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Weak second order explicit stabilized methods

for stiff stochastic differential equations

Assyr Abdulle1, Gilles Vilmart2, and Konstantinos C. Zygalakis3

August 28, 2012

Abstract

We introduce a new family of explicit integrators for stiff Itô stochastic differential equa-
tions (SDEs) of weak order two. These numerical methods belong to the class of one-step
stabilized methods with extended stability domains and do not suffer from the stepsize re-
duction faced by standard explicit methods. The family is based on the standard second or-
der orthogonal Runge-Kutta Chebyshev methods (ROCK2) for deterministic problems. The
convergence, and the mean-square and asymptotic stability properties of the methods are
analyzed. Numerical experiments, including applications to nonlinear SDEs and parabolic
stochastic partial differential equations are presented and confirm the theoretical results.

Keywords: Stiff SDEs, explicit stochastic methods, stabilized methods, orthogonal Runge-
Kutta Chebyshev, S-ROCK.

AMS subject classification (2010): 65C30, 60H35, 65L20

1 Introduction

We consider stiff systems of Itô stochastic differential equations for which standard explicit in-
tegrators – e.g., the well-known Euler-Maruyama method – face a sever step size restriction
[15, 13, 17]. Such problems are usually solved numerically by (semi)-implicit methods, which can
be expensive for large systems and difficult to implement for complex problems. Recently, a new
class of explicit stabilized methods called S-ROCK has been introduced for stiff problems [2, 4].
On the one hand, these methods (fully explicit) are as easy to implement as the Euler-Maruyama
method. On the other hand, their extended mean-square stability regions [15] (for suitable test
problems) make them much more efficient than classical explicit methods for stiff problems.

In this paper, we introduce a weak second order family of explicit stabilized integrators based
on the second order ROCK2 integrators for deterministic stiff problems. The main feature of the
algorithm is that it has an arbitrarily large mean-square stability region that grows quadratically
with respect to the number of drift function evaluations. For an efficient implementation, the
integrators are derivative free, and the number of diffusion function evaluations is independent
of the number of Wiener processes involved, similarly to the methods introduced in [28] . As an
additional feature, the proposed methods have a large asymptotic stability region close to the
origin.

Up to now, with the exception of [19], only weak first order explicit stabilized methods have
been proposed for stiff stochastic problems. In [19] an attempt to generalize the S-ROCK methods

1Mathematics Section, École Polytechnique Fédérale de Lausanne, Station 8, 1015 Lausanne, Switzerland,
Assyr.Abdulle@epfl.ch
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to weak second order has been proposed. However, this generalization involves the solution of
a large number of order conditions and the resulting methods have less favorable mean-square
stability properties than the methods proposed in this paper (see e.g., [2, 4]).

This paper is organized as follows. We recall in Section 2 the concept of stabilized methods for
stiff SDEs. In Section 3, we introduce our new weak second order explicit stabilized integrators
and analyze their weak order of convergence and stability properties. Finally, we present in Section
4 various numerical experiments, both for linear and non-linear stiff SDEs and for parabolic
stochastic partial differential equations (SPDEs), that illustrate the efficiency of the proposed
methods.

2 Stabilized stochastic methods

We briefly recall the notions of weak convergence, mean-square and asymptotic stabilities.

2.1 Weak stochastic integrators

We consider the Itô stochastic system of differential equations

dX(t) = f(X(t))dt +
m∑

r=1

gr(X(t))dWr(t), X(0) = X0, (1)

where X(t) is a random variable with values in R
N , f : R

N → R
N is the drift term, gr :

R
N → R

N , r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m are independent one-
dimensional Wiener processes. The drift and diffusion functions are assumed smooth enough,
Lipschitz continuous and to satisfy a growth bound in order to ensure a unique (mean-square
bounded) solution of (1) [6, 17]. For the numerical approximation of (1) we consider the discrete
map

Xn+1 = Ψ(Xn, h, ξn), (2)

where Ψ(·, h, ξn) : RN → R
N , Xn ∈ R

N for n ≥ 0, h denotes the timestep size, and ξn denotes a
random vector. The numerical approximation (2), starting from the exact initial condition X0 of

(1) is said to have weak order τ if for all functions1 φ : RN → R ∈ C
2(τ+1)
P (RN ,R),

|E(φ(Xn))− E(φ(X(tn)))| ≤ Chτ , (3)

and to have strong order τ if
E(|Xn −X(tn)|) ≤ Chτ , (4)

for any tn = nh ∈ [0, T ] with T > 0 fixed, for h small enough with constants C independent of h.

Remark 2.1. A well-known theorem of Milstein [23] allows to infer the global weak order from

the error after one step. Assuming that f, gr ∈ C
2(τ+1)
P (RN ,RN ) are Lipschitz continuous, that

the moments of the exact solution of (1) exist and are bounded (up to a sufficiently high order),

and that the local error bound for all φ ∈ C
2(τ+1)
P (RN ,R) and all initial values X(0) = X0 satisfies

|E(φ(X1))− E(φ(X(t1)))| ≤ Chτ+1, (5)

for all h sufficiently small, then the global error bound (3) holds. Here the constant C is again
independent of h. For the strong convergence we have the following result [24]. If

E|X1 −X(t1)| ≤ Chτ+1/2 and |E(X1)− E(X(t1))| ≤ Chτ+1, (6)

for all initial values X(0) = X0, then the global error bound (4) holds.

1Here and in what follows, Cℓ

P (R
N ,R) denotes the space of ℓ times continuously differentiable functions RN

→ R

with all partial derivatives with polynomial growth.
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The simplest method to approximate solutions to (1) is the so-called Euler-Maruyama method

Xn+1 = Xn + hf(Xn) +

m∑

r=1

gr(Xn)∆Wn,r, (7)

where ∆Wn,r ∼ N (0, h), r = 1, . . . m are independent Wiener increments. This method has
strong order 1/2 and weak order 1 for general a system of Itô SDEs [21]. Various higher order
weak methods have been considered in the literature [17, 25]. For example, weak second order
methods were proposed by Milstein [22, 23], Platen [26], Talay [30] and Tocino and Vigo-Aguiar
[33], and more recently Runge-Kutta type methods of Rössler [27]. We mention also the ex-
trapolation methods of Talay and Tubaro [31] and of [18] that combines methods with different
stepsizes to achieve higher weak order convergence. We recall here the weak second order Taylor
method known as the Milstein-Talay method [30] that will be useful in what follows.

