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Abstract: This paper introduces a new framework to study the asymptotical behavior
of the empirical distribution function of Gaussian vector components, whose correlation
matrix Γ(m) is dimension-dependent. Hence, by contrast with the existing literature,
the vector is not assumed to be stationary. Rather, the covariance matrix Γ(m) should
be close enough to the identity matrix as m grows to infinity. Markedly, under this
assumption, the convergence result depends on Γ(m) only through the sequence γm =
m−2 ∑

i 6=j Γ
(m)
i,j . This result recovers some of the previous results for stationary long-

range dependencies while it also applies to various non-stationary cases, for which the
most correlated variables are not necessarily next to each other. Finally, we present an
application of this work to the multiple testing problem, which was the initial statistical
motivation for developing such a methodology.
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1. Introduction

1.1. Presentation of the main result

Let us consider {Y (m),m ≥ 1} a triangular array for which each Y (m) = (Y
(m)
1 , . . . , Y

(m)
m ) is

a m-dimensional Gaussian vector, defined on (Ωm,Fm,Pm), with zero mean and covariance

matrix Γ(m). For the sake of simplicity, assume that each Y
(m)
i is of variance 1, that is,

Γ
(m)
i,i = 1 for all i. Denote Φ(z) = P(Z ≥ z), z ∈ R, Z ∼ N (0, 1), the upper tail distribution

function of a standard Gaussian variable, and consider the empirical cumulative distribution
function:

F̂m(t) = m−1
m∑
i=1

1
{

Φ(Y
(m)
i ) ≤ t

}
, t ∈ [0, 1]. (1)

In this paper, the motivation for studying the asymptotic properties of (1) in a possibly non-
stationary setting is the multiple testing problem, which pertains to the recent and flourishing
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field of statistics for high-dimensional data. In such data, while the dimension m can be very
large (typically, several thousands), the matrix Γ(m) is generally complex and not-necessarily
locally structured (e.g., spiked correlation matrices, see Johnstone, 2001; Friguet et al., 2009).

To study (1), let us introduce the following quantities:

γm = m−2
∑
i 6=j

Γ
(m)
i,j ; (2)

rm =
(
m−1 + |γm|

)−1/2
. (3)

In a nutshell, our main result is as follows: by assuming, when m→∞,

r2m
m2

∑
i 6=j

(
Γ
(m)
i,j

)2
→ 0; (vanish-secondorder)

r4+ε0m

m2

∑
i 6=j

(
Γ
(m)
i,j

)4
→ 0, for some ε0 > 0; (H1)

mγm → θ, for some θ ∈ [−1,+∞]; (H2)

the following weak convergence holds (in the Skorokhod topology):

rm(F̂m − I) Z, as m→∞, (4)

where I(t) = t and Z is some continuous Gaussian process on [0, 1] with a distribution only
function of θ. Therefore, under our assumptions, the asymptotic behavior of F̂m solely depends
on the sequence (γm)m. In particular, the convergence rate rm is of order m1/2 when mγm is
bounded (i.e., θ < +∞) and is of smaller order otherwise.

1.2. Organization of the paper

In Section 2, we derive an expansion of the covariance function of F̂m by using the Hermite
polynomials and we show that (vanish-secondorder) ensures that this expansion “stops at or-
der 1 asymptotically”. The main theorem is precisely stated in Section 3 together with many
illustrative examples, showing that our assumptions cover many standard models of correla-
tion matrices (e.g., equi-correlated, long-range, spiked correlations, sample correlations). This
new methodology is then applied to the multiple testing problem in Section 4. The proof of
the main result is presented in Section 5; it mainly relies on central limit theorems for mar-
tingale arrays and on a suitable tightness criterion. To make the proof as clear as possible,
some technical and auxiliary results are deferred to appendices.

1.3. Relation to existing literature

A colossal number of work aimed at extending Donsker’s theorem (Doob, 1949; Donsker,
1952; Dudley, 1966) to a more relaxed setup. Among them, a particularly prospering research
field deals with the introduction of weak dependence between the original variables, mainly
by using mixing conditions. Here, we do not attempt to provide an exhaustive list for such
results and we refer the reader to, e.g., Dedecker and Prieur (2007); Doukhan et al. (2010)
for a detailed review.
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When restricted to the Gaussian subordinated setting, asymptotics for the e.c.d.f. (1) are
described in the two well-known papers of Dehling and Taqqu (1989) (long-range) and Csörgő
and Mielniczuk (1996) (short-range). However, both studies make a stationarity assumption,

that is, assume that the covariance matrix is of the form Γ
(m)
i,j = r(|i − j|), 1 ≤ i, j ≤ m,

for some function r(·) vanishing at infinity and not depending on m. Here, the setting is
markedly different: first, the covariance matrix Γ(m) is allowed to dependent on m, that is,
the Y (m)’s form a triangular array of Gaussian variables. Second, Γ(m) need not be locally

structured, that is, Γ
(m)
i,j is not necessarily related to the distance between i and j. Instead, our

conditions are permutation invariant, that is, are unchanged when permuting the columns of
the triangular array. This is quite natural because the e.c.d.f. is itself permutation invariant.
Third, the correlations considered in our framework are possibly negative (although in a
reasonable amount to keep the overall covariance matrix nonnegative) and our approach
shows that the negative correlations can decrease the asymptotic covariance or even increase
the convergence rate.

Compared to the existing literature, our framework covers a part of the previous results
(e.g., includes long-range of Dehling and Taqqu (1989) but excludes short range of Csörgő
and Mielniczuk (1996), see Section 3.2) while it opens a window for other dependence models,
as, for instance, the spiked correlation model introduced by Johnstone (2001). The latter is
of primary interest for modeling microarrays data, for which few external variables (factors)
are able to have a small influences on all the measured Yi’s, see Friguet et al. (2009) and Fan
et al. (2010). Typically, a “benchmark” sub-model for our approach is the equi-correlated case

where Γ
(m)
i,j = ρm, i 6= j, for some correlation ρm tending to zero (at some arbitrary rate). Let

us note that we have studied this special case in an earlier work, see Delattre and Roquain
(2011).

Finally, let us mention that recently, Bardet and Surgailis (2011) have also removed the
stationarity assumption, by establishing central limit theorems (CLT) for Gaussian subordi-
nated arrays. There are two major differences with our work: first, they deal with a CLT for
the partial-sum process and not with a functional CLT for the e.c.d.f. Second, their assump-

tions are not of the same nature, because they require that |Γ(m)
i,j | ≤ r(|i− j|) for all i, j, for

some function r(·) vanishing at infinity.

2. Preliminaries: first order approximation for the covariance of F̂m

Throughout the paper, to alleviate the notation, we will often denote Pm by P, Y (m) by Y
and Γ(m) by Γ when not ambiguous.

Let us consider the sequence of Hermite polynomials H`(x), ` ≥ 0, x ∈ R (see Appendix B).
By using Melher’s formula, the covariance function of the process F̂m(·) can be described as
a function of the correlation matrix Γ of Y .

Proposition 2.1. Consider F̂m(·) the process defined by (1) and the function family {c`(·), ` ≥
1} defined by

c`(t) = H`−1(Φ
−1(t))φ(Φ−1(t)), t ∈ [0, 1], ` = 1, 2, . . . , (5)

where φ = −Φ′ is the standard Gaussian density. Then for all t, s ∈ [0, 1], we have

Cov(F̂m(t), F̂m(s)) =
∑
`≥1

c`(t)c`(s)

`!

m−2∑
i,j

(Γi,j)
`

 . (6)
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This result can be found, e.g., in Proposition 1 of Schwartzman (2010) (itself referred to
Theorem 1 of Efron (2010)). We provide a proof in Appendix B for completeness. While (6)
is an exact expression, we can try to approximate the covariance Cov(F̂m(t), F̂m(s)) when m
grows to infinity, while making some assumption on the matrix Γ = Γ(m).

Firstly, let us note the following: since m−2
∑

i,j(Γi,j)
` = (`!)−1 Var

(
m−1

∑m
i=1H`(Yi)

)
≥

0 (by using (72) in Appendix B), expression (6) shows that the following conditions are
equivalent as m tends to infinity,

∀t ∈ [0, 1], Var(F̂m(t)) = o(1) (7)

∀` ≥ 1, m−2
∑
i,j

(Γi,j)
` = o(1) (8)

m−2
∑
i,j

(Γi,j)
2 = o(1) (A)

As a consequence, condition (A) is required as soon as a convergence result of the form (4)

holds. Note that the rate rm defined by (3) satisfies 1 ≤
(
m−2

∑
i,j(Γi,j)

2
)−1/4

≤ rm ≤
√
m.

Hence rm tends to infinity under (A) but not faster than
√
m.

Secondly, let us rewrite (6) as follows:

Cov(F̂m(t), F̂m(s)) =m−1(t ∧ s− ts) + γmc1(t)c1(s)

+
∑
`≥2

m−2∑
i 6=j

(Γi,j)
`

 c`(t)c`(s)(`!)
−1, (9)

where γm is defined by (2). The latter holds because, for two independent N (0, 1) variables U
and V , we have m−1

∑
`≥1 c`(t)c`(s)(`!)

