102] which states that it is sufficient to show

|E(X̄n+1 − X̄n|X̄n)| ≤ C(1 + |X̄n|)h, |X̄n+1 − X̄n| ≤ Mn(1 + |X̄n|)
√
h, (26)

where C is independent of h and Mn is a random variable with moments of all orders bounded
uniformly with respect to all h small enough. These estimates are a straightforward consequence
of the definition (22) of the scheme and the linear growths of f, g (a consequence of their Lis-
chitzness). �

3.2 Stabilization procedure

All the second order methods considered in this paper (drift implicit or explicit) applied to the
linear test problem (12) have a stability function (13) of the form

R(p, q, ξ) = A(p) +B(p)qξ + C(p)
q2

2

(
ξ2 − 1

)
, (27)

where ξ is either a Gaussian random variable N (0, 1) or a three points discrete random variable
(16). The numerical mean-square stability domain (14) for methods having the above stability
function can be characterized by [15]

SMS
num =

{
(p, q) ∈ C

2 ; |A(p)|2 + |B(p)q|2 + 1

2
|C(p)q2|2 < 1

}
, (28)

while assuming here a three points discrete random variable is used (see ξr in (16)), the numerical
asymptotic stability domain can be characterized straightforwardly by the criteria (15) from [15]4,

SAS
num =

{
(p, q) ∈ C

2 ; 2/3 log |R(p, q, 0)|+ 1/6 log |R(p, q,
√
3)|+ 1/6 log |R(p, q,−

√
3)| < 1

}

=

{
(p, q) ∈ C

2 ;
∣∣∣
(
A(p) + C(p)q2

)2 − 3B2(p)q2
∣∣∣
∣∣∣A(p)− 1

2
C(p)q2

∣∣∣
4
< 1

}
. (29)

For example, for the weak Milstein-Talay method (18) and its derivative free version (22), we have

A(p) = 1 + p+
1

2
p2, B(p) = 1 + p, C(p) = 1. (30)

Since visualizing the domains of stability for (p, q) ∈ C
2 is difficult we restrict ourselves to study

the case where (p, q) ∈ R
2. It can be seen in Figure 1 that the weak Milstein-Talay method (18)

has restricted mean-square and asymptotic stability regions. This is expected for classical explicit
methods and our goal is to introduce a stabilization procedure that permits to enlarge them signif-
icantly. We first define for a > 0 the following “portion of the true mean-square stability region”

SMS
a = {(p, q) ∈ (−a, 0)× R ; p+

1

2
|q|2 < 0}, (31)

4In (29), we set log 0 := −∞. Notice that for ξ ∼ N (0, 1) numerical asymptotic stability domains SAS
num are

more difficult to characterize [15].
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Milstein-Talay method, see (30)

q²

p

-5 -4 -3 -2 -1 0 1
0

1
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3

4

Figure 1: Mean-square stability region (dark gray) and asymptotic stability region (dark and
light grays) of the explicit second order Milstein-Talay method with stability function (27).

and define for a given method

ℓ = sup{a > 0 ; SMS
a ⊂ SMS

num}, d = sup{a > 0 ; (−a, 0)× {0} ⊂ SMS
num}, (32)

where d is the size of the stability domain along the deterministic p-axis (observe that d ≥ ℓ). For
the Milstein-Talay method we have ℓ = 0, d = 2. In contrast, the S-ROCK2 methods (see (44),
Section 3.3) have values ℓ, d increasing quadratically with the stage parameter s. In turn, the
ratio of stability versus work increases linearly, while for classical explicit methods it is bounded.

Weak order one S-ROCK methods [4] For ordinary differential equations (ODEs),

dX(t)

dt
= f(X(t)), X(0) = X0, (33)

a well-know stabilization procedure for the Euler method has been proposed in [38]. Its construc-
tion is based on the classical Chebyshev polynomials Ts(cosx) = cos(sx). Given an integer s ≥ 1,
the number of stages, and a damping parameter η ≥ 0, we define the following Runge-Kutta
method (first order Chebyshev method) with step size h by the following explicit recursion where

K0 = X0, K1 = X0 + h
ω1

ω0
f(K0),

Kj = 2h
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, . . . , s (34)