X1 = X0 + hf(X0) +

m∑

r=1

gr(X0)∆Wr +

m∑

q,r=1

(gr(X0))
′gq(X0)Iq,r

+
h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(Xn)(g
r(X0), g

r(X0))
)
+

m∑

r=1

(f(X0))
′gr(X0)Ir,0

+

m∑

r=1

(
(gr(X0))

′f(X0) +

m∑

q=1

1

2
(gr(X0)

′′(gq(X0), g
q(X0))

)
I0,r, (8)

where Ir,0, I0,r, Iq,r denote the stochastic integrals defined by

Ir,0 =

∫ t1

t0

∫ t

t0

dWr(s)dt, I0,r =

∫ t1

t0

∫ t

t0

ds dWr(t), Iq,r =

∫ t1

t0

∫ t

t0

dWq(s)dWr(t). (9)

Notice that for notational brevity, we shall always write X1 and X0 in place of Xn+1 and Xn

when introducing an integrator. As given above, the method (8) is not practical for implemen-
tation: it contains derivatives which are expensive in general, and the stochastic integrals that
are difficult to simulate. We will discuss these issues in Section 3.1 where we derive a stabilized
explicit version of the Milstein-Talay method suitable for stiff problems.

2.2 Stability concepts for SDEs

In practice it is not only the order of convergence that guarantees an efficient approximation of
an SDE, but also the long-time behavior of the solution. Stability properties of the exact and the
numerical solutions are important to understand this behavior. Widely used characterizations of
stability for SDEs are the mean-square and the asymptotic stability (in the large) [6, 14]. The
former measures the stability of moments, the latter measures the overall behavior of sample
paths. In particular, we have the following definitions. The steady solution X ≡ 0 of (1) with
f(0) = gr(0) = 0, r = 1, . . . ,m is called stochastically asymptotically stable in the large if

lim
t→∞

|X(t)| = 0, with probability 1 for all |X0| < δ, (10)

mean-square stable if there exists δ > 0, such that

lim
t→∞

E(|X(t)|2) = 0 for all |X0| < δ. (11)
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2.2.1 The stochastic scalar test equation with multiplicative noise

To gain insight on the stability behavior of a numerical method, we consider a class of linear
scalar test problems widely used in the literature [29, 15, 9, 32] (see also [7, 8] where other test
equations have been considered recently),

dX = λXdt+ µXdW (t), X(0) = 1, (12)

in dimensions N = m = 1, with fixed complex scalar parameters λ, µ. The exact solution of (12),
given by X(t) = exp((λ+ 1

2µ
2)t+ µW (t)), is stochastically asymptotically stable if and only if

lim
t→∞

|X(t)| = 0, with probability 1 ⇐⇒ SAS
SDE :=

{
(λ, µ) ∈ C

2 ; ℜ
(
λ− 1

2
µ2

)
< 0

}
, (13)

and mean-square stable if and only if

lim
t→∞

E
(
|X(t)|2

)
= 0 ⇐⇒ (λ, µ) ∈ SMS

SDE :=
{
(λ, µ) ∈ C

2 ; ℜ(λ) + 1

2
|µ|2 < 0

}
. (14)

We name the domains SMS
SDE ⊂ SAS

SDE the mean-square and asymptotic stability domains of the
test equation (12), respectively.

2.2.2 Stability of numerical integrators for SDEs

We now look for conditions such that a numerical method (2) applied to the linear test problem
(12) yields numerically stable solutions. Similarly to the continuous case we say that the numerical
method (2) applied to (12) is said to be

• numerically asymptotically stable if limn→∞ |Xn| = 0 with probability 1;

• numerically mean-square stable if limn→∞ E(|Xn|2) = 0.

Applying a numerical method to the test SDE (12) usually yields [15] the following one step
difference equation

Xn+1 = R(p, q, ξn)Xn, (15)

where p = λh, q = µ
√
h, and ξn is a random variable (e.g. a Gaussian ξn ∼ N (0, 1) or a discrete

random variable). Once this difference equation is formulated, it is not difficult to define the
domains of mean-square and asymptotic stability of the numerical method applied to the test
SDE (12). In particular, for the numerical mean-square stability, we have [15]

lim
n→∞

E(|Xn|2) = 0 ⇐⇒ SMS
num :=

{
(p, q) ∈ C

2 ;E|R(p, q, ξ)|2 < 1
}
, (16)

and for the numerical asymptotic stability, assuming R(p, q, ξ) 6= 0 with2 probability 1 and
E((log |R(p, q, ξ)|)2) < ∞, it is shown in [15, Lemma 5.1] the equivalence

lim
n→∞

|Xn| = 0, with probability 1 ⇐⇒ SAS
num :=

{
(p, q) ∈ C

2 ; E(log |R(p, q, ξ)|) < 0
}
. (17)

A-stability We denote SAS
num,SMS

num, respectively, the above domains of asymptotic and mean-
square stability. A numerical integrator is called asymptotically A-stable if SAS

SDE ⊆ SAS
num and

mean-square A-stable if SMS
SDE ⊆ SMS

num. In addition if we restrict (p, q) ∈ R
2 then the domains of

stability SAS
num ∩ R

2,SMS
num ∩ R

2 will be called regions of stability.

2Notice that if R(p, q, ξ) = 0 with a non-zero probability, then (15) is clearly numerically asymptotically stable.
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3 Weak second order explicit stabilized methods

In this section we introduce the S-ROCK2 algorithm for systems of SDEs (1) in the most general
setting for non-commutative noise of arbitrary dimension m. The method is obtained by a
combination of an efficient weak second order Milstein-Talay scheme with a stabilization procedure
based on the second order deterministic stabilized Runge-Kutta method ROCK2.

3.1 Efficient derivative free explicit Milstein-Talay method

We briefly discuss the Milstein-Talay method (8) and explain an efficient implementation of (8)
that will be helpful to understand our new S-ROCK2 methods. First it is well-known that one
can replace the stochastic integrals Ir,0, I0,r, Iq,r by discrete random increments without altering
the weak order. Consider independent discrete random variables χl, ξl, l = 1 . . . m satisfying

P(χl = ±1) = 1/2, P(ξl = ±
√
3) = 1/6, P(ξl = 0) = 2/3, (18)

then both Ir,0 and I0,r can be replaced by h3/2ξr and Iq,r can be replaced by

Jq,r =





h(ξrξr − 1)/2 if q = r
h(ξqξr − χq)/2 if r < q
h(ξqξr + χr)/2 if r > q.

(19)

Thus the method (8) with discrete random increments reads

X̂1 = X0 + hf(X0) +
√
h

m∑

r=1

gr(X0)ξr +

m∑

q,r=1

(gr(X0))
′gq(X0)Jq,r

+
h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)

(20)

+

m∑

r=1

(
(gr(X0))

′f(X0) +
1

2

m∑

q=1

(gr(X0))
′′(gq(X0), g

q(X0)) + (f(X0))
′gr(X0)

)h3/2ξr
2

.