−1 = Cov(1 {Φ(U) ≤ t},1 {Φ(V ) ≤ s}). In expansion
(9), the second order term (i.e., the sum over ` ≥ 2) is negligible w.r.t. the other terms if
(vanish-secondorder) holds. Hence, assuming now (vanish-secondorder), we obtain that the
rescaled covariance Cov(rmF̂m(t), rmF̂m(s)) of rmF̂m converges to the following covariance
function

K(t, s) =
1

1 + |θ|
(t ∧ s− ts) +

θ

1 + |θ|
c1(t)c1(s), (10)

where θ is defined in (H2) and where we use the conventions θ/(1+ |θ|) = 1 and 1/(1+ |θ|) = 0
when θ = +∞. Note that (H2) always holds up to consider a subsequence, because mγm ≥ −1
from the nonnegativeness of Γ(m).

Remark 2.2. One should note that, in the RHS of expression (10), the second term is not
necessarily a covariance function because θ can be negative. Nevertheless, K can be written
as K(t, s) = 1

1+|θ|K̃(t, s) + 1+θ
1+|θ|c1(t)c1(s), where

K̃(t, s) = t ∧ s− ts− c1(t)c1(s) (11)

turns out to be a covariance function; considering a Wiener process (Wt)t∈[0,1], K̃ is the covari-

ance function of the process Wt−tW1−c1(t)
∫ 1
0 Φ−1(s)dWs, which is the orthogonal projection

in L2 of Wt onto the orthogonal of the linear space spanned by W1 and
∫ 1
0 Φ−1(s)dWs. In-

terestingly, the latter also shows that the original covariance K given by (10) can be seen
as the covariance function of Zt = (1 + |θ|)−1/2 (Wt − tW1) + (1 + |θ|)−1/2((1 + θ)1/2 −
1) c1(t)

∫ 1
0 Φ−1(s)dWs.
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3. Main result

3.1. Statement

Our main result establishes that the convergence of the covariance functions investigated in
Section 2 can be extended to the case of a weak convergence of process. For this, we should
additionally assume (H1) (which is related to the tightness of the process).

Theorem 3.1. Let us consider the empirical distribution function F̂m defined by (1). Assume
that the covariance matrix Γ(m) depends on m in such a way that (vanish-secondorder) and
(H1) hold with rm defined by (3) and assume (H2). Consider (Zt)t∈[0,1] a continuous process
with covariance function K defined by (10). Then we have the convergence (in the Skorokhod
topology)

rm(F̂m − I) Z, as m→∞, (12)

where I(t) = t denotes the identity function.

A striking point is that (12) depends on Γ only through the sequence γm. In regards to the
limiting covariance function (10), there are two possible regimes:

(i) if mγm → θ < +∞, the process m1/2(F̂m − I) converge to a (continuous Gaussian)
process with covariance function given by (t, s) 7→ t ∧ s − ts + θ φ(Φ−1(t))φ(Φ−1(s)).
Hence, the limit process is a standard Brownian bridge when θ = 0, but has a covariance
function smaller (resp. larger) if θ < 0 (resp. θ > 0).

(ii) if mγm → θ = +∞, the “Brownian” part asymptotically disappears and (γm)−1/2(F̂m−
I) converge to the process φ(Φ−1(·))Z for Z ∼ N (0, 1).

The above behaviors are illustrated in Figure 1: as mγm grows, the “Brownian” part dis-
appears and the process looks like function φ(Φ−1(·)) (randomly rescaled). Also, the Y -axis
indicates that the scaling

√
m is not suitable for large values of mγm.

Remark 3.2. Assumptions (vanish-secondorder) and (H1) always hold under the following
condition

|Γ(m)
i,j | ≤ am for all i 6= j and am satisfies m1+δa2m → 0 for some δ > 0. (13)

Remark 3.3. In Theorem 3.1, the result holds by replacing the set of assumptions (vanish-secondorder),
(H1) and (H2) by the two following one:

r2+ε0m

m2

∑
i 6=j

(Γi,j)
2 = o(1), with ε0 > 0; (H3)

mγ1+ε0m → +∞, with ε0 > 0. (H4)

This is proved in Section 5.5. However, note that the latter can only be useful in regime (ii)
since (H4) implies mγm → +∞.
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Fig 1. Plot of t 7→ m1/2(F̂m(t) − t) for some observed Y (ω). These realizations have been generated in the
equi-correlated model (14) and for m = 104.

3.2. Examples

Equi-correlation Let us start with the following simple example:

Γ(m) =


1 ρm . . . ρm

ρm
. . .

. . .
...

...
. . .

. . . ρm
ρm . . . ρm 1

 = (1− ρm)Im + ρm


1
...
...
1




1
...
...
1


T

, (14)

where ρm ∈ [−(m−1)−1, 1] is some parameter. We easily check that γm defined by (2) is given
by mγm = (m−1)ρm and that the assumptions of Theorem 3.1 are all satisfied if ρm → 0 and
mρm converges to some θ ∈ [−1,+∞], which yields convergence (12). This is in accordance
with Lemma 3.3 of Delattre and Roquain (2011).

This simple example already shows that, following the choice of the sequence (ρm)m, the
empirical distribution function can have various asymptotic behaviors. For instance, taking
ρm = −(m−1)−1 gives a process in regime (i) with a minimal asymptotic covariance function
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(θ = −1, see (11)), while taking ρm ∼ m−2/3 leads to a rate rm ∼ m1/3 � m1/2 and thus a
process converging in regime (ii).

Alternate equi-correlation Let us consider the covariance matrix:

Γ(m) =



1 −ρm ρm . . .

−ρm 1 −ρm
. . .

...

ρm
. . .

. . .
. . . ρm

...
. . . −ρm 1 −ρm
. . . ρm −ρm 1


= (1− ρm)Im + ρm


1
−1
...
1




1
−1
...
1


T

,

(15)

where ρm ∈ [−(m− 1)−1, 1] is a given parameter. Clearly, γm is such that

mγm = 2ρmm
−1

m−1∑
i=1

m−i∑
k=1

(−1)k = ρmbm/2c/(m/2)

Hence the rate rm defined by (3) is rm ∼
√
m and assumptions of Theorem 3.1 are fulfilled

(with θ = 0) by assuming that m1+δρ2m → 0, with δ > 0 (because (13) holds). Hence, under
that assumption,

√
m(F̂m − I) converges to a standard Brownian bridge.

Maybe surprisingly, this example shows that, even if the correlations are “strong” (e.g.,
ρm ∼ m−2/3, to be compared with the equi-correlated case), positive and negative correla-
tions can exactly compensate each other to provide the same convergence result as under
independence.

Long-range stationary correlations Let us consider the correlation matrix of the fol-
lowing form:

Γ
(m)
i,j = r(|j − i|), for r(0) = 1, r(k) = k−DL(k), 0 < D < 1, (16)

where L : (0,+∞)→ (0,+∞) is slowly varying at infinity (∀t > 0, L(tx) ∼ L(x) as x→ +∞).
This framework is often referred to as “long-range dependence” in literature dealing with a
stationary setup (see, e.g., Dehling and Taqqu (1989); Doukhan et al. (2002)). First, standard
calculations easily show that for all ν ≥ 0,

m−1
∑
i 6=j
|j − i|−ν = 2m−1

m−1∑
i=1

i∑
k=1

k−ν ∼


2 m1−ν

(1−ν)(2−ν) if ν ∈ [0, 1)

2 logm if ν = 1
2
∑

k≥1 k
−ν if ν > 1

. (17)

Thus, for any ν1 ∈ (D, 1), since L is slowly varying,

mγm & m
−1
∑
i 6=j
|j − i|−ν1 & m1−ν1 ,

by applying (17), where the “um . vm” means um = O(vm). This entails mγ
1+(1−ν1)/(2ν1)
m &

m(1−ν1)/2 and thus Assumption (H4) holds. In particular, rm ∼ γ
−1/2
m . Additionally, for any

ν2 ∈ (D, 1) and ν3 ∈ (0, 2D) such that ν3/ν2 > 1, by applying again (17),

γ−δm m−2
∑
i 6=j

(Γi,j)
2 . mν1δm−2

∑
i 6=j
|j − i|−ν3 . mν2δ−ν3 ∨ (mν2δ−1 logm)
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for any δ > 0. We derive (H3) because taking δ > 1 such that δ < ν3/ν2 and δ < 1/ν2 is
possible. By using Theorem 3.1 under the conditions of Remark 3.3, we derive

γ−1/2m (F̂m − I) c1(·)Z, as m→∞,

for Z ∼ N (0, 1). This is in accordance with Theorem 1.1 of Dehling and Taqqu (1989) (see
in particular Example 1 therein).

Finally, let us note that Assumption (vanish-secondorder) of Theorem 3.1 is not satisfied
for a covariance matrix of the type (16) taken with D ≥ 1 (short-range) (the other terms in
the covariance expansion (9) are required in the limit, see Csörgő and Mielniczuk (1996)).