X1 = Ks,

ω0 = 1+ η
s2
, ω1 =

Ts(ω0)
T ′

s(ω0)
. Applied to the linear test problem dX(t)/dt = λX(t) the method (34)

gives X1 = Rs(p)X0, where p = λh and where Rs(p), called the stability function (polynomial)
of the method, is given by Rs(p) = Ts(ω0 + ω1p)/Ts(ω0). We emphasize that (34) denotes in fact
a family of methods indexed by the stage number s. A crucial property of the methods (34) is

|Rs(p)| ≤ 1 for all p ∈ (−ds, 0), (35)

with ds ≃ C · s2, for s large enough, where C depends on the damping parameter η (for η = 0,
C = 2). Thus, the length ds of the stability domain

S := {p ∈ C; |R(z)| ≤ 1} (36)

of the methods increases quadratically with s on the negative real axis. This quadratic growth of
the stability domain is the key feature of such methods compared to standard explicit integrators.
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The idea for stabilizing the Euler-Maruyama (7) is now simply to damp its stability function
R(p, q, ξ) = 1+p+ qξ, obtained by applying (7) to (12) using Rs(p) (with a value of the damping
η optimized for each s, see [4]). The corresponding Runge-Kutta type scheme reads [4]

K0 = X0, K1 = X0 + h
ω1

ω0
f(K0),

Kj = 2h
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, . . . , s

X1 = Ks +
m∑

r=1

gr(Ks)∆Wr. (37)

The method (37) will be denoted by S-ROCK(1/2,1). Another method of strong order 1 and weak
order 1 has been considered in [4]. Using the approximation (20) from [31], a multi-dimensional
derivative free version, denoted S-ROCK(1,1), can be obtained straightforwardly by replacing the
last line in (37) by

X1 = Ks +
m∑

r=1

gr(Ks)∆Wr +
1

2

m∑

r=1

(
gr
(
Ks +

m∑

q=1

gq(Ks)Iq,r
)
− gr

(
Ks −

m∑

q=1

gq(Ks)Iq,r
))

,

where Iq,r are defined in (9) and by considering a larger damping η as discussed in [4] (see also
the related work [20]). It turns out that S-ROCK(1/2,1) and S-ROCK(1,1) include a portion of
the true mean-square stability region that scales like ℓs ≃ 0.33 · s2 and ℓs ≃ 0.19 · s2, respectively.

Second order stabilization Similarly as for the weak order one S-ROCK method, the idea is
to stabilize the weak second order method (22). We start with a deterministic stabilized second
order Chebyshev method. Recall that the derivation of optimal stability functions suitable for the
stabilization of second order (deterministic method) is a non trivial task and various strategies
have been proposed [21, 38, 5, 1]. We choose here the second order orthogonal Runge-Kutta
Chebyshev methods (ROCK2) introduced in [5]. The idea is to search for a stability polynomial

Rs(p) = w2(p)Ps−2(p), (38)

where Ps−2(p) is a member family of polynomials {Pj(z)}j≥0 orthogonal with respect to the

weight function w2(x)2√
1−x2

. The polynomial Ps−2 has degree s− 2, while w2 is a positive polynomial

of degree two (depending on s). One constructs the polynomials w2 such that Rs satisfies [5]

Rs(p) = 1 + p+
p2

2
+O(p3), (39)

together with a large stability interval (35), increasing as ≃ 0.81 · s2 along the negative real axis.
Thanks to the recurrence relation of the orthogonal polynomials {Pj(z)}j≥0, a method of order
two for (33) based on a recurrence formula can be constructed 5

K0 = X0, K1 = K0 + µ1hf(K0),

Kj = µjhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s− 2,

Ks−1 = Ks−2 + 2τhf(Ks−2),

X1 = Ks−2 +

(
2σ − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−1). (40)

5The two last stages of the method are written is a slightly different way as in the ROCK2 method [5, Equ.
(26-27)] as (40) is more convenient for an extension to stochastic integrators. We emphasize that it has the same
order and stability properties as the ROCK2 method [5, Equ. (26-27)].
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S-ROCK2 (s = 13, α ≃ 1.615)

Figure 2: Comparison of polynomials involved in ROCK2 and S-ROCK2 for s = 13. Polynomials
Rs,α (solid lines), Ps−2(αp) (dashed lines). We also include the polynomial Ps(αp) in the right
picture (dotted lines).

The parameters µj , kj (depending on s) are obtained from the three-term recurrence relation [5,
eq. (24)-(25)] of the orthogonal polynomials {Pj(z)}j≥0, while σ, τ (that also depend on s) satisfy
w2(p) = 1 + 2σp+ τp2 and are chosen such that (39) holds.

In preparation for the extension of the ROCK2 methods to stochastic problems, we now
explain a novel strategy to introduce damping in the scheme (40). The idea is to consider the
following scheme for a fixed scalar parameter α.