We next briefly discuss derivative free methods. First (see [17]), using additional Runge-Kutta
stages allows to remove f ′f, (gr)′f, f ′gr, f ′′(gr, gr) without altering the weak order two of (20),

K1 = X0 + hf(X0), K2 = K1 +
√
h

m∑

r=1

gr(X0)ξn,r,

X̃1 = X0 +
h

2

(
f(K2) + f(X0)

)
+

√
h

m∑

r=1

gr
(X0 +K1

2

)
ξr

+

m∑

q,r=1

(gr(X0))
′gq(X0)Jq,r +

h3/2

4

m∑

q,r=1

(gr(X0))
′′(gq(X0), g

q(X0))ξr. (21)

Next, we use the approximation

m∑

q,r=1

(gr(X0))
′gq(X0)Jq,r =

1

2

m∑

r=1

[
gr
(
X̄0 +

m∑

q=1

gq(X0)Jq,r

)
− gr

(
X̄0 −

m∑

q=1

gq(X0)Jq,r

)]
+O(h3),

(22)
that again does not alter the weak second order of the method and requires only 3 evaluations
of each function gr (see [28]). Notice that in contrast a naive finite difference approximation
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e.g., 1
2h

∑m
q,r=1

[
gr
(
x+ hgq(x)

)
− gr

(
x− hgq(x)

)]
Jq,r, would require 2m+1 evaluations of each

function gr at the points x, x± hgq(x). Finally, replacing the last term in (21) by

√
h

4

m∑

r=1

[
gr
(
X0 +

√
h

m∑

q=1

gq(X0)χq

)
ξq − 2

√
hgr(X0)ξq + g

(
X0 −

√
h

m∑

q=1

gq(X0)χq

)
ξq

]
, (23)

we obtain the scheme

K1 = X0 + hf(X0), K2 = K1 +
√
h

m∑

r=1

gr(X0)ξr,

X̄1 = X0 +
h

2

(
f(X0) + f(K2)

)
+

m∑

r=1

gr
(X0 +K1

2

)√
hξr (24)

+
1

2

m∑

r=1

(
gr
(
X0 +

m∑

q=1

gq(X0)Jq,r

)
− gr

(
X0 −

m∑

q=1

gq(X0)Jq,r

))

+
1

4

√
h

m∑

r=1

(
gr(X0 +

√
h

m∑

q=1

gq(X0)χq)− 2gr(X0) + g(X0 −
√
h

m∑

q=1

gq(X0)χq)
)
ξr.

Each step of the above scheme necessitates only five evaluations of the diffusion functions gr, r =
1, . . . ,m, independently of the dimension m. Efficient derivative free second order methods have
been introduced by Roessler and Komori [28]. The method (24) – a modification of the second
order method in [17, eq. (2.70) Chap. 14] – seems not to have appeared in the literature, in
particular the finite difference discretisation of the term (gr)′′(gq, gq) by (23) seems new. We give
here a direct proof of its weak order two that will be useful in what follows.

Lemma 3.1. Consider the system of SDEs (1) with f, gr ∈ C6
P (R

N ,RN ), Lipschitz continuous.
Then the derivative free Milstein-Talay method (24) for the approximation of (1) satisfies

|E(φ(X(nh))) − E(φ(X̄n))| ≤ Ch2, 0 ≤ nh ≤ T

for all φ ∈ C6
P (R

N ,R), where C is independent of n, h.

Proof. We show that |E(φ(X̄1)) − E(φ(X(t1)))| ≤ Ch3 and conclude by Remark 2.1. Since, we
already know [30] that |E(φ(X̂1)) − E(φ(X(t1)))| ≤ Ch3, where X̂1 is the weak Milstein-Talay
method (20), it remains to show that

|E(φ(X̄1))− E(φ(X̂1))| ≤ Ch3. (25)

We first observe that

h

2
(f(K2) + f(X0)) = hf(X0) +

h2

2

(
f ′(X0)f(X0) +

1

2

m∑

r=1

f ′′(X0)(g
r(X0), g

r(X0))
)

+

m∑

r=1

(f(X0))
′(gr(X0))

h3/2ξr
2

+ h2R1 + h5/2R2 +O(h3), (26)

where R1 =
1
4

∑m
r,s=1 f

′′(X0)(g
r(X0), g

r(X0))(ξrξs− δr,s) and δr,s is the Kronecker delta function.
As E(ξrξs) = δr,s we have E(R1) = 0. Observe that E(R2) = 0, as R2 contains random variables
of the form ξqξrξs whose expectation is zero for all q, r, s = 1, . . . ,m. Second, we see that

m∑

r=1

gr
(X0 +K1

2

)√
hξr =

m∑

r=1

(√
hgr(X0) +

1

2
h3/2(gr(X0))

′f(X0)
)
ξr + h5/2R3 +O(h3), (27)
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where E(R3) = 0. Third, we have

√
h

4

m∑

r=1

(
gr(X0 +

√
h

m∑

q=1

gq(X0)χq)− 2gr(X0) + g(X0 −
√
h

m∑

q=1

gq(X0)χq)
)
ξr

=
h3/2

4

m∑

q,r=1

(gr(X0))
′′(gq(X̄0), g

q(X0))ξr + h3/2R4 + h5/2R5 +O(h3), (28)

where R4 = 1
4

∑m
q,p=1(g

r(X0))
′′(gq(X̄0), g

p(X0))(χqχp − δq,p)ξr and E(R5) = 0 (this last random
variable contains again products of random variable of the form ξqξrξs). As E(χqχp − δq,p) we
have also that E(R4) = 0. Combining the estimates (22),(26),(27),(28) we obtain

X̄1 − X̂1 = h3/2R4 + h2R1 + h5/2(R2 +R3 +R5) +O(h3). (29)

Setting G =
∑m

r=1 g
r(X0)ξr and expanding φ(X̄1) = φ(X̂1)

′(X̄1 − X̂1) +O(h3), we deduce

φ(X̄1)− φ(X̂1) = φ′(X0 +
√
hG+ hf(X0) +O(h3/2))(X̄1 − X̂1) +O(h3)

= φ′(X0)(X̄1 − X̂1) + h2φ′′(X0)(G,R4) + h5/2φ′′(X0)(G,R1)

+ h5/2φ′′(X0)(f(X0), R4) +
h5/2

2
φ′′′(X0)(G,G,R4) +O(h3).