Weak short/long range correlations Let us modify slightly the matrix (16), by letting:

Γ
(m)
i,j = ρm r(|j − i|), for r(0) = 1, r(k) = k−D, D > 0, (18)

where ρm is some nonnegative parameter (we removed the slowly varying function for the sake
of simplicity). When ρm varies in function of m, note that the latter is not of the stationary
type. From (17), we have

mγm ∼


2ρm

m1−D

(1−D)(2−D) if D ∈ [0, 1)

2ρm logm if D = 1
2ρm

∑
k≥1 k

−D if D > 1

(19)

Assuming that the quantity (19) as a limit (denoted θ) and that ρm → 0 as m grows to infinity,
(vanish-secondorder) and (H1) hold if m1+δρ2m → 0 with δ > 0 (because (13) holds). The
resulting rate of convergence rm is given as a function of D and ρm in Table 1. Markedly, weak
short-range correlations (D > 1) always yields rm ∼ m1/2 while weak long-range correlations
(D < 1) can give both regimes. For instance, taking ρm ∼ m−2/3 yields rm ∼ mD/2+1/3 for
D < 1/3 and rm ∼ m1/2 otherwise. Overall, the convergence rate increases with D.

D ∈ [0, 1) D ≥ 1

ρmm
1−D = O(1) θ = 0

θ <∞ rm ∼
√
m rm ∼

√
m

ρmm
1−D →∞

θ =∞ rm ∼ ρ−1/2
m mD/2 not possible

Table 1
Rate rm defined by (3) in function of D ≥ 0 and ρm such that ρm = o(m−(1/2+δ)) for some δ > 0, for the

particular covariance (18).

Spiked correlation matrix model The “spiked” covariance model has been introduced in
Johnstone (2001). It assumes that the k-first eigenvalues of the covariance matrix are greater
than 1 (for some fixed value of k) while the other are all equal to 1. In our setting where we
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consider only correlation matrices, we assume that the sequence of eigenvalues is constant
after some fixed rank k. Precisely, let us consider a matrix Γ(m) of the following form:

Γ(m) = (1− ρm)Im + ρmPHP
T , (20)

where H is a k × k diagonal matrix with diagonal entries h
(m)
1 , . . . , h

(m)
k ∈ (1,∞), where

P = (p
(m)
i,r )1≤i≤m,1≤r≤k is an m × k matrix such that P TP = Ik and where ρm ∈ [−1, 1] is

some parameter. Importantly, k is taken fixed with m. The k first eigenvalues of Γ(m) are

thus given by 1 − ρm + ρmh
(m)
r , r = 1, . . . , k, while the remaining eigenvalues are all equal

to 1 − ρm. Hence, to ensure that Γ(m) given by (20) is a well defined correlation matrix, we

should additionally assume that for all r = 1, . . . , k, 1 − ρm + ρmh
(m)
r ≥ 0, and that PHP T

has diagonal entries equal to 1, that is, for all i = 1, . . . ,m,
∑k

r=1 h
(m)
r (p

(m)
i,r )2 = 1. Note that

the latter requires h
(m)
1 + · · ·+ h

(m)
k = m and thus maxr{h(m)

r } ≥ m/k.
Next, by using (20), the conditions above and some properties of the Frobenius norm, we

can derive the following:

mγm = ρm

k∑
r=1

h(m)
r

(
m−1/2

m∑
i=1

p
(m)
i,r

)2

− ρm; (21)

m−2
∑
i 6=j

(
Γ
(m)
i,j

)2
= ρ2m

(
k∑
r=1

(h(m)
r /m)2 − 1/m

)
. (22)

Since the RHS of (22) is upper-bounded by ρ2m(k−m−1) and lower-bounded by ρ2m(k−2−m−1)
and since k is taken fixed with m, condition (A) is satisfied if and only if ρm → 0 while
(vanish-secondorder) holds if and only if rmρm → 0. Additionally, we have

m−2
∑
i 6=j

(
Γ
(m)
i,j

)4
= ρ4m

m−2 ∑
r1,...,r4

hr1 . . . hr4

(
m∑
i=1

pi,r1 . . . pi,r4

)2

− 1/m


≤ ρ4m

m−2(∑
r1,r2

hr1hr2

m∑
i=1

p2i,r1p
2
i,r2

)2

− 1/m


= ρ4m(1− 1/m),

where we used the Cauchy-Schwartz inequality (we dropped the dependence in m in the
notation for short). Finally, the assumption of Theorem 3.1 are all fulfilled provided that

r2+δm ρ2m → 0 with δ > 0 (23)

(up to consider a subsequence making the quantity into (21) converges to some θ). In (23),
the rate rm can be computed by using the definition, see (3), or expression (21). The rate
of convergence thus intrinsically depends on the asymptotic behavior of the coordinate-wise

mean of each eigenvector (p
(m)
i,r )1≤i≤m .

To further illustrate this example, we can focus on the particular case where k = 1. In that
case, the model can be equivalently written as

Γ(m) = (1− ρm)Im + ρmξξ
T , (24)
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where ξ = ξ(m) is a m × 1 vector in {−1, 1}m and where ρm ∈ [−(m − 1)−1, 1]. The model
(24) contains as particular instances the equicorrelated matrix (ξ(m) = (1 1 · · · 1)T ) and the
alternate equicorrelated matrix (ξ(m) = (1 − 1 1 · · · )T ) that we have studied above. We easily
check that condition (23) recovers the conditions that we obtained in each of theses particular
cases. In general, for an arbitrary ξ(m) ∈ {−1, 1}m, since the quantity in (21) is equal to

ρm

(
m−1/2

m∑
i=1

ξ
(m)
i

)2

− ρm, (25)

the rate rm is directly related to the number of −1 and +1 into ξ(m). For instance, if ξ(m) =
(U1, . . . , Um) where U1, U2, . . . are i.i.d. random signs, we have by the central limit theorem
that the quantity (25) tends to 0 (in probability) whenever ρm → 0, which gives a rate
rm ∼

√
m (in probability). Hence, we obtain the convergence (12) with the same rate and

asymptotic variance as in the independent case whenever m1+δρ2m → 0 with δ > 0.

Sample correlation matrix We consider the model where the correlation matrix is gen-
erated a priori as a Gaussian empirical correlation matrix. Namely, let us assume that

Γ(m) = D−1SD−1, for S = n−1m XTX and D = diag(S1,1, · · · , Sm,m)1/2 (26)

where X is a nm ×m matrix with i.i.d. N (0, 1) entries. Assume m/nm → 0 as m tends to
infinity, which, in a statistical setup, corresponds to assume that the number m of variables
(columns of X) is of smaller order than the sample size nm.

A by-product of Theorem 2 in Bai and Yin (1993) (adding a number of variables which is
a vanishing small proportion of the sample size) is that,

||S − Im||2
P−→ 0,

where || · ||2 denotes the Euclidian-operator norm, that is, ||S − Im||2 = max1≤i≤m |λ(m)
i − 1|

and λ
(m)
1 , . . . , λ

(m)
m denote the eigenvalues of S. Hence, max1≤i≤m |Si,i−1| P−→ 0, which in turn

implies ||Γ(m) − Im||2
P−→ 0. Next, simple arguments entail the following inequalities:∣∣∣∣∣∣m−1

∑
i 6=j

Γ
(m)
i,j

∣∣∣∣∣∣ = m−1| < (1 · · · 1)T , (Γ(m) − Im)(1 · · · 1)T > | ≤ ||Γ(m) − Im||2;

r2mm
−2
∑
i 6=j

(
Γ
(m)
i,j

)2
≤ m−1

m∑
i=1

(λ
(m)
i − 1)2 ≤ ||Γ(m) − Im||22;

r4+ε0m m−2
∑
i 6=j

(
Γ
(m)
i,j

)4
≤
{

min
1≤i≤nm

|Si,i|
}−4

mε0/2
∑
i 6=j

(Si,j)
4.

Moreover, we easily check that E(n
1/2
m Si,j)

4 = E
(
n
−1/2
m

∑nm
k=1Xk,iXk,j

)4
is upper bounded

by some positive constant. Hence, by assuming that the sequence nm satisfies

m1+δ/nm → 0 for some δ > 0,

the above inequalities implies that the rate is rm ∼
√
m, that (H2) holds with θ = 0 and that

(vanish-secondorder) and (H1) are satisfied (all these convergences holding in probability).
Hence, Theorem 3.1 can be applied and this shows that the asymptotic of the empirical
distribution function is the same as under independence.
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4. Statistical application: asymptotic study of Benjamini-Hochberg’s procedure
under dependence

4.1. Two-group model and background

Let us add to the original vector Y ∼ N (0,Γ) an unknown vector H = (Hi)1≤i≤m ∈ {0, 1}m
as follows: for 1 ≤ i ≤ m,

Xi = µHi + Yi, (27)

for some positive number µ (assumed to be fixed with m). Hence X ∼ N (µH,Γ). Now
consider the statistical problem of finding H from the observation of X = (Xi)1≤i≤m. From
an intuitive point of view, H is the “signal” (unknown parameter of interest), Y is the “noise”
(unobserved) while Γ and µ are “nuisance” parameters, generally assumed to be unknown.
Obviously, because of the stochastic variations, the signal cannot be recovered exactly, hence
we should define an error criterion that supervises the statistical decision.