K0 = X0, K1 = K0 + αµ1hf(K0),

Kj = αµjhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s− 2,

Ks−1 = Ks−2 + 2ταhf(Ks−2)

X1 = Ks−2 +

(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−1). (41)

Notice that for α = 1, we recover the original ROCK2 method (40). Applied to the linear test
problem dX/dt = λX,X(0) = X0 this method yields (setting p = hλ and X0 = 1)

X1 = (1 + 2σαp+ ταp
2)Ps−2(αp) =: Rs,α(p). (42)

Lemma 3.2. The method (41) has second order for the system of ODEs (33) for any α provided

σα =
1− α

2
+ ασ, τα =

(α− 1)2

2
+ 2α(1− α)σ + α2τ. (43)

Proof. Recall that for second order deterministic methods, standard Runge-Kutta order condi-
tions for linear and nonlinear problems are identical. From (39) we deduce the relation P ′

s−2(0) =
1− 2σ and 1

2P
′′
s−2(0) =

1
2 − τ − 2σ(1− 2σ). Imposing the second order condition to (42) yields

(1 + 2σαp+ ταp
2)(1 + P ′

s−2(0)αp+
1

2
P ′′
s−2(0)(αp)

2 +O(p3)) = 1 + p+
p2

2
+O(p3),

which is equivalent to the relations (43). �

In Figure 2, we plot, for s = 13, the polynomials Ps−2(αp) and Rs,α(p) (defined in (42))
involved in the standard ROCK2 method (α = 1, left picture) and the S-ROCK2 method (α ≃
1.615 right picture) introduced in the next section. It can be seen that increasing α reduces the
amplitude of the oscillations of Rs,α(p). The appropriate choice of α is discussed below.

3.3 The S-ROCK2 methods

We introduce here our new explicit stabilized integrator, obtained by stabilizing the Milstein-
Talay method (22) with (41).
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S-ROCK-2 integrator of weak order two Given X0, compute X1 as follows.

K0 = X0, K1 = K0 + αµ1hf(K0),

Kj = µjαhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s,

K∗
s−1 = Ks−2 + 2ταhf(Ks−2) +

√
h

m∑

r=1

gr(Ks)ξr,

X1 = Ks−2 +
(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(K∗

s−1)

+
1

2

m∑

r=1

(
gr
(
Ks +

m∑

q=1

gq(Ks)Jq,r

)
− gr

(
Ks −

m∑

q=1

gq(Ks)Jq,r

))

+

√
h

2

m∑

r=1

(
gr
(
Ks−1 +

√
h

2

m∑

q=1

gq(Ks)χq

)
+ gr

(
Ks−1 −

√
h

2

m∑

q=1

gq(Ks)χq

))
ξr. (44)

where α = 1/(2P ′
s−1(0)) and σα, τα are given by (43). Here, the constants µj , νj , κj , σ, τ depend

on s and are the same as for the standard deterministic ROCK2 integrator (40).

work stability
integrator #f #gr #random ds ℓs

s steps of Milstein-Talay (22) 2s 5s 2ms 2s 0
one step of S-ROCK2 (44) s+ 2 5 2m ≃ 0.42(s+ 2)2 ≃ 0.42(s+ 2)2

Table 1: Computational complexity for an SDE in dimensions N (drift) and m (diffusion).

Numerical computations show that the S-ROCK2 method includes a portion of the true
mean-square stability region SMS

ℓ that grows with the stage number as ℓS−ROCK2 ≃ 0.42(s+2)2.
The computational complexity of one step of the S-ROCK2 method with stepsize h is reported
in Table 1 and compared to s steps with stepsize h/s of the weak second order Milstein-Talay
method (22). As observed, one step of the S-ROCK2 method (44) requires at each step #f = s+2
evaluations of the drift function, #gr = 5 evaluations of the diffusion functions gr, r = 1, . . . ,m,
and #random = 2m simulations of independent discrete random variables, independently of the
dimensions N,m of the considered SDE. The main feature of our S-ROCK2 integrators is that
the mean-square stability region sizes ℓs, ds grow quadratically with respect to the computational
work #f +#gr, while ℓs = 0 and ds grows only linearly for the standard explicit methods.