We notice that each of the above terms have expectancy zero (for the terms involving both G
and R4, we use the independence of the random variables χq, ξr). This shows (25) and the proof
is complete. �

3.2 Stabilization procedure

All the second order methods considered in this paper (drift implicit or explicit) applied to the
linear test problem (12) have a stability function (15) of the form

R(p, q, ξ) = A(p) +B(p)qξ + C(p)
q2

2

(
ξ2 − 1

)
, (30)

where ξ is either a Gaussian random variable N (0, 1) or a three points discrete random variable
(18). The numerical mean-square stability domain (16) for methods having the above stability
function can be characterized by [15]

SMS
num =

{
(p, q) ∈ C

2 ; |A(p)|2 + |B(p)q|2 + 1

2
|C(p)q4|2 < 1

}
, (31)

while the numerical asymptotic stability domain, assuming here a three points discrete random
variable is used3can be characterized by [15]

SAS
num =

{
(p, q) ∈ C

2 ;
∣∣∣
(
A(p) + C(p)q2

)2 − 3B2(p)q2
∣∣∣
∣∣∣A(p)− 1

2
C(p)q2

∣∣∣
4
< 1

}
. (32)

For example, for the weak Milstein-Talay method (20) and its derivative free version (24), we have

A(p) = 1 + p+
1

2
p2, B(p) = 1 + p, C(p) = 1. (33)

Since visualizing the domain of stability for (p, q) ∈ C
2 is difficult we restrict ourselves to study

the case where (p, q) ∈ R
2. It can be seen in Figure 1 that the weak Milstein-Talay method (20)

3Notice that for ξ ∼ N (0, 1) numerical asymptotic stability domains SAS
num are more difficult to characterize [15].
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Milstein-Talay method, see (33)

q²

p

-5 -4 -3 -2 -1 0 1
0

1

2

3

4

Figure 1: Mean-square stability region (dark gray) and asymptotic stability region (dark and
light grays) of the explicit second order Milstein-Talay method with stability function (30).

has restricted mean-square and asymptotic stability regions. This is expected for classical explicit
methods and our goal is to introduce a stabilization procedure that permits to enlarge them signif-
icantly. We first define for a > 0 the following “portion of the true mean-square stability region”

SMS
a = {(p, q) ∈ (−a, 0) × R ; p+

1

2
|q|2 < 0}, (34)

and define for a given method

ℓ = sup{a > 0 ; SMS
a ⊂ SMS

num}, d = sup{a > 0 ; (−a, 0) × {0} ⊂ SMS
num}, (35)

where d is the size of the stability domain along the deterministic p-axis (observe that d ≥ ℓ). For
the Milstein-Talay method we have ℓ = 0, d = 2. In contrast the S-ROCK2 methods (see (47),
Section 3.3) have values ℓ, d increasing quadratically with the stage parameter s. In turn, the
ratio of stability versus work increases linearly, while for classical explicit methods it is bounded.

Weak order one S-ROCK methods [4] For ordinary differential equations (ODEs),

dX(t)

dt
= f(X(t)), X(0) = X0, (36)

a well-know stabilization procedure for the Euler method has been proposed in [34]. Its construc-
tion is based on the classical Chebyshev polynomials Ts(cos x) = cos(sx). Given an integer s ≥ 1,
the number of stages, and a damping parameter η ≥ 0, we define the following Runge-Kutta
method (first order Chebyshev method) with step size h by the following explicit recursion where

K0 = X0, K1 = X0 + h
ω1

ω0
f(K0),

Kj = 2h
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, . . . , s (37)

X1 = Ks,

ω0 = 1+ η
s2
, ω1 =

Ts(ω0)
T ′

s(ω0)
. Applied to the linear test problem dX(t)/dt = λX(t) the method (37)

gives X1 = Rs(p)X0, where p = λh and where Rs(p), called the stability function (polynomial)
of the method, is given by Rs(p) = Ts(ω0 + ω1p)/Ts(ω0). We emphasize that (37) denotes in fact
a family of methods indexed by the stage number s. A crucial property of the methods (37) is

|Rs(p)| ≤ 1 for all p ∈ (−ds, 0), (38)

with ds ≃ C · s2, for s large enough, where C depends on the damping parameter η (for η = 0,
C = 2). Thus the length ds of the stability domain

S := {p ∈ C; |R(z)| ≤ 1} (39)
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of the methods increases quadratically with s on the negative real axis. This quadratic growth of
the stability domain is the key feature of such methods compared to standard explicit integrators.

The idea for stabilizing the Euler-Maruyama (7) is now simply to damp its stability function
R(p, q, ξ) = 1+p+ qξ, obtained by applying (7) to (12) using Rs(p) (with a value of the damping
η optimized for each s, see [4]). The corresponding Runge-Kutta type scheme reads [4]

K0 = X0, K1 = X0 + h
ω1

ω0
f(K0),

Kj = 2h
Tj−1(ω0)

Tj(ω0)
f(Kj−1) + 2ω0

Tj−1(ω0)

Tj(ω0)
Kj−1 −

Tj−2(ω0)

Tj(ω0)
Kj−2, j = 2, . . . , s

X1 = Ks +
m∑

r=1

gr(Ks)∆Wr. (40)

The method (40) will be denoted by S-ROCK(1/2,1). Another method of strong order 1 and
weak order 1 has been considered in [4]. A derivative free version, denoted S-ROCK(1,1), can be
obtained by replacing the last line in (40) by

X1 = Ks +
m∑

r=1

gr(Ks)∆Wr +
1

2

m∑

r=1

(
gr
(
Ks +

m∑

q=1

gq(Ks)Iq,r
)
− gr

(
Ks −

m∑

q=1

gq(Ks)Iq,r
))

,

where Iq,r are defined in (9) and by considering a larger damping η. It turns out that S-
ROCK(1/2,1) and S-ROCK(1,1) include a portion of the true mean-square stability region that
scales like ℓs ≃ 0.33 · s2 and ℓs ≃ 0.19 · s2, respectively.