In this context, a statistical procedure is a (measurable) function with a 0/1 output for
each 1 ≤ i ≤ m, that is, declaring some of the Hi’s as 0 and the other as 1. To evaluate
the quality of such procedure, the false discovery rate (FDR) is a criterion coming from the
multiple testing research field that has received a major and growing attention in the two last
decades since its introduction by Benjamini and Hochberg (1995). The FDR is the expected
value of the false discovery proportion (FDP), itself defined as the proportion of Hi equal to
zero among the Hi deemed to be 1 by the procedure. The procedure that came up with –
often called the “BH procedure” — suitably controls the FDR under independence of the Xi’s
(and positive dependence, see Benjamini and Yekutieli (2001)) and is nowadays commonly
used to find signal in massive data generated from high-throughput devices (e.g., in genomics
or neuroimaging). However, a challenging issue often rose in recent statistical literature is the
precise mathematical study of the BH procedure when the observed Xi’s are dependent. While
the FDR of the BH procedure is reported to be essentially unaffected by dependencies, see
Farcomeni (2006); Kim and van de Wiel (2008), some authors showed with simulations that
this should not be the case for the FDP, see, e.g., Korn et al. (2004). The present work brings
a broad theoretical support for this, by showing that the length of the asymptotic confidence
interval for FDP is widening as the quantity γm defined by (2) grows.

The formal link between the FDP, the BH procedure and the e.c.d.f. has been delineated in
Genovese and Wasserman (2004); Farcomeni (2007) (FDP at a fixed threshold) and consoli-
dated later in Neuvial (2008) (FDP at BH threshold). Here, we follow the approach of Neu-
vial (2008), by using that the FDP of BH procedure is a Hadamard differentiable function of
(rescaled) empirical distribution functions. Convergence results are thus simply derived from
Theorem 3.1 by applying the functional delta method. Nevertheless, let us underline that we
have made the following new interesting finding that complements the methodology of Neu-
vial (2008): when one wants to study the FDP of BH procedure (and not another procedure),
only the convergence of the e.c.d.f. in the one-class model of Section 1.1 is needed (and not the
joint convergence in the two-class model). This relies on the “partial functional delta method
on D(0, 1)”, see Proposition C.2.
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4.2. Link with Theorem 3.1

Let us first define the following e.c.d.f.’s: for t ∈ [0, 1],

F̂0,m(t) = m−10

m∑
i=1

(1−Hi)1 {Φ(Xi) ≤ t}; (28)

F̂1,m(t) = m−11

m∑
i=1

Hi1 {Φ(Xi) ≤ t}; (29)

Ĝm(t) = m−1
m∑
i=1

1 {Φ(Xi) ≤ t} =
m0

m
F̂0,m +

m1

m
F̂1,m, (30)

where m0 =
∑m

i=1(1−Hi) and m1 =
∑m

i=1Hi. The proportions m0/m and m1/m are supposed
to converge when m grows to infinity and the limits are denoted by π0 ∈ (0, 1) and π1 ∈ (0, 1),
respectively. From Section 2, when Γ satisfies (A), the e.c.d.f.’s F̂0,m(t), F̂1,m(t) and Ĝm(t)
converge in probability and we denote in what follows the limiting c.d.f.’s by F0(t) = t,
F1(t) = Φ(Φ−1(t)− µ) and G(t) = π0F0(t) + π1F1(t), respectively.

In a nutshell, the FDP of BH procedure (at level α ∈ (0, 1)) corresponds to the random
variable

FDPm = α
m0
m F̂0,m(T (Ĝm))

T (Ĝm)
= Ψ

(m0

m
F̂0,m,

m1

m
F̂1,m

)
, (31)

where we used the following functionals:

T (H) = sup{t ∈ [0, 1] : H(t) ≥ t/α} for H ∈ D(0, 1); (32)

Ψ(H0, H1) = αH0(T (H0 +H1))/T (H0 +H1) for (H0, H1) ∈ D(0, 1)2, (33)

and where we used the conventions sup{∅} = 0 and 0/0 = 0. By Corollary 7.12 in Neuvial
(2008), T is Hadamard differentiable at function G, tangentially to the set C(0, 1) of contin-
uous functions on (0, 1) and w.r.t. the supremum norm (we refer to Section 20.2 in van der
Vaart (1998) for a formal definition of Hadamard differentiable functions). This holds because
G is strictly concave and limt→0G(t)/t = +∞, which yields in particular T (G) ∈ (0, 1). As
a consequence, standard calculations show that Ψ is Hadamard differentiable at (π0F0, π1F1)
tangentially to C(0, 1), with derivative

Ψ̇(π0F0,π1F1)(H0, H1) =α
H0(T (G))

T (G)
, for (H0, H1) ∈ C(0, 1)2. (34)

Now, by using (31), the functional delta method provides the asymptotic behavior of FDPm
from the one of (m0

m F̂0,m,
m1
m F̂1,m). As a matter of fact, since the derivative Ψ̇(F0,F1)(H0, H1)

only depends on H0 while the limit processes are (a.s.) continuous, establishing convergence
results separately for F̂0,m and F̂1,m is sufficient (we do not need to consider the joint process

(m0
m F̂0,m,

m1
m F̂1,m)). We have precisely formulated this argument in Proposition C.2. Hence,

applying twice Theorem 3.1 (for F̂0,m ∼ F̂m0 and F̂1,m ∼ F̂m1 ◦ F1), we are able to derive a
convergence result for FDPm, as we establish in the next section.
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4.3. Results

First, let us introduce the following additional quantities:

r0,m =

m−10 +

∣∣∣∣∣∣m−20

∑
i 6=j

(1−Hi)(1−Hj)Γi,j

∣∣∣∣∣∣
−1/2 ; (35)

r1,m =

m−11 +

∣∣∣∣∣∣m−21

∑
i 6=j

HiHjΓi,j

∣∣∣∣∣∣
−1/2 . (36)

Corollary 4.1. Consider the two-group model (27), generated from parameters µ, H =
H(m) and a correlation matrix Γ = Γ(m). Assume that m0 (depending on H) is such that√
m(m0/m− π0)→ 0. Assume that Γ satisfies (vanish-secondorder), (H1) and that the rates

rm, r0,m and r1,m, respectively defined by (3), (35) and (36), grow proportionally to infinity
as m tends to infinity. Let α ∈ (0, 1) and t? = t?(µ, α) be the unique t ∈ (0, 1) such that
G(t) = t/α. Let h(t?) = (φ(Φ−1(t?))/t?)2. Then the sequence of r.v. FDPm defined by (31)
enjoys the following convergence:

FDPm − π0α
π0α {(1/t? − 1)/m0 + h(t?)γ0,m}1/2

 N (0, 1), (37)

where γ0,m = m−20

∑
i 6=j(1−Hi)(1−Hj)Γi,j.

Proof. First, classically, it is sufficient to prove that the convergence (37) holds up to consider
a subsequence. Hence, we can assume that (H2) and the convergences

m−10

∑
i 6=j

(1−Hi)(1−Hj)Γi,j → θ0; (38)

m−11

∑
i 6=j

HiHjΓi,j → θ1;

hold, with θ, θ0 and θ1 valued in [−1,+∞]. Also note that since rm ∝ r0,m (resp. rm ∝ r1,m),
condition (vanish-secondorder) and (H1) also holds for the submatrix (Γi,j)i,j:Hi=Hj=0 (resp.
(Γi,j)i,j:Hi=Hj=1). Now, let us write

r0,m

(m0

m
F̂0,m(t)− π0F0(t)

)
= r0,mm

−1
m∑
i=1

(1−Hi)(1 {Φ(Xi) ≤ t} − t) + r0,mt(m0/m− π0).

(39)

In the RHS of (39), while the second term converges to 0 by assumption, a consequence of
Theorem 3.1 is that the first term converges to a process with covariance function

π20

[
1

1 + |θ0|
(t ∧ s− ts) +

θ0
1 + |θ0|

c1(t)c1(s)

]
, for all t, s ∈ [0, 1].

Obviously, a similar result holds for the process r1,m(m1
m F̂1,m − π1F1).
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Applying the (partial) functional delta method as explained in Proposition C.2 (by using
r0,m ∝ r1,m and (34)), we obtain

r0,m(FDPm − π0α) N
(

0 , (απ0)
2

[
1/t? − 1

1 + |θ0|
+

θ0
1 + |θ0|

(c1(t
?)/t?)2

])
. (40)

Finally, we easily derive (37) by separating the cases θ0 < +∞ and θ0 = +∞.

As an illustration, Corollary 4.1 can be used in the independent case (γ0,m = 0) or ρm-equi-
correlated case (γ0,m = ρm), so recovering the previous results of Neuvial (2008, 2009) (in the
Gaussian case) and Delattre and Roquain (2011), respectively. This holds for any H satisfying√
m(m0/m−π0)→ 0. However, for an arbitrary covariance Γ, the quantity γ0,m unfortunately

depends in general on the unknown H and thus cannot be computed in a practical situation.
This fact is inherent to the multiple testing setting considered here, because the dependencies
accounting in the FDP of BH’s procedure are related to the submatrix (Γi,j)i,j:Hi=Hj=0 and
thus are directly linked to the location of the null hypotheses.