Remark 3.3. (Diagonal noise) When N = m and (g1(x), . . . , gN (x)) = diag(g1(x
1), . . . , gN (xN ))

is a diagonal matrix where gk(x) depends only on xk, one can replace the two last lines of (44)

by G =
(
G1, . . . , GN

)T
where Gk =

1

2

(
gk
(
Ks,k + gk(Ks,k)Jk,k

)
− gk

(
Ks,k − gk(Ks,k)Jk,k

))
+

√
h

2

(
gk(Ks−1,k +

√
h

2
gk(Ks,k)) + gk(Ks−1,k −

√
h

2
gk(Ks,k))

)
ξk for all k = 1, . . . ,m.

We next prove that the method (44) has indeed weak second order.

Theorem 3.4. Consider the SDE (1) with f, gr ∈ C6
P (R

N ,RN ), Lipschitz continuous. Then the
S-ROCK2 method (44) for the approximation of (1) satisfies

|E(φ(X(nh)))− E(φ(Xn))| ≤ Ch2, 0 ≤ nh ≤ T

for all φ ∈ C6
P (R

N ,R), where C is independent of n, h.
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Proof. Noticing that Kj = X0 + αP ′
j(0)hf(X0) +O(h2) and using Lemma 3.2 yields

Ks−2 +
(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−2 + 2ταhf(Ks−2)) = X0 +

(
hf +

h2

2
f ′f

)
(X0) +O(h3).

The choice α = 1/(2P ′
s−1(0)) yields Ks−1 = X0 + h

2f(X0) + O(h2). We deduce X1 − X̄1 =

h2R1 + h5/2R2 + O(h3), where X̄1 is defined by the derivative free Milstein-Talay method (22)
and

R1 = αP ′
s(0)

m∑

q,r=1

(
(gr)′′(gq, f) + (gr)′(gq)′f

)
Jq,r

R2 =
αP ′

s(0)

2

m∑

r=1

f ′(gr)′fξr + α2P ′′
s−1(0)

m∑

r=1

(gr)′f ′fξr

+
αP ′

s(0)

4

m∑

p,q,r=1

(
(gr)′′′(gp, gq, f) + 2(gr)′′((gp)′f, gq)

)
χpχqξr

where in R1, R2 the functions f, g
r and their differentials are evaluated at X0. Observing E(R1) =

E(R1ξr) = E(R2) = 0 for all r, we obtain the weak estimate (23) for X1, X̄1, and we conclude the
proof of Theorem 3.4 using Remark 2.1, similarly to the end of the proof of Lemma 3.1. We refer
to the proof of [4, Thm. 4.2] for details on deriving the estimates (26) in the context of stochastic
stabilized explicit integrators. �

Remark 3.5. Consider the integrator X̂1 obtained from (44) by replacing the ξr by independent
Gaussian variables, i.e., ξr ∼ N (0, 1). This integrator has then strong order one in the case of a
commutative noise (notice that in this case the left-hand side of (20) becomes independent from
the values of the χr random variables). In the general case of non-commutative noise, if one
further replaces the discrete random variables Jq,r by the usual multiple stochastic integrals (9),
then X̂1 remains of strong order one. Indeed, using Remark 2.1 and owing to the second weak
order of (44) one only needs to show the first inequality of (6). Furthermore instead of comparing
X̂1 to X(t1) it is sufficient to compare X̂1 to (8) as this latter method is known to have strong
order one. The remaining calculations are straightforward.

Stability analysis We now focus on the mean-square and asymptotic stability properties of
our new explicit weak second order integrator.

Proposition 3.6. Consider the S-ROCK2 method (44) applied to the linear test equation (12).
The numerical asymptotic stability domain SAS

num defined in (15) is given by (29) and the numerical
mean-square stability domain SMS

num defined in (14) is given by (28) where the polynomial functions
A(p), B(p), C(p) are defined by

A(p) = Ps−2(αp)(1 + 2σαp+ ταp
2), B(p) = Ps−1(αp) +

p

2
Ps(αp), C(p) = Ps(αp). (45)

Proof. Follows from noticing that applied to the linear test problem (12), the method (44) yields
(27) with A(p), B(p), C(p) given by (45). �
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Figure 3: Comparison of S-ROCK2 (solid lines) and the weak order one S-ROCK methods (1, 1)
(dashed lines), (12 , 1) (dotted lines). Left picture: optimal stage parameter s as a function of

√
ℓ,

where ℓ is given by (32). Right picture: stability efficiency c(s) = ℓs/s
2.