Second order stabilization Similarly as for the weak order one S-ROCK method, the idea is
to stabilize the weak second order method (24). We start with a deterministic stabilized second
order Chebyshev method. Recall that the derivation of optimal stability functions suitable for the
stabilization of second order (deterministic method) is a non trivial task and various strategies
have been proposed [20, 34, 5, 1]. We choose here the second order orthogonal Runge-Kutta
Chebyshev methods (ROCK2) introduced in [5]. The idea is to search for a stability polynomial

Rs(p) = w2(p)Ps−2(p), (41)

where Ps−2(p) is a member family of polynomials {Pj(z)}j≥0 orthogonal with respect to the

weight function w2(x)2√
1−x2

. The polynomial Ps−2 has degree s− 2, while w2 is a positive polynomial

of degree two (depending on s). One constructs the polynomials w2 such that Rs satisfies [5]

Rs(p) = 1 + p+
p2

2
+O(p3), (42)

together with a large stability interval (38), increasing as ≃ 0.81 · s2 along the negative real axis.
Thanks to the recurrence relation of the orthogonal polynomials {Pj(z)}j≥0, a method of order
two for (36) based on a recurrence formula can be constructed 4

K0 = X0, K1 = K0 + µ1hf(K0),

Kj = µjhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s− 2,

Ks−1 = Ks−2 + 2τhf(Ks−2),

X1 = Ks−2 +

(
2σ − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−1). (43)

4The two last stages of the method are written is a slightly different way as in the ROCK2 method [5, Equ.
(26-27)] as (43) is more convenient for an extension to stochastic integrators. We emphasize that is has the same
order and stability properties as the ROCK2 method [5, Equ. (26-27)].
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Figure 2: Comparison of polynomials involved in ROCK2 and S-ROCK2 for s = 13. Polynomials
Rs,α (solid lines), Ps−2(αp) (dashed lines). Right picture: Ps(αp) (dotted lines).

The parameters µj, kj (depending on s) are obtained from the three-term recurrence relation [5,
eq. (24)-(25)] of the orthogonal polynomials {Pj(z)}j≥0, while σ, τ (that also depend on s) satisfy
w2(p) = 1 + 2σp + τp2 and are chosen such that (42) holds.

In preparation for the extension of the ROCK2 methods to stochastic problems, we now
explain a novel strategy to introduce damping in the scheme (43). The idea is to consider the
following scheme for a fixed scalar parameter α.

K0 = X0, K1 = K0 + αµ1hf(K0),

Kj = αµjhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s− 2,

Ks−1 = Ks−2 + 2ταhf(Ks−2)

X1 = Ks−2 +

(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−1). (44)

Notice that for α = 1, we recover the original ROCK2 method (43). Applied to the linear test
problem dX/dt = λX,X(0) = X0 this method yields (setting p = hλ and X0 = 1)

X1 = (1 + 2σαp+ ταp
2)Ps−2(αp) =: Rs,α(p). (45)

Lemma 3.2. The method (44) has second order for the system of ODEs (36) for any α provided

σα =
1− α

2
+ ασ, τα =

(α− 1)2

2
+ 2α(1 − α)σ + α2τ. (46)

Proof. Recall that for second order deterministic methods, standard Runge-Kutta order condi-
tions for linear and nonlinear problems are identical. From (42) we deduce the relation P ′

s−2(0) =
1− 2σ and 1

2P
′′
s−2(0) =

1
2 − τ − 2σ(1 − 2σ). Imposing the second order condition (45) yields

(1 + 2σαp+ ταp
2)(1 + P ′

s−2(0)αp +
1

2
P ′′
s−2(0)(αp)

2 +O(p3)) = 1 + p+
p2

2
+O(p3),

which is equivalent to the relations (46). �

In Figure 2, we plot, for s = 13, the polynomials Ps−2(αp) and Rs,α(p) (defined in (45))
involved in the standard ROCK2 ( α = 1, left picture) method and the S-ROCK2 method
(α ≃ 1.615 right picture) introduced in the next section. It can be seen that increasing α reduces
the amplitude of the oscillations of Rs,α(p). The appropriate choice of α is discussed below.

3.3 The S-ROCK2 methods

We introduce here our new explicit stabilized integrator, obtained by stabilizing the Milstein-
Talay method (24) with (44).
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S-ROCK-2 integrator of weak order two Given X0, computed X1 as follows.

K0 = X0, K1 = K0 + αµ1hf(K0),

Kj = µjαhf(Kj−1)− νjKj−1 − κjKj−2, j = 2, · · · , s,

K∗
s−1 = Ks−2 + 2ταhf(Ks−2) +

√
h

m∑

r=1

gr(Ks)ξr,

X1 = Ks−2 +
(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(K∗

s−1) +
√
h

m∑

r=1

gr(Ks−1)ξr,

+
1

2

m∑

r=1

(
gr
(
Ks +

m∑

q=1

gq(Ks)Jq,r

)
− gr

(
Ks −

m∑

q=1

gq(Ks)Jq,r

))

+
1

4

√
h

m∑

r=1

(
gr(Ks +

√
h

m∑

q=1

gq(Ks)χq)− 2gr(Ks) + g(Ks −
√
h

m∑

q=1

gq(Ks)χq)
)
ξr, (47)

where α = 1/(2P ′
s−1(0)) and σα, τα are given by (46). Here, the constants µj, νj , κj , σ, τ depend

on s and are the same as for the standard deterministic ROCK2 integrator (43).

work stability
integrator #f #gr #random ds ℓs

s steps of Milstein-Talay (24) 2s 5s 2ms 2s 0
one step of S-ROCK2 (47) s+ 2 6 2m ≃ 0.42(s+ 2)2 ≃ 0.42(s+ 2)2

Table 1: Computational complexity for an SDE in dimensions N (drift) and m (diffusion).

Numerical computations show that the S-ROCK2 method includes a portion of the true
mean-square stability region SMS

ℓ that grows with the stage number as ℓS−ROCK2 ≃ 0.42(s+2)2.
The computational complexity of one step of the S-ROCK2 method with stepsize h is reported
in Table 1 and compared to s steps with stepsize h/s of the weak second order Milstein-Talay
method (24). As observed, one step of the S-ROCK2 method (47) requires at each step #f = s+2
evaluations of the drift function, #gr = 6 evaluations of the diffusion functions gr, r = 1, . . . ,m,
and #random = 2m simulations of independent discrete random variables, independently of the
dimensions N,m of the considered SDE. The main feature of our S-ROCK2 integrators is that
the mean-square stability region sizes ℓs, ds grow quadratically with respect to the computational
work #f +#gr, while ℓs = 0 and ds grows only linearly for the standard explicit methods.

Remark 3.3. (Diagonal noise) When N = m and (g1(x), . . . , gN (x)) = diag(g1(x
1), . . . , gN (xN ))

is a diagonal matrix where gk(x) depends only on xk, one can replace the two last lines of (47) by

G(Ks) =
(
G1(Ks,1), . . . , GN (Ks,N )

)T
where Gk(y) =

1

2

(
gk
(
y+ gk(y)Jk,k

)
− gk

(
y− gk(y)Jk,k

))
+

1

4

(√
hgk(y +

√
hgk(y))− 2

√
hgk(y) +

√
hgk(Ks −

√
hgk(y))

)
ξ.

We next prove that the method (47) has indeed weak second order.