A convenient way to circumvent this problem is to add prior random effects, by assuming
that, previously and independently to the model (27), we have drawn H = (H1, . . . ,Hm)
for H1, H2, . . . i.i.d. Bernoulli variables of parameter π1 = 1 − π0, for some π0 ∈ (0, 1).
Thus X follows the distribution N (µH,Γ) conditionally on H. The corresponding global
(unconditional) model, often referred to as the two-group mixture model has been widely
used in the multiple testing literature, see, e.g. Efron et al. (2001); Storey (2003); Genovese
and Wasserman (2004); Roquain and Villers (2011). By contrast with the previous model, H
is now random. In particular, m0 =

∑m
i=1(1−Hi) ∼ B(m,π0) and

√
m(m0/m− π0) does not

degenerate at the limit, which adds some extra variance in the FDP convergence result. The
counterpart is that the statement is substantially simplified, as we can see below.

Corollary 4.2. Consider the two-group mixture model defined above, generated from pa-
rameters µ > 0, π0 ∈ (0, 1) and a correlation matrix Γ = Γ(m). Assume that Γ satisfies
(vanish-secondorder) and (H1). Let α ∈ (0, 1) and t? = t?(µ, α) be the unique t ∈ (0, 1) such
that G(t) = t/α. Let h(t?) = (φ(Φ−1(t?))/t?)2. Then the sequence of r.v. FDPm defined by
(31) enjoys the following convergence:

FDPm − π0α
π0α {(1/t? − π0)/(π0m) + h(t?)γm}1/2

 N (0, 1), (41)

where γm is defined by (2).

Proof. Again, it is sufficient to state the result up to consider a subsequence. Thus (H2) holds
without loss of generality. First check that (vanish-secondorder) entails

r2m
m2

∑
i 6=j

(1−Hi)(1−Hj)Γi,j − π20
∑
i 6=j

Γi,j

 = oP (1), (42)

(computing, e.g., the variance of the latter) and this convergence can be made a.s. by taking
a suitable subsequence. A consequence of (42) is that γ0,m ∼ γm a.s. (in particular, θ0 de-
fined by (38) equals π0θ.) This implies rm ∝ r0,m (a.s.), which provides (vanish-secondorder)
and (H1) for the submatrix (Γi,j)i,j:Hi=Hj=0 (a.s.). Now, by using (39), we obtain that
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r0,m

(
m0
m F̂0,m(t)− π0F0(t)

)
converges (unconditionally) to a process with covariance func-

tion defined by: for all t, s ∈ [0, 1],

π20

[
1

1 + π0|θ|
(t ∧ s− ts) +

π0θ

1 + π0|θ|
c1(t)c1(s)

]
+
π0(1− π0)
1/π0 + |θ|

ts

= π20

[
1

1 + π0|θ|
(t ∧ s− π0ts) +

π0θ

1 + π0|θ|
c1(t)c1(s)

]
Obviously, a similar result holds for the process r1,m(m1

m F̂1,m − π1F1). We finish the proof by
applying the (partial) functional delta method, see Proposition C.2.

Corollary 4.2 clearly shows that the concentration of FDPm around π0α deteriorates when
γm increases, so when positive correlations appear between the individual statistical tests.
However, notice that, perhaps surprisingly, negative correlations help to decrease γm and can
yields to a concentration even better than under independence when γm is negative (although
this phenomenon is necessary of limited amplitude because γm ≥ −1/m).

From a practical point of view, (41) still contains the unknown quantities π0 and t?. For-

tunately, t? can be easily estimated because T (Ĝm)
P−→ T (G) = t? (by the Hadamard differ-

entiability of T at G and by using the same arguments as in the proof of Proposition C.2).
As for π0, this parameter seems hard to estimate in our dependent context, but we can use a
conservative uniform upper-bound. Finally, under the assumption of Corollary 4.2, we obtain
the following asymptotic (1− ζ)-confidence upper-bound for FDPm:

sup
π0∈[0,1]

{
π0α

(
1 + Φ−1(ζ)

{
(1/t̂− π0)/(π0m) + h(t̂)γm

}1/2)}
, (43)

by denoting t̂ = T (Ĝm) ∨ (α/m) and h(t) = (φ(Φ−1(t))/t)2 for t ∈ (0, 1].

5. Proof of Theorem 3.1

5.1. A related result and additional notation

Let us define the “modified” empirical distribution function F̃m by the following relation: for
t ∈ [0, 1],

rm(F̂m(t)− t) = rm(F̃m(t)− t) + c1(t)rmY m. (44)

The convergence of the two processes rm(F̂m − I) and rm(F̃m − I) are strongly related by
(44). The main idea of our proof is to deduce the convergence of rm(F̂m − I) from the one of
rm(F̃m − I). Precisely, the following result will be proved together with Theorem 3.1 in the
sequel.

Proposition 5.1. Under the assumptions of Theorem 3.1, let us consider the corrected empir-
ical distribution function F̃m defined by (44) and a continuous process (Z̃t)t∈[0,1] with covari-

ance function K̃ defined by (11). Then we have the convergence (in the Skorokhod topology)

rm(F̃m − I) Z̃/(1 + |θ|)1/2, as m→∞, (45)

where I(t) = t denotes the identity function.
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Additionally, throughout the section, we use the following notation

ht(x) = 1 {Φ(x) ≤ t} − t− c1(t)x, (46)

so that F̃m(t)−t = m−1
∑m

i=1 ht(Yi). Finally, we will sometimes use the following assumption:

there exists η > 0 (independent on m) lower bounding the m eigenvalues of Γ(m).
(eigenvalues-away0)

5.2. Convergence of finite dimensional laws for F̃m

Let us prove the following result.

Proposition 5.2. Assume that the covariance matrix Γ depends on m in such a way that
(vanish-secondorder) holds with rm defined by (3) and assume (H2). Consider a continuous
process (Z̃t)t∈[0,1] with covariance function K̃ defined by (11). Then, the process (rm(F̃m −
I), Y

(m)
1 ) (jointly) converges to L(Z̃/(1+|θ|)1/2)⊗N (0, 1) in the sense of the finite dimensional

convergence. In particular, the convergence (45) holds in the sense of the finite dimensional
convergence.

Proof. The proof is based on central limit theorems for martingale arrays as presented, e.g.,
in Chapter 3 of Hall and Heyde (1980).

First, since we aim at obtaining a convergence jointly with Y
(m)
1 , a (somewhat technical)

but useful task is to define the array of random variables (Y
(m)
i , 1 ≤ i ≤ m,m ≥ 1) is

such a way that Y
(m)
1 is fixed with m. This is possible by first considering some variable

Z ∼ N (0, 1), by letting Y
(m)
1 = Z for all m ≥ 1, and then by choosing for each m ≥ 2, the

variables Y
(m)
i , 2 ≤ i ≤ m, such that

- (Z, Y
(m)
i , 2 ≤ i ≤ m) ∼ N (0,Γ(m));

- {(Y (m)
i )2≤i≤m,m ≥ 2} is a family of mutually independent vectors conditionally on Z.

This also define a common underlying space (Ω,F ,P) for the array of random variables.
Now, define the following nested array of σ-field: for m ≥ 1, Gm,0 = σ(∅) and for 1 ≤ i ≤ m,

Gm,i = σ(Y
(`)
j , 1 ≤ j ≤ i ∧ `, 1 ≤ ` ≤ m).

Next, let us consider for each t ∈ [0, 1], the martingale array (Mm,i(t),Gm,i, 1 ≤ i ≤ m,m ≥ 1)
defined as follows:

Mm,i(t) =

i∑
j=1

Xm,j(t) for Xm,j(t) =
rm
m

(
ht(Y

(m)
j )− E

(
ht(Y

(m)
j ) | Gm,j−1

))
. (47)

Clearly,

rm(F̃m(t)− t) = Mm,m(t) +
rm
m

m∑
i=1

E
(
ht(Y

(m)
i ) | Gm,i−1

)
. (48)

Also note that we can replace each Gm,i by Fm,i = σ(Y
(m)
1 , . . . , Y

(m)
i ) (Fm,0 = σ(∅)) in the

above expression, because (Y
(m)
i , 2 ≤ i ≤ m) is independent of (Y

(`)
j , 2 ≤ j ≤ i∧`, 2 ≤ ` < m),

conditionally on Y
(m)
1 .
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Case 1: (eigenvalues-away0) is assumed We show in Lemma A.1 expression (68) that the
second term in the RHS of (48) has a vanishing variance as m tends to infinity. Therefore,
it remains to show that the conclusion of Proposition 5.2 holds for the process Mm,m, which
we prove by using Lindeberg’s theorem. We use Corollary 3.1 page 58 in Hall and Heyde
(1980) (or more precisely its generalization to the multidimensional case). The conditions are
as follows:

(i) for all t ∈ [0, 1], for all ε > 0,
∑m

i=1 E
(
(Xm,i(t))

21 {|Xm,i(t)| > ε} | Fm,i−1
) P−→ 0;

(ii) for all t, s ∈ [0, 1],
∑m

i=1 E(Xm,i(t)Xm,i(s) | Fm,i−1)
P−→ K̃(t, s).

To check (i), let us fix t ∈ [0, 1] and prove
∑m

i=1 E(Xm,i(t))
4 = o(1). By definition, we have

m∑
i=1

E(Xm,i(t))
4 =

r4m
m4

m∑
i=1

E
(
ht(Y

(m)
i )− E

(
ht(Y

(m)
i ) | Fm,i−1

))4
≤ 24

(
r4m
m3

m−1
m∑
i=1

E
(
ht(Y

(m)
i )

)4
+
r4m
m4

m∑
i=1

E
(
E
(
ht(Y

(m)
i ) | Fm,i−1

))4)

≤ 25
r4m
m3

m−1
m∑
i=1

E
(
ht(Y

(m)
i )

)4
.