In Figure 4 we plot asymptotic (light gray) and mean-square (dark gray) stability regions
for different values of the stage number s. In all cases, we observe the inclusions SMS

num ∩ R
2 ⊂

SAS
num ∩ R

2. The dotted lines where p < 0 correspond to the boundary of the true mean-square
stability region, while the dotted lines where p > 0 (see bottom pictures) correspond to the
boundary of the true asymptotic stability region (given by p + |q|2/2 = 0 and p − q2/2 = 0,
respectively). In the bottom pictures we zoom close to the origin and observe that the asymptotic
stability region contains the mean square stability region. Furthermore, a large portion of the
true asymptotic stability region is included in the numerical one close to the origin, {(p, q) ∈
R
2 ; |p| ≤ 1, |p| < |q| < 2.7} ⊂ SAS

num.
We briefly comment the ideas behind the definition of the scheme (44) that allow favorable

mean-square stability properties. Recall that the deterministic stability functions A(p) oscillates
around the negative real axis (see top left picture in Figure 2). If the absolute value of the local
maxima and minima of A(p) are close to one, then in view of (28) we will have gaps in the mean-
square stability domains (in the regions where A(p) is bounded). We therefore have to damp
this term by introducing and tuning the value of α as explained before in Section 3.2. Next it
can be observed that the polynomials Ps−2(p), Ps−1(p), Ps(p) oscillates around zero with a small
amplitude of size O(p−2) along the real axis. These polynomials are thus good candidates to
damp the Milstein term which corresponds to the q2 term in the stability function (27). However,
simply working with the polynomials Ps−2(p) leaves a gap in the mean-square stability regions
close to the origin near to the extrema of Ps−2(p). For this reason, we consider instead the
polynomial Ps(p) to damp the Milstein term which has the advantage that P ′

s(0) > P ′
s−2(0)

(faster decay near the origin). The additional advantage of considering simultaneously the three
polynomials Ps−2, Ps−1, and Ps is that their extrema close to the origin do not coincide. This
permits to avoid a gap in the mean-square stability domain close to the origin. The polynomials
Ps−1, Ps (corresponding to the internal stages Ks−1,Ks in (44)) are obtained by computing two
additional stages compared to the deterministic ROCK2 (41) method.

3.4 Comparison with other stiff integrators

Comparison with S-ROCK method In Figure 3 we plot the length ℓ defined in (32) of
the portion of the true mean-square stability region SMS

ℓ as a function of the number of stages
used. As we can see the behaviour of the S-ROCK2 method is ℓ ≃ Cs2 similarly to the S-
ROCK methods of weak order 1 discussed in Section 3.2. Furthermore, once can also see that
the S-ROCK2 method is actually more efficient from a stability point of view, since the stability
efficiency factor c(s) = ℓs/s

2 converges numerically to about 0.42 for large s, which is larger than
the S-ROCK(1/2,1/2) and S-ROCK(1,1) values of 0.33 and 0.19, respectively.
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Figure 4: Mean-square stability regions (dark gray) and asymptotic stability regions (dark and
light grays) of S-ROCK2 for s+ 2 = 8, 15, 30, and 127 stages, respectively.

Comparison with a class of diagonally drift-implicit Runge-Kutta methods [11] We
have already discussed the asymptotic and mean-square stability properties of the Milstein-Talay
method (22), which has restricted mean-square and asymptotic stability regions (see Figure 1).
We next consider the weak second-order diagonally implicit Runge-Kutta method (DDIRDI5)
derived in [11] with the following aims: reducing the computational cost of a fully drift-implicit
method such as the modified θ-Milstein method [3], and improving the stability domains compared
to explicit methods. For these method we have (see Fig. 5 for an example with c1 = c2 = 1)

A(p) = 1 + p
1 + (1/2− c1 − c2)p

(1− c1p)(1− c2p)
, B(p) = 1 + p

1− (c1 + c2)p/2

(1− c1p)(1− c2p)
, C(p) = 1. (46)

Even though the mean-square stability domain has been improved close to the deterministic p
axis, it can be seen that this method does not cover a portion of the true mean square stability
region. Here as for the explicit Milstein-Talay method, we have ℓ = 0. This can be seen in Figure

5, where SMS
num ∩ R

2 (dark gray) is strictly contained below the curve p +
1

2
|q|2 = 0 (see dashed

lines), which is the boundary of the true mean-square stability region. In fact, the proposition
below shows that ℓ = 0 for the whole class of integrators satisfying (46). Notice however that its
deterministic stability domain size defined in (32) is d = ∞ in particular for c1 = c2 ≥ 1/4, a
feature shared by all reasonable implicit integrators for stiff ODEs.