Theorem 3.4. Consider the SDE (1) with f, gr ∈ C6
P (R

N ,RN ), Lipschitz continuous. Then the
S-ROCK2 method (47) for the approximation of (1) satisfies

|E(φ(X(nh))) − E(φ(Xn))| ≤ Ch2, 0 ≤ nh ≤ T

for all φ ∈ C6
P (R

N ,R), where C is independent of n, h.
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Proof. Noticing that Kj = X0 + cjhf(X0) +O(h2) and using Lemma 3.2 yields

Ks−2 +
(
2σα − 1

2

)
hf(Ks−2) +

1

2
hf(Ks−2 + 2ταhf(Ks−2)) = Xn +

(
hf +

h2

2
f ′f

)
(Xn) +O(h3).

The choice α = 1/P ′
s−1(0) implies Ps−1(αp) = 1+ p

2 +O(p2) which yields Ks−1 = X0+
h
2f(Xn)+

O(h2). Using in addition that Ks = X0 + O(h), we deduce X1 − X̄1 = h2R1 + h5/2R2 + O(h3),
where X̄1 is defined by the derivative free Milstein-Talay method (24) and E(R1) = E(R2) =
E(R1ξr) = 0 for all r. We conclude using Remark 2.1, similarly to the end of the proof of Lemma
3.1. �

Remark 3.5. Considering independent Gaussian variables ξr ∼ N (0, 1) the strong order of
the integrator (47) becomes one in the case of a commutative noise. In the general case of
non-commutative noise, if one replaces the discrete random variables Jl,k by the usual multiple
stochastic integrals (9), then (47) becomes of strong order one.

Stability analysis We now focus on the mean-square and asymptotic stability properties of
our new explicit weak second order integrator.

Proposition 3.6. Consider the S-ROCK2 method (47) applied to the linear test equation (12).
The numerical asymptotic stability domain SAS

num defined in (17) is given by (32) and the numerical
mean-square stability domain SMS

num defined in (16) is given by (31) where the polynomial functions
A(p), B(p), C(p) are defined by

A(p) = Ps−2(αp)(1 + 2σαp+ ταp
2), B(p) = Ps−1(αp) +

p

2
Ps(αp), C(p) = Ps(αp). (48)

Proof. Follows from noticing that applied to the linear test problem (12), the method (47) yields
(30) with A(p), B(p), C(p) given by (48). �

In Figure 4 we plot asymptotic (light gray) and mean-square (dark gray) stability regions
for different values of the stage number s. In all cases, we observe the inclusions SMS

num ∩ R
2 ⊂

SAS
num ∩ R

2. The dotted lines where p < 0 correspond to the boundary of the true mean-square
stability region, while the dotted lines where p > 0 (see bottom pictures) correspond to the
boundary of the true asymptotic stability region (given by p + |q|2/2 = 0 and p − q2/2 = 0,
respectively). In the bottom pictures we zoom close to the origin and observe that the asymptotic
stability region contains the mean square stability region. Furthermore, a large portion of the
true asymptotic stability region is included in the numerical one close the the origin, {(p, q) ∈
R
2 ; |p| ≤ 1, |p| < |q| < 2.7} ⊂ SAS

num.
We briefly comment the ideas behind the definition of the scheme (47) that allow favorable

mean-square stability properties. Recall that the deterministic stability functions A(p) oscillates
around the negative real axis (see top left picture in Figure 2). If the absolute value of the local
maxima and minima of A(p) are close to one, then in view of (31) we will have gaps in the mean-
square stability domains (in the regions where A(p) is bounded). We therefore have to damp
this term by introducing and tuning the value of α as explained before in Section 3.2. Next it
can be observed that the polynomials Ps−2(p), Ps−1(p), Ps(p) oscillates around zero with a small
amplitude of size O(p−2) along the real axis. These polynomials are thus good candidates to
damp the Milstein term which corresponds to the q2 term in the stability function (30). However,
simply working with the polynomials Ps−2(p) leaves a gap in the mean-square stability regions
close to the origin near to the extrema of Ps−2(p). For this reason, we consider instead the
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Figure 3: Comparison of S-ROCK2 (solid lines) and the weak order one S-ROCK methods (1, 1)
(dashed lines), (12 , 1) (dotted lines). Left picture: optimal stage parameter s as a function of

√
ℓ,

where ℓ is given by (35). Right picture: stability efficiency c(s) = ℓs/s
2.

polynomial Ps(p) to damp the Milstein term which has the advantage that P ′
s(0) > P ′

s−2(0)
(faster decay near the origin). The additional advantage of considering simultaneously the three
polynomials Ps−2, Ps−1, and Ps is that their extrema close to the origin do not coincide. This
permits to avoid a gap in the mean-square stability domain close to the origin. The polynomials
Ps−1, Ps (corresponding to the internal stages Ks−1,Ks in (47)) are obtained by computing two
additional stages compared to the deterministic ROCK2 (44) method.

3.4 Comparison with other stiff integrators

Comparison with S-ROCK method In Figure 3 we plot the length ℓ defined in (35) of
the portion of the true mean-square stability region SMS

ℓ as a function of the number of stages
used. As we can see the behaviour of the S-ROCK2 method is ℓ ≃ Cs2 similarly to the S-
ROCK methods of weak order 1 discussed in Section 3.2. Furthermore, once can also see that
the S-ROCK2 method is actually more efficient from a stability point of view, since the stability
efficiency factor c(s) = ℓs/s

2 converges numerically to about 0.42 for large s, which is larger than
the S-ROCK(1/2,1/2) and S-ROCK(1,1) values of 0.33 and 0.19, respectively.

Comparison with a class of diagonally drift-implicit Runge-Kutta methods [11] We
have already discussed the asymptotic and mean-square stability properties of the Milstein-Talay
method (24), which has restricted mean-square and asymptotic stability regions (see Figure 1).
We next consider the weak second-order diagonally implicit Runge-Kutta method (DDIRDI5)
derived in [11] with the following aims: reducing the computational cost of a fully drift-implicit
method such as the modified θ-Milstein method [3], and improving the stability domains compared
to explicit methods. For these method we have (see Fig. 5 for an example with c1 = c2 = 1)

A(p) = 1 + p
1 + (1/2 − c1 − c2)p

(1− c1p)(1 − c2p)
, B(p) = 1 + p

1− (c1 + c2)p/2

(1− c1p)(1 − c2p)
, C(p) = 1. (49)

Even though the mean-square stability domain has been improved close to the deterministic p
axis, it can be seen that this method does not cover a portion of the true mean square stability
region. Here as for the explicit Milstein-Talay method, we have ℓ = 0. This can be seen in Figure

5, where SMS
num ∩ R

2 (dark gray) is strictly contained below the curve p +
1

2
|q|2 = 0 (see dashed

lines), which is the boundary of the true mean-square stability region. In fact, the proposition
below shows that ℓ = 0 for the the whole class of integrators satisfying (49).