Now, the RHS of the previous display converges to zero because rm ≤
√
m and E(ht(Y

(m)
i ))4 <

∞. This proves condition (i) of Lindeberg’s theorem.
Let us now turn to condition (ii). For t, s ∈ [0, 1], we obviously obtain

m∑
i=1

E(Xm,i(t)Xm,i(s) | Fm,i−1) =
r2m
m2

m∑
i=1

E(ht(Y
(m)
i )hs(Y

(m)
i ) | Fm,i−1)

− r2m
m2

m∑
i=1

E(ht(Y
(m)
i ) | Fm,i−1)E(hs(Y

(m)
i ) | Fm,i−1). (49)

Next, by using ab ≤ 2(a2 + b2) for all a, b ∈ R together with (67), the second term in the RHS
of (49) tends to zero in probability. Moreover, we have

Var

(
r2m
m2

m∑
i=1

(
(ht(Y

(m)
i )hs(Y

(m)
i )− E(ht(Y

(m)
i )hs(Y

(m)
i ) | Fm,i−1)

))

=
r4m
m4

m∑
i=1

Var
(
(ht(Y

(m)
i )hs(Y

(m)
i )− E(ht(Y

(m)
i )hs(Y

(m)
i ) | Fm,i−1)

)
,

because the elements inside the sum are martingale increments. Hence, the quantity inside
the above display tends to zero. Combining the latter with (49) establishes condition (ii) of
Lindeberg’s theorem provided that the following holds:

r2m
m2

m∑
i=1

ht(Y
(m)
i )hs(Y

(m)
i )

P−→ (1 + |θ|)−1K̃(t, s).

This comes directly from the law of large number stated in Lemma C.3, because r2m/m →
(1 + |θ|)−1 by (3) and (H2).
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Applying Lindeberg’s theorem (in the underlying space described above), for any t1, . . . , tk ∈
[0, 1], the random vector

Zm = (Mm,m(t1), . . . ,Mm,m(tk))

converges stably in the following sense (see, e.g., Jacod and Shiryaev (2003) Definition 5.28):
for all (fixed) bounded random variable U and continuous bounded function f in Rk,

E(Uf(Zm))→ E(U)E(f(Z)) as m→∞,

where Z is a centered multivariate Gaussian vector with covariance (1+|θ|)−1(K̃(ti, tj))1≤i,j≤k.
This implies that (Zm, Y1) converges (jointly) in distribution to L(Z)⊗N (0, 1). This finishes
the proof of Proposition 5.2 in the case where (eigenvalues-away0) is assumed to hold.

Case 2: (eigenvalues-away0) is not assumed The strategy is to apply Lemma C.4 in order
to reduce the study to “Case 1” above. For any ε > 0, let

Y ε
i =

Yi + εξi

(1 + ε2)1/2
,

where ξ1, ξ2, . . . are i.i.d. N (0, 1) variables, independent of all the Yi’s. The covariance matrix
of (Y ε

1 , . . . , Y
ε
m) is obviously

Γε =
ε2

1 + ε2
Im +

1

1 + ε2
Γ.

Clearly, the corresponding rate (3) is rεm =
(
m−1 + (1 + ε2)−1 |γm|

)−1/2
. It is related to rm via

the following inequalities: rm ≤ rεm ≤ (1 + ε2)1/2rm. Hence, Γε satisfies (vanish-secondorder)
and (H2) with θ replaced by θε = 1

1+ε2
θ. Since it also satisfies (eigenvalues-away0), by using

Proposition 5.2 in the “Case 1” above, it satisfies for any t1, . . . , tk ∈ [0, 1],

(a)
(
rεm(F̃εm(t1)− t1), . . . , rεm(F̃εm(tk)− tk), Y ε

1

)
 L

(
(Z̃(t1),...,Z̃(tk))
(1+|θε|)1/2

)
⊗N (0, 1),

where F̃εm(t)− t = m−1
∑m

i=1 ht(Y
ε
i ) for all t. Next, we clearly have,

(b) (Z̃(t1),...,Z̃(tk))
(1+|θε|)1/2  (Z̃(t1),...,Z̃(tk))

(1+|θ|)1/2 as ε→ 0.

Let us now prove that for any t ∈ [0, 1],

lim sup
m

{
E
∣∣∣rm(F̃m(t)− t)− rεm(F̃εm(t)− t)

∣∣∣}→ 0 as ε→ 0. (50)

This will conclude the proof by applying Lemma C.4. First, we write

E
∣∣∣rm(F̃m(t)− t)− rεm(F̃εm(t)− t)

∣∣∣
≤ E

∣∣∣∣∣rm/m
m∑
i=1

(ht(Yi)− ht(Y ε
i ))

∣∣∣∣∣+ (rεm − rm)E

∣∣∣∣∣m−1
m∑
i=1

ht(Y
ε
i )

∣∣∣∣∣
≤

(rm/m)2 E

(
m∑
i=1

(ht(Yi)− ht(Y ε
i ))

)2


1/2

+ ((1 + ε2)1/2 − 1)E
∣∣∣rεm(F̃εm(t)− t)

∣∣∣ .
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By taking the lim sup in the above display, it only remains to show

lim sup
m

(rm/m)2 E

(
m∑
i=1

(ht(Yi)− ht(Y ε
i ))

)2
→ 0 as ε→ 0. (51)

This can be proved by using Lemma B.3 (80) as follows:

(rm/m)2 E

(
m∑
i=1

(ht(Yi)− ht(Y ε
i ))

)2

= (rm/m)2
m∑

i,j=1

E
(
(ht(Yi)− ht(Y ε

i ))(ht(Yj)− ht(Y ε
j ))
)

= (rm/m)2
m∑

i,j=1

(
E (ht(Yi)ht(Yj))− E

(
ht(Yi)ht(Y

ε
j )
)
− E (ht(Y

ε
i )ht(Yj)) + E

(
ht(Y

ε
i )ht(Y

ε
j )
))

= (rm/m)2
m∑

i,j=1

∑
`≥2

(c`(t))
2

`!
(Γi,j)

`
(

1 + (1 + ε2)−` − 2(1 + ε2)−`/2
)

because Cov(Yi, Yj) = Γi,j , Cov(Y ε
i , Yj) = Cov(Yi, Y

ε
j ) = Γi,j/(1 + ε2)1/2 and Cov(Y ε

i , Y
ε
j ) =

Γi,j/(1 + ε2). Next, by separating the case i = j and i 6= j, the previous display can be upper
bounded by∑

`≥2

(c`(t))
2

`!

∣∣∣1 + (1 + ε2)−` − 2(1 + ε2)−`/2
∣∣∣+ (rm/m)2

∑
i 6=j

(Γi,j)
2 × 4

∑
`≥2

(c`(t))
2

`!
.

While the first term above does not depend on m and converges to zero as ε→ 0, the second
term above as a lim supm equal to zero by (vanish-secondorder). This implies (51) and finishes
the proof.

5.3. Convergence of finite dimensional laws for F̂m

In this section, we aim at proving the following result:

Proposition 5.3. Consider the assumptions of Proposition 5.2. Then, (12) holds in the sense
of the finite dimensional convergence.

Proof. From expression (44), we investigate the (joint) convergence of (rm(F̃m − I), rmY m).

Case 1: θ = −1 In that case, r2m Var(Y m)→ 0. Hence, we can directly use Proposition 5.2
to state that (rm(F̃m− I), rmY m) converges to L(Z̃/(1 + |θ|)1/2)⊗ δ0 in the sense of the finite
dimensional convergence. This establishes Proposition 5.3 in that case.

Case 2: θ > −1 Now, r2m Var(Y m) is converging to some positive real number, namely
(1 + θ)/(1 + |θ|) > 0. In particular, Var(Y m) > 0 for m large enough. Let us define the
random variable

Y0 = Y m(VarY m)−1/2.
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We now consider the (m+ 1)-dimensional random vector (Yi)0≤i≤m, which is centered, with

a covariance matrix denoted Λ(m+1) = (Λ
(m+1)
i,j )0≤i,j≤m and such that Λ

(m+1)
0,0 = 1, Λ

(m+1)
i,j =

Γ
(m)
i,j for 1 ≤ i, j ≤ m. We easily check that Λ(m+1) satisfies (vanish-secondorder) and

(H2) with the same value of θ and a rate asymptotically equivalent to the original rm, see
Lemma A.2. Hence, Proposition 5.2 shows that (by using notation therein),(

rm

(
(m+ 1)−1

m∑
i=0

ht(Yi)

)
, Y0

)
 L(Z̃/(1 + |θ|)1/2)⊗N (0, 1),

in the sense of the finite dimensional convergence. Since rmht(Y0)/m tends to zero in proba-
bility, the last display can be rewritten as(

rm(F̃m − I), Y m(VarY m)−1/2
)
 L(Z̃/(1 + |θ|)1/2)⊗N (0, 1).