Proposition 3.7. Consider a weak order two integrator with a stability function of the form (27)
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DDIRDI5 method, c1 = c2 = 1 in (46)
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Figure 5: Mean-square stability region (dark gray) and asymptotic stability region (dark and light
grays) of the implicit DDIRDI5 with stability function (27) given by (46) (compare with Fig. 4).

when applied to the linear test equation (12). A necessary condition for ℓ 6= 0 in (32) is

1 + 2B′′(0)− 4C ′(0) ≤ 0. (47)

In particular, for the class of integrators with stability function given by (46), we have ℓ = 0 for
all c1, c2 ≥ 0.

Proof. Using that E|R(p, q, ξ)|2 can be written as an increasing function of q2 (see (28)), we have

sup
(p,q)∈SMS

ℓ

E(|R(p, q, ξ)|2) = sup
p∈(−ℓ,0)

E(|R(p,
√

−2p, ξ)|2).

Using the weak order two assumption, we have A(p) = 1+p+p2/2+O(p3) andB(p) = 1+p+O(p2),
a Taylor expansion yields E(|R(p,

√−2p, ξ)|2) = 1 + (4C ′(0) − 2B′′(0) − 1)p3 + O(p4) which is
smaller than 1 for small −p > 0 only if (47) holds. For the class of integrators (46), we have
1 + 2B′′(0)− 4C ′(0) = 1 + 2(c1 + c2) > 0, so the condition (46) is violated. �

Remark 3.8. Notice that if C(p) = 1, then the numerical mean-square stability domain is
bounded in the q direction by |q|4/2 < 1. This can be observed in Figure 5 where the mean-
square stability region SMS

num ∩ R
2 (dark gray) of the DDIRDI5 method is bounded vertically by

|q|2 <
√
2.

Comparison with a family of weak second order explicit integrators [19] A family of
explicit stabilized integrators for stiff Stratonovitch systems of SDEs has been introduced recently
in [19]. Although the stability domain of these methods grows quadratically along the p-axis, with
ds ≃ 0.54s2 (according to the left pictures in [19, Fig. 3]), it can be observed that the mean-square
stability domain contains uncontrolled gaps for |q|2 >

√
2 and we thus have ℓs ≤

√
2 for all stage

parameter s. This makes the algorithm in [19] robust with respect to mean-square stability only
in the case of small noises.

4 Numerical experiments

We now present various different numerical experiments with our newly constructed methods. In
Section 4.1 we confirm the order of weak convergence of the S-ROCK2 method on two different
non-linear problems. Then, in Section 4.2, we test the performance of the S-ROCK2 method for
a non-linear stiff problem and compare it to other weak second order methods, while in Section
4.3 we present numerical results for a stochastic PDE arising from Neurosciences.
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4.1 Weak convergence rates

We start our numerical investigations by considering two non-stiff non-linear SDEs. The first one
is

dX(t) =

(
1

4
X(t) +

1

2

√
X(t)2 + 1

)
dt+

√
X(t)2 + 1

2
dW (t), X(0) = 0. (48)

The exact solution is X(t) = sinh(t/2 +W (t)/
√
2), it satisfies E

(
(arcsinhX(t))2

)
= t2/4 + t/2.
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Figure 6: S-ROCK2 method with s = 13 stages (solid lines) and s = 104 (dashed lines).
Weak error at final time T = 1 versus the stepsize h for problems (48), (49), where 1/h =
1, 2, 3, 4, 6, 8, 11, 16.

The second test problem is another nonlinear SDE [11] with 10 independent driving Weiner
processes,

dX(t) = X(t)dt+

10∑

j=1

a−1
j

√
X(t) + b−1

j dWj(t), X(0) = 1,

with non-commutative noise, where the values of the constants aj , j = 1, . . . , 10 are respectively
10, 15, 20, 25, 40, 25, 20, 15, 20, 25, and the values of bj , j = 1, . . . , 10 are respectively 2, 4, 5, 10, 20,
2, 4, 5, 10, 20. For this problem by applying Itô’s formula to φ(x) = x2, taking expectations and
using the fact that E(X(t)) = et, one calculates

E(X2(t)) = (−68013− 458120et + 14926133e2t)/14400000. (49)

We apply the S-ROCK2 method to both problems (48) and (49) and approximate respectively
E
(
(arcsinhX(T ))2

)
and E(X2(T )) up to the final time T = 1 using 109 realisations and different

step sizes h. We plot the results in Figure 6 and observe that the S-ROCK2 method converges
with weak second order for both problems, which confirms the statement of Theorem 3.4. We
plot the results for s = 13 (solid lines) and s = 104 stages (dashed lines) using the same set
of generated random numbers. The fact that the obtained curves are nearly identical illustrates
that the error constants of the S-ROCK2 methods are nearly independent of the stage number
of the integrator, similarly to the standard deterministic ROCK2 integrator (40).