Proposition 3.7. Consider a weak order two integrator with a stability function of the form (30)
when applied to the linear test equation (12). A necessary condition for ℓ 6= 0 in (35) is

1 + 2B′′(0) − 4C ′(0) ≤ 0. (50)
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Figure 4: Mean-square stability regions (dark gray) and asymptotic stability regions (dark and
light grays) of S-ROCK2 for s+ 2 = 8, 15, 30, and 127 stages, respectively.

In particular, for the class of integrators with stability function given by (49), we have ℓ = 0 for
all c1, c2 ≥ 0.

Proof. Using that E|R(p, q, ξ)|2 can be written as an increasing function of q2 (see (31)), we have

sup
(p,q)∈SMS

ℓ

E(|R(p, q, ξ)|2) = sup
p∈[−ℓ,0)

E(|R(p,
√

−2p, ξ)|2).

Using the weak order two assumption, we have A(p) = 1+p+p2/2+O(p3) andB(p) = 1+p+O(p2),
a Taylor expansion yields E(|R(p,

√−2p, ξ)|2) = 1 + (4C ′(0) − 2B′′(0) − 1)p3 + O(p4) which is
smaller than 1 for small −p > 0 only if (50) holds. For the class of integrators (49), we have
1 + 2B′′(0)− 4C ′(0) = 1 + 2(c1 + c2) > 0, so the condition (49) is violated. �

Remark 3.8. Notice that if C(p) = 1, then the numerical mean-square stability domain is
bounded in the q direction by |q|4/2 < 1. This can be observed in Figure 5 where the mean-
square stability region SMS

num ∩ R
2 (dark gray) of the DDIRDI5 method is bounded vertically by

|q|2 <
√
2.

Comparison with a family of weak second order explicit integrators [19] A family of
explicit stabilized integrators for stiff Stratonovitch systems of SDEs has been introduced recently
in [19]. Although the stability domain of these methods grows quadratically along the p-axis, with
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Figure 5: Mean-square stability region (dark gray) and asymptotic stability region (dark and light
grays) of the implicit DDIRDI5 with stability function (30) given by (49) (compare with Fig. 4).

ds ≃ 0.54s2 (according to the left pictures in [19, Fig. 3]), it can be observed that the mean-square
stability domain contains uncontrolled gaps for |q|2 >

√
2 and we have ℓs ≤

√
2.

4 Numerical experiments

We now present various different numerical experiments with our newly constructed methods. In
Section 4.1 we confirm the order of weak convergence of the S-ROCK2 method on two different
non-linear problems. Then, in Section 4.2, we test the performance of the S-ROCK2 method for
a non-linear stiff problem and compare it to other weak second order methods, while in Section
4.3 we present numerical results for a stochastic PDE arising from Neurosciences.

4.1 Weak convergence rates

We start our numerical investigations by considering two non-stiff non-linear SDEs. The first one
is

dX(t) =

(
1

4
X(t) +

1

2

√
X(t)2 + 1

)
dt+

√
X(t)2 + 1

2
dW (t), X(0) = 0. (51)

The exact solution is X(t) = sinh(t/2 +W (t)/
√
2), it satisfies E

(
(arcsinhX(t))2

)
= t2/4 + t/2.
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Figure 6: S-ROCK2 method with s = 13 stages (solid lines) and s = 104 (dashed lines).
Weak error at final time T = 1 versus the stepsize h for problems (51), (52), where 1/h =
1, 2, 3, 4, 6, 8, 11, 16.

The second test problem is another nonlinear SDE [11] with 10 independent driving Wiener
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processes,

dX(t) = X(t)dt+
10∑

j=1

a−1
j

√
X(t) + b−1

j dWj(t), X(0) = 1,

with non-commutative noise, where the values of the constants aj, j = 1, . . . , 10 are respectively
10, 15, 20, 25, 40, 25, 20, 15, 20, 25, and the values of bj, j = 1, . . . , 10 are respectively 2, 4, 5, 10, 20,
2, 4, 5, 10, 20. For this problem by applying Itô’s formula to φ(x) = x2, taking expectations and
using the fact that E(X(t)) = et, one calculates

E(X2(t)) = (−68013 − 458120et + 14926133e2t)/14400000. (52)

We apply the S-ROCK2 method to both problems (51) and (52) and approximate respectively
E
(
(arcsinhX(T ))2

)
and E(X2(T )) up to the final time T = 1 using 109 realisations and different

step sizes h. We plot the results in Figure 6 and observe that the S-ROCK2 method converges
with weak second order for both problems, which confirms the statement of Theorem 3.4. We
plot the results for s = 13 (solid lines) and s = 104 stages (dashed lines) using the same set
of generated random numbers. The fact that the obtained curves are nearly identical illustrates
that the error constants of the S-ROCK2 methods are nearly independent of the stage number
of the integrator, similarly to the standard deterministic ROCK2 integrator (43).

4.2 A nonlinear stiff problem

parameters: ε = 10−3, λ = −4
method stepsize work E(X(1)2)− 1 E(|X(1)|)− 1

Milstein-Talay h = 1/25 #f = 500,#g = 1250 ∞ (unstable) ∞ (unstable)
Milstein-Talay h = 1/30 #f = 600,#g = 1500 -8.5e-3 (stable) -8.5e-2 (stable)
SROCK2(s = 4) h = 1 #f = 60,#g = 60 -5.1e-10 (stable) -2.7e-10 (stable)

parameters: ε = 1, λ = −10−2

method stepsize work E(X(1)2)− 1 E(|X(1)|)− 1
Milstein-Talay h = 1/280 #f = 5600,#g = 14000 ∞ (unstable) ∞ (unstable)
Milstein-Talay h = 1/300 #f = 6000,#g = 15000 0.e0 (stable) 0.e0 (stable)
SROCK2(s = 7) h = 1/4 #f = 360,#g = 240 -1.1e-15 (stable) -5.6e-16 (stable)

parameters: ε = 1, λ = −10−3

method stepsize work E(X(1)2)− 1 E(|X(1)|)− 1
Milstein-Talay h = 1/2800 #f = 56000,#g = 140000 ∞ (unstable) ∞ (unstable)
Milstein-Talay h = 1/3000 #f = 60000,#g = 150000 0.e0 (stable) 0.e0 (stable)

SROCK2(s = 23) h = 1/4 #f = 1000,#g = 240 -4.0e-12 (stable) -2.0e-12 (stable)

Table 2: Stability efficiency. Work versus stiffness for the second order Milstein-Talay method
(24) and the S-ROCK2 methods applied to the nonlinear SDE (53). Averages over 106 samples.