Finally, since r2m Var(Y m)→ (1 + θ)/(1 + |θ|), we finish the proof by applying (44).

5.4. Tightness

To complete the proof of Proposition 5.1, we now prove that the process Xm = rm(F̃m −
I) is tight in the Skorokhod space, under the assumption of Theorem 3.1. This will also
imply tightness for rm(F̂m − I) by (44) because c1 is a continuous function on [0, 1]. Hence
Theorem 3.1 will be proved.

For proving the tightness of Xm, we use Proposition C.1. This is possible because |c1(t)−
c1(s)| ≤ L|t− s|1/2, 0 ≤ s, t ≤ 1 for some constant L > 1 (see Lemma B.4). Below, we prove
that (82) holds in the following way: for large m,

E
∣∣Xm(t)−Xm(s)

∣∣4 ≤ C(|t− s|3/2 + (rm)−ε0 |t− s|
)
, for all t, s ∈ [0, 1], (52)

for some constant C > 0 and for a constant ε0 > 0 such that (H1) holds.
To establish (52), fix t, s ∈ [0, 1], s ≤ t and write

E
∣∣Xm(t)−Xm(s)

∣∣4 =
r4m
m4

∑
i,j,k,`

E
(
h(Yi)h(Yj)h(Yk)h(Y`)

)
, (53)

where we let h(x) = 1 {s < Φ(x) ≤ t} − (t − s) − (c1(t) − c1(s))x = ht(x) − hs(x). Now, we
split the sum in the RHS of (53) following the value of the cardinal of {i, j, k, `}.

Sum over #{i, j, k, `} = 1 The corresponding summation is r4m
m4

∑m
i=1 E

(
(h(Yi))

4
)
. We have

E
(
(h(Yi))

4
)
≤ 34

(
|t− s|+ |t− s|4 + E(|Y1|4)L4|t− s|4/2

)
≤ C1|t− s|, , (54)

for C1 = 5 34L4 > 0. Since r2m ≤ m, we obtain

r4m
m4

m∑
i=1

E
(
(h(Yi))

4
)
≤ C1

m
|t− s|. (55)
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Sum over #{i, j, k, `} = 2 Up to a multiplicative constant, we should consider the sum

r4m
m4

∑
i 6=j

E
(
(h(Yi))

2(h(Yj))
2
)

= T
(1)
1 + T

(1)
2 ,

where, for an arbitrary η1 > 0, T
(1)
1 and T

(1)
2 are defined by

T
(1)
1 =

r4m
m4

∑
i 6=j

1 {|Γi,j | > η1}E
(
(h(Yi))

2(h(Yj))
2
)

; (56)

T
(1)
2 =

r4m
m4

∑
i 6=j

1 {|Γi,j | ≤ η1}E
(
(h(Yi))

2(h(Yj))
2
)
. (57)

On the one hand, by using (54),

T
(1)
1 ≤ r4m

η21m
4

∑
i 6=j
|Γi,j |2E

(
(h(Yi))

2(h(Yj))
2
)
≤ C1

η21m

 r2m
m2

∑
i 6=j
|Γi,j |2

 |t− s|. (58)

On the other hand, by using (76) in Proposition B.1 (with g1 = g2 = (h)2 and d = 2), we
obtain that for any i 6= j such that |Γi,j | ≤ η1 (choosing η1 > 0 such that 2

√
3η1 < 1),

E
(
(h(Yi))

2(h(Yj))
2
)
≤ 1

(1− 2
√

3η1)2

(
E
(
|h(Z)|8/3

))3/2
≤ C2

(1− 2
√

3η1)2
|t− s|3/2,

for C2 = 34L4
(
E
(
|Z|8/3

))3/2 ∈ (0,∞) . Hence, we get

T
(1)
2 ≤ C2

(1− 2
√

3η1)2
|t− s|3/2. (59)

Sum over #{i, j, k, `} = 3 Up to a multiplicative constant, we should consider the sum

r4m
m4

∑
i,j,k 6=

E
(
h(Yi)h(Yj)(h(Yk))

2
)

= T
(2)
1 + T

(2)
2 ,

where, for an arbitrary η2 > 0, T
(2)
1 and T

(2)
2 are defined similarly to (56) and (57), by

separating the case where maxe1 6=e2∈{i,j,k} |Γe1,e2 | is above or below η2.
On the one hand, by using (54), we have

T
(2)
1 ≤ C1r

4
m

m4

∑
i,j,k 6=

1

{
max

e1 6=e2∈{i,j,k}
|Γe1,e2 | > η2

}
|t− s|

≤ 3
C1/η

4
2

m

 r4m
m2

∑
i 6=j
|Γi,j |4

 |t− s|. (60)

On the other hand, by using (77) in Proposition B.1 (with g1 = g2 = h, g3 = (h)2, f1 =
f2 = 1 {s < Φ(·) ≤ t}, d = 3 and d′ = 2), we obtain that for any distinct i, j, k such that
maxe1 6=e2∈{i,j,k} |Γe1,e2 | ≤ η2 (choosing η2 > 0 such that 3

√
3η2 < 1),

E
(
h(Yi)h(Yj)(h(Yk))

2
)
≤ max

e1 6=e2∈{i,j,k}
|Γe1,e2 |2

272

(1− 3
√

3η2)3
|t− s|3/2 ×

√
C2.
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This yields

T
(2)
2 ≤ 3

√
C2 272

(1− 3
√

3η2)3

 r2m
m2

∑
i 6=j
|Γi,j |2

 |t− s|3/2. (61)

Sum over #{i, j, k, `} = 4 The last sum to be considered is

r4m
m4

∑
i,j,k,` 6=

E
(
h(Yi)h(Yj)h(Yk)h(Y`)

)
= T

(3)
1 + T

(3)
2 ,

where, for an arbitrary η3 > 0, T
(3)
1 and T

(3)
2 are defined similarly to (56) and (57), by

separating the case where maxe1 6=e2∈{i,j,k,`} |Γe1,e2 | is above or below η3. As before,

T
(3)
1 ≤ C1r

4
m

m4

∑
i,j,k,` 6=

1

{
max

e1 6=e2∈{i,j,k,`}
|Γe1,e2 | > η3

}
|t− s|

≤ 6
C1

η43

 r4m
m2

∑
i 6=j
|Γi,j |4

 |t− s|. (62)

Next, by using (77) in Proposition B.1 (with gi = h, fi = 1 {s < Φ(·) ≤ t} and d′ = d = 4),
we obtain that (choosing η3 > 0 such that 4

√
3η3 < 1),

T
(3)
1 ≤ r4m

m4

∑
i,j,k,` 6=

max
e1 6=e2∈{i,j,k,`}

|Γe1,e2 |4
484

(1− 4
√

3η3)4
|t− s|3

≤ 6
484

(1− 4
√

3η3)4

 r4m
m2

∑
i 6=j
|Γi,j |4

 |t− s|3. (63)

Finally, we obtain (52) by combining the bounds (55),(58),(59),(60),(61),(62),(63) and by
using the assumptions (vanish-secondorder) and (H1).

5.5. Proof for Remark 3.3

Obviously, (H3) and (H4) imply (vanish-secondorder), (H2) with θ = +∞, and rm ∼ γ
−1/2
m .

Hence, Proposition 5.2 entails that the finite dimensional laws of Xm = rm(F̃m− I) converge
to 0 and it only remains to prove that Xm is tight. This can be done as in the previous section,
except that we use κ = 2 in Proposition C.1. Namely, we prove that, for large m,

E
∣∣Xm(t)−Xm(s)

∣∣2 ≤ Cγδ0m |t− s|, for all t, s ∈ [0, 1], (64)

for some constants C > 0, δ0 > 0. To prove (64), we write (by using the same notation as in
the previous section)

E
∣∣Xm(t)−Xm(s)

∣∣2 =
r2m
m2

∑
i,j

E
(
h(Yi)h(Yj)

)
≤C3

r2m
m
|t− s|+ C3|t− s|

r2m
η2m2

∑
i 6=j
|Γi,j |2

+
r2m
m2

∑
i 6=j

1 {|Γi,j | ≤ η}E
(
h(Yi)h(Yj)

)
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for some η > 0 and by letting C3 = 4 32L2 > 0. Applying now (77) in Proposition B.1 (with
gi = h, fi = 1 {s < Φ(·) ≤ t} for i = 1, 2 and d′ = d = 2), we obtain that (choosing η > 0
such that 2

√
3η < 1),

r2m
m2

∑
i 6=j

1 {|Γi,j | ≤ η}E
(
h(Yi)h(Yj)

)
≤ (12)2

(1− 2
√

3η)2
|t− s|3/2

 r2m
m2

∑
i 6=j
|Γi,j |2

 .

Finally, since (H3) and (H4) provide r2m
m2

∑
i 6=j |Γi,j |2 = O(γε1m ) and r2m/m = O(γε2m ) for some

ε1, ε2 > 0, the criterion (64) is proved with δ0 = ε1 ∧ ε2 and the proof is finished.