4.2 A nonlinear stiff problem

To illustrate the advantage of including a whole “portion” of the mean-square stability region
of the linear test problem (12) we consider the following nonlinear scalar problem with a one-
dimensional noise,

dX(t) = −λX(t)(1−X(t))dt− µX(t)(1−X(t))dW (t), X(0) = 0.95, (50)

on time interval (0, T ) of length T = 10, which is derived from a population dynamics model
[12, Chap. 6.2] (see also [4, Example 5.2]). Notice that if one linearizes this problem close to
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parameters: ε = 10−3, λ = −4
method stepsize work E(X(1)2)− 1 E(|X(1)|)− 1

Milstein-Talay h = 1/25 #f = 500,#g = 1250 ∞ (unstable) ∞ (unstable)
Milstein-Talay h = 1/30 #f = 600,#g = 1500 -1.1e-2 (stable) -1.1e-2 (stable)

S-ROCK2(s = 5) h = 1/4 #f = 280,#g = 200 3.3e-7 (stable) 1.7e-7 (stable)

parameters: ε = 1, λ = −102

method stepsize work E(X(1)2)− 1 E(|X(1)|)− 1
Milstein-Talay h = 1/280 #f = 5600,#g = 14000 ∞ (unstable) ∞ (unstable)
Milstein-Talay h = 1/300 #f = 6000,#g = 15000 0.e0 (stable) 0.e0 (stable)

S-ROCK2(s = 8) h = 1/4 #f = 400,#g = 200 0.e0 (stable) 0.e0 (stable)

parameters: ε = 1, λ = −103

method stepsize work E(X(1)2)− 1 E(|X(1)|)− 1
Milstein-Talay h = 1/2800 #f = 56000,#g = 140000 ∞ (unstable) ∞ (unstable)
Milstein-Talay h = 1/3000 #f = 60000,#g = 150000 0.e0 (stable) 0.e0 (stable)

S-ROCK2(s = 23) h = 1/4 #f = 1000,#g = 200 -3.7e-12 (stable) -1.8e-12 (stable)

Table 2: Stability efficiency. Work versus stiffness for the second order Milstein-Talay method
(22) and the S-ROCK2 methods applied to the nonlinear SDE (50). Averages over 106 samples.

the steady solution X(t) = 1, it yields the linear test problem (12). Here, the initial condition
X(0) = 0.95 is chosen close to this stationary solution. We consider the parameters λ < 0, µ =√
−λ(2− ε) for which the linear test problem (12) is asymptotic and mean-square stable because

λ+ |µ|2/2 = −ε/2 < 0. Recall that for this linear test problem, the S-ROCK2 method is mean-
square stable provided |λ|h < ℓs, as studied in Section 3.3, while the Milstein-Talay method (18)
or (22) is mean-square stable only if h is small enough. We consider two cases.

1. Case ε ≪ 1 We consider first the case where λ < 0 is a constant of moderate size, e.g.
λ = −4, while ε > 0 is small. Considering the linear test equation (12), the S-ROCK2
method is stable provided h|λ| < ℓs, and the stepsize h = 1/4 can be used independently
of the smallness of ε. In contrast, for the weak second order Milstein-Talay method, a
calculation shows that the mean-square stability condition becomes h|λ| ≤ ε/4 + O(ε2),
and the number of steps needed for a stable integration grows like O(4λε−1) as ε → 0.

2. Case |λ| ≫ 1 We next consider the case where ε = 1 and |λ| ≫ 1. The S-ROCK method
is stable provided h|λ| < ℓs ≃ Cs2 and the minimal number of steps needed for a stable
integration grows like O(

√
|λ|) as λ → ∞. In contrast, for the weak second order Milstein-

Talay method, a calculation yields the mean-square stability condition h|λ| ≤ 2, and the
number of steps of the method for a stable integration grows like O(|λ|) as λ → −∞.