To illustrate the advantage of including a whole “portion” of the mean-square stability region
of the linear test problem (12) we consider the following nonlinear scalar problem with a one-
dimensional noise,

dX(t) = −λX(t)(1 −X(t))dt− µX(t)(1 −X(t))dW (t), X(0) = 0.95, (53)

on time interval (0, T ) of length T = 10, which is derived from a population dynamics model
[12, Chap. 6.2] (see also [4, Example 5.2]). Notice that if one linearizes this problem close to
the steady solution X(t) = 1, it yields the linear test problem (12). Here, the initial condition
X(0) = 0.95 is chosen close to this stationary solution. We consider the parameters λ < 0, µ =√
−λ(2− ε) for which the linear test problem (12) is asymptotic and mean-square stable because
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λ+ |µ|2/2 = −ε/2 < 0. Recall that for this linear test problem, the S-ROCK2 method is mean-
square stable provided |λ|h < ℓs, as studied in Section 3.3, while the Milstein-Talay method (20)
or (24) is mean-square stableonly if h is small enough. We consider two cases.

1. Case ε ≪ 1 We consider first the case where λ < 0 is a constant of moderate size, e.g. λ = −4,
while ǫ > 0 is small. Considering the linear test equation (12), the S-ROCK2 method is
stable provided h|λ| < ℓs, and the stepsize h = 1 can be used for s ≥ 4 independently of the
smallness of ǫ. In contrast, for the weak second order Milstein-Talay method, a calculation
shows that the mean-square stability condition becomes h|λ| ≤ ε/4+O(ε2), and the number
of steps needed for a stable integration grows like O(4λε−1) as ε → 0.

2. Case |λ| ≫ 1 We next consider the case where ε = 1 and |λ| ≫ 1. The S-ROCK method
is stable provided h|λ| < ℓs ≃ Cs2 and the minimal number of steps needed for a stable
integration grows like O(

√
|λ|) as λ → ∞. In contrast, for the weak second order Milstein-

Talay method, a calculation yields the mean-square stability condition h|λ| ≤ 2, and the
number of steps of the method for a stable integration grows like O(|λ|) as λ → −∞.

We observe in Table 2 the spectacular improvement of the efficiency when switching from the
weak second order Milstein-Talay method (24) to the S-ROCK2 methods applied to the nonlinear
SDE (53). Indeed, considering three different sets of parameters λ, ǫ, we observe in all cases that
the S-ROCK2 allows one to use a much larger timestep that for the Milstein-Talay method. This
significantly reduces the computational cost of each sample, measured in terms of the number
of evaluations of the drift and the noise (see #f,#gr). We highlight that for the considered
parameters ε, λ a sever step size restrictions similar to the explicit Milstein-Talay method would
be obtained for the drift-implicit integrators DDIRDI5 of [11] as discussed in Section 3.4, because
their mean-square stability domain is bounded on the q axis by |q|2 ≤

√
2 (see Rem. 3.8 and Fig. 5).

4.3 Electric potential in a neuron

We consider here the problem of the propagation of an electric potential V (x, t) in a neuron [35].
This potential is governed by a system of non-linear PDEs called the Hodgkin-Huxley equations
[16], but in certain ranges of values of V, this system of PDEs can be well approximated by the
cable equation [35].In particular, if the neuron is subject to a uniform input current density over
the dendrites and if certain geometric constraints are satisfied, then the electric potential satisfies
the following linear cable equation with uniform input current density.

∂V

∂t
(x, t) = ν

∂2V

∂x2
(x, t) − βV (x, t) + σ(V (x, t) + V0)Ẇ (x, t), 0 ≤ x, t ≤ 1, (54)

∂V

∂x
(0, t) =

∂V

∂x
(1, t) = 0, t > 0, V (x, 0) = V0(x), 0 ≤ x ≤ 1,

where Ẇ (x, t) = ∂2

∂x∂tw(x, t) is a space-time white noise meant in the Stratonovich sense. Here
we have assumed that the distance between the origin (or soma) to the dendritic terminals is 1,
and that the soma is located at x = 0. Furthermore, the white noise term is describing the effect
of the arrival of random impulses and the multiplicative noise structure depicts the fact that the
response of the neuron to a current impulse may depend on a local potential [35]. The quantity
of interest is the threshold time

τ = inf{t > 0;V (t, 0) > λ}, (55)

since when the potential at the soma (somatic depolarization) exceeds the threshold λ the neuron
fires an action potential. The SPDE (54) yields, after space discretization with finite differences
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(a) ∆t = 1/50, ∆x = 1/150, fixed t.
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(b) ∆t = 1/50, ∆x = 1/200, fixed t.
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(c) ∆t = 1/50, ∆x = 1/200. Solution V (x, t) as
a function of x, t.
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(d) ∆t = 1/50, ∆x = 1/200, fixed x = 0.

Figure 7: Samples of realisations of the SPDE (54) (discretized in space) using S-ROCK2 with
s + 2 = 8 stages (resp. 11) for ∆x = 1/150 (resp. ∆x = 1/200). Figures (a),(b): solutions as
functions of x at fixed times t = 0, 0.2, 0.4, . . . , 1.0 (increasing with time, from bottom to top).
Figure (d): solution as a function of t for x = 0.
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Figure 8: Density plots of the threshold time (55) in the SPDE (54) for various space mesh
sizes ∆x = 1/100, 1/200, 1/400. The four curves in each plot correspond respectively to ∆t =
1/50, 1/100, 1/200, 1/400 (the variances decrease when ∆t decreases).

[10] the following stiff system of SDE where V (xi, t) ≈ ui, with xi = i∆x, ∆x = 1/N ,

dui = ν
ui+1 − 2ui + ui−1

∆x2
dt− βuidt+ σ

ui + V0√
∆x

◦ dwi, i = 0, . . . , N, (56)

where the Neumann condition imposes u−1 = u0 and uN+1 = uN . Here w0, . . . wN are indepen-
dent standard Wiener processes, and ◦dwi indicates Stratonovich noise. Converting this equation
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into an equivalent system of Itô SDEs, we obtain

dui = ν
ui+1 − 2ui + ui−1

∆x2
dt+

( σ2

∆x
(ui + V0)− βui

)
dt+ σ

ui + V0√
∆x

dwi, i = 0, . . . , N. (57)

We consider the initial condition V0(x) = −70 + 20 cos(5πx)(1 − x) and the constants ν = 10−2,
σ = 4 · 10−3, β = 1, V0 = 10, λ = −40. We consider the time interval (0, T ) with T = 1. Notice
that the noise in (57) is in diagonal form, so we can apply Remark 3.3. We now plot the empirical
histograms for the threshold time τ calculated over 107 realisations of (57).
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