We observe in Table 2 the spectacular improvement of the efficiency when switching from the
weak second order Milstein-Talay method (22) to the S-ROCK2 methods applied to the nonlinear
SDE (50). Indeed, considering three different sets of parameters λ, ε, we observe in all cases that
the S-ROCK2 allows one to use a much larger timestep that for the Milstein-Talay method. This
significantly reduces the computational cost of each sample, measured in terms of the number
of evaluations of the drift and the noise (see #f,#gr). We highlight that for the considered
parameters ε, λ a sever step size restrictions similar to the explicit Milstein-Talay method would
be obtained for the drift-implicit integrators DDIRDI5 of [11] as discussed in Section 3.4, because
their mean-square stability domain is bounded on the q axis by |q|2 ≤

√
2 (see Rem. 3.8 and Fig. 5).

4.3 Electric potential in a neuron

Although our analysis applies only to systems of SDEs, we consider here an SPDE model for the
propagation of an electric potential V (x, t) in a neuron [39]. This potential is governed by a system
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(c) ∆t = 1/50, ∆x = 1/200. Solution V (x, t) as
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Figure 7: Samples of realisations of the SPDE (51) (discretized in space) using S-ROCK2 with
s + 2 = 8 stages (resp. 11) for ∆x = 1/150 (resp. ∆x = 1/200). Figures (a),(b): solutions as
functions of x at fixed times t = 0, 0.2, 0.4, . . . , 1.0 (increasing with time, from bottom to top).
Figure (d): solution as a function of t for x = 0.

of non-linear PDEs called the Hodgkin-Huxley equations [16], but in certain ranges of values of
V, this system of PDEs can be well approximated by the cable equation [39].In particular, if the
neuron is subject to a uniform input current density over the dendrites and if certain geometric
constraints are satisfied, then the electric potential satisfies the following linear cable equation
with uniform input current density.

∂V

∂t
(x, t) = ν

∂2V

∂x2
(x, t)− βV (x, t) + σ(V (x, t) + V0)Ẇ (x, t), 0 ≤ x, t ≤ 1, (51)

∂V

∂x
(0, t) =

∂V

∂x
(1, t) = 0, t > 0, V (x, 0) = V0(x), 0 ≤ x ≤ 1,

where Ẇ (x, t) = ∂2

∂x∂tw(x, t) is a space-time white noise meant in the Itô sense. Here we have
assumed that the distance between the origin (or soma) to the dendritic terminals is 1, and that
the soma is located at x = 0. Furthermore, the white noise term is describing the effect of
the arrival of random impulses and the multiplicative noise structure depicts the fact that the
response of the neuron to a current impulse may depend on a local potential [39]. The quantity
of interest is the threshold time

τ = inf{t > 0;V (t, 0) > λ}, (52)
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since when the potential at the soma (somatic depolarization) exceeds the threshold λ the neuron
fires an action potential.

The SPDE (51) yields, after space discretization with finite differences [10] the following stiff
system of SDE where V (xi, t) ≈ ui, with xi = i∆x, ∆x = 1/N ,

dui = ν
ui+1 − 2ui + ui−1

∆x2
dt− βuidt+ σ

ui + V0√
∆x

dwi, i = 0, . . . , N, (53)

where the Neumann condition imposes u−1 = u1 and uN+1 = uN−1. Here w0, . . . wN are inde-
pendent standard Weiner processes, and dwi indicates Itô noise. We consider the initial condition
V0(x) = −70 + 20 cos(5πx)(1 − x) and the constants ν = 10−2, σ = 4 · 10−3, β = 1, V0 = 10,
λ = −40. We consider the time interval (0, T ) with T = 1. Notice that the noise in (53) is
in diagonal form, so we can apply Remark 3.3. We now plot the empirical histograms for the
threshold time τ calculated over 107 realisations of (53).
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Figure 8: Density plots of the threshold time (52) in the SPDE (51) for various space mesh
sizes ∆x = 1/200, 1/400. The four curves in each plot correspond respectively to ∆t =
1/50, 1/100, 1/200, 1/400, 1/800 (light to dark gray).

5 Conclusion

In this paper, we introduced a new family of weak second order explicit stabilized methods,
called S-ROCK2, well suited for the integration of stochastic stiff problems. These methods
with extended stability regions are shown to be more efficient than standard explicit second
order solvers for stiff (mean-square stable) problems, and more efficient than a class of diagonally
implicit methods introduced in [11]. The main idea behind the derivation of these methods is to
express the S-ROCK2 integrator as a perturbation of the standard Milstein-Talay method. In
[6], we show how these ideas can be applied to construct, to the best of our knowledge, the first
diagonally drift implicit mean-square A-stable method of weak second order.
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