Appendix A: Technical results for proving the main theorem

Lemma A.1. Assume that Γ(m) satisfies (vanish-secondorder) and (eigenvalues-away0). For
1 ≤ i ≤ m, let us consider the filtration {Fi}0≤i≤m defined by F0 = σ(∅) and Fi =
σ(Y1, . . . , Yi), and denote σ2i = Var [E (Yi | Fi−1)]. Consider the function ht(·) defined by (46),
the Hermite polynomials H`(·) defined by (71) and the coordinates c`(·) defined by (5). Then
the following holds:

r2m
m2

m∑
i=1

σ2i → 0; (65)

r2m
m2

∑
i,j

(E [E (Yi | Fi−1)E (Yj | Fj−1)])2 → 0; (66)

r2m
m2

m∑
i=1

E
[
(E (ht(Yi) | Fi−1))2

]
→ 0, for any t ∈ [0, 1]; (67)

E

(rm
m

m∑
i=1

E (ht(Yi) | Fi−1)

)2
→ 0, for any t ∈ [0, 1]. (68)

Proof. By using Cholesky’s decomposition, we can write Γ = RRT where R is m×m a lower
triangular matrix. Hence, denoting by R1,., . . . Rm,. the lines of R, we have < Ri,., Rj,. >= Γi,j
for all i, j. Moreover, since we can write Yi =

∑i
j=1Ri,jZj for some Z1, . . . , Zm i.i.d. N (0, 1),

we have R2
i,i = Var(Yi | Fi−1) = 1− σ2i and σ2i =

∑i−1
j=1R

2
i,j for all i.

Let us now prove (65). From (eigenvalues-away0), we have for all x ∈ Rm, ||RTx||2 =
xTΓx ≥ η||x||2. Hence for all x ∈ Rm, ||Rx||2 ≥ η||x||2. Thus, we have

∑
i<j

Γ2
i,j =

m∑
j=1

j−1∑
i=1

(
[RRTj. ]i

)2 ≥ η m∑
j=1

j−1∑
i=1

R2
j,i = η

m∑
i=1

σ2i ,

which proves (65) by (vanish-secondorder). As for (66), we have for i < j,

E [E (Yi | Fi−1)E (Yj | Fj−1)] = E

[
i−1∑
k=1

Ri,kZk

j−1∑
`=1

Rj,`Z`

]
=

i−1∑
k=1

Ri,kRj,k = Γi,j −Ri,iRj,i.
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Hence, we obtain

∑
i<j

(E [E (Yi | Fi−1)E (Yj | Fj−1)])2 =
∑
i<j

(Γi,j −Ri,iRj,i)2 ≤ 2

∑
i<j

Γ2
i,j +

∑
i<j

R2
j,i

 ,

which establishes (66) by (65) and (vanish-secondorder).
Next, let us establish the following equality in L2(Pm): for any i = 1, . . . ,m and t ∈ [0, 1],

E (ht(Yi) | Fi−1) =
∑
`≥2

c`(t)

`!
σ`iH`

(
E (Yi | Fi−1)

σi

)
, (69)

where the RHS of (69) is 0 if σi = 0. For this, consider some 1 ≤ i ≤ m and assume σi > 0

(otherwise the result is obvious). Let Ỹi = E(Yi | Fi−1)
σi

∼ N (0, 1). By using the multivariate

Gaussian structure of Y , the distribution of Yi conditionally on Fi−1 only depends on Ỹi.
Hence, we can write E (ht(Yi) | Fi−1) = g(Ỹi) for a (unique) function g in L2(R,N (0, 1)). We
now consider the expansion of g w.r.t. the Hermite polynomials in that space:

g(·) =
∑
`≥0

E(g(Ỹi)H`(Ỹi))

`!
H`(·),

and we can compute each coordinate E(g(Ỹi)H`(Ỹi)) in the following way: for any ` ≥ 0,

E
[
H`(Ỹi)E (ht(Yi) | Fi−1)

]
= E

[
H`(Ỹi)ht(Yi)

]
=
∑
`′≥2

c`′(t)

(`′)!
E
[
H`(Ỹi)H`′(Yi)

]
=
c`(t)

`!
σ`i `! 1 {` ≥ 2},

by using Fubini’s theorem (because
∑

`′≥2
|c`′ (t)|
(`′)! E

[
|H`(Ỹi)H`′(Yi)|

]
≤ (`!)1/2

∑
`′≥2

|c`′ (t)|
(`′!)1/2

<

∞), and by applying (72) with Cov(Yi, Ỹi) = σi. This proves (69).
Finally, by using (69), (72) and notation above, we have

E

(rm
m

m∑
i=1

E (ht(Yi) | Fi−1)

)2
 =

r2m
m2

∑
i,j

E [E (ht(Yi) | Fi−1)E (ht(Yj) | Fj−1)]

=
r2m
m2

∑
i,j

∑
`≥2

∑
`′≥2

c`(t)

`!

c`′(t)

(`′!)
σ`iσ

`′
j E
[
H`(Ỹi)H`′(Ỹj)

]
=
r2m
m2

∑
i,j

∑
`≥2

c`(t)
2

`!
σ`iσ

`
j

(
E
[
ỸiỸj

])`

≤

∑
`≥2

c`(t)
2

`!

 r2m
m2

∑
i,j

(E [E (Yi | Fi−1)E (Yj | Fj−1)])2
 ,

which proves (68) by using (66). Exactly the same calculation with “i = j” shows (67) from
(65).
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Lemma A.2. Assume that Γ(m) satisfies (vanish-secondorder) and that r2m Var(Y m) con-
verges to some positive real number. Consider the (m+1)× (m+1) covariance matrix Λ(m+1)

of (Yi)0≤i≤m defined in Section 5.3. Then the rate

rm+1(Λ
(m+1)) =

(m+ 1)−1 +

∣∣∣∣∣∣(m+ 1)−2
∑

0≤i 6=j≤m
Λ
(m+1)
i,j

∣∣∣∣∣∣
−1/2

satisfies rm+1(Λ
(m+1)) ∼ rm and moreover

(m+ 1)−2r2m
∑

0≤i 6=j≤m

(
Λ
(m+1)
i,j

)2
= o(1). (70)

In particular, Λ(m+1) satisfies (vanish-secondorder). Finally, when (H2) holds for Γ(m), it
also holds for Λ(m+1), with the same value of θ.

Proof. By definition,

m−2
∑

0≤i 6=j≤m
Λi,j = m−2

∑
1≤i 6=j≤m

Γi,j + 2m−2
∑

1≤j≤m
Λ0,j .

Since Λ0,j = (VarY m)−1/2m−1
∑m

i=1 Γi,j , we have

m−2
∑

1≤j≤m
Λ0,j = (VarY m)−1/2m−1m−2

∑
1≤i,j≤m

Γi,j = m−1

m−2 ∑
1≤i,j≤m

Γi,j

1/2

,

which is o(1/m) because Γ satisfies (vanish-secondorder) and thus (A). This implies rm+1(Λ) ∼
rm. Next, we establish (70). Let us write

(m+ 1)−2r2m
∑

0≤i 6=j≤m
(Λi,j)

2 = (m+ 1)−2r2m

 ∑
1≤i 6=j≤m

(Γi,j)
2 + 2

∑
1≤j≤m

(Λ0,j)
2

 .

Furthermore, we have

∑
1≤j≤m

(Λ0,j)
2 = (VarY m)−1

∑
1≤j≤m

(
m−1

m∑
i=1

Γi,j

)2

≤ (VarY m)−1m−2
∑

1≤i,i′≤m

2Γi,i′ +
∑

j /∈{i,i′}

Γi,jΓi′,j


≤ 2 + (mVarY m)−1

∑
1≤i 6=j≤m

(Γi,j)
2 .

This implies the result, because mVarY m ≥ r2m VarY m, which is bounded away from 0 by
assumption.
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Appendix B: Results related to Hermite polynomials

Let us first recall that the sequence of Hermite polynomials H`(x), ` ≥ 0, x ∈ R, is defined
by the expression: for all ` ≥ 0,

∀x ∈ R, φ(`)(x) = (−1)`H`(x)φ(x), (71)

where φ(x) = (2π)−1/2 exp(−x2/2) is the density of a Gaussian standard variable and φ(`)

denotes its `-th derivative (by convention, φ(0) = φ). For instance, we have H0(x) = 1,
H1(x) = x and H2(x) = x2 − 1.

A well known fact is that {H`(·)/(`!)1/2, ` ≥ 0} is an Hilbert basis in L2(R,N (0, 1)), the
Hilbert space composed by square integrable functions w.r.t. the standard Gaussian measure.
Moreover, the following property holds: for any centered 2-dimensional Gaussian vector (U, V )
with EU2 = EV 2 = 1,

∀`, `′ ≥ 0, ` 6= `′, E(H`(U)H`′(V )) = (Cov(U, V ))` `! δ`,`′ . (72)

The latter can be seen as a consequence of Mehler’s formula, itself being nicely presented in
Foata (1981) (1.4) (see also references therein).

Proof of Proposition 2.1 Let us start by expanding, for any t ∈ [0, 1], the function
1 {Φ(·) ≤ t} w.r.t. the Hermite polynomial basis in L2(R,N (0, 1)):

1 {Φ(·) ≤ t} =
∑
`≥0

c`(t)H`(·)/(`!). (73)

By applying (73) at Yi, we obtain the following expansion in L2(Pm): for all i = 1, . . . ,m,

1 {Φ(Yi) ≤ t} =
∑
`≥0

c`(t)H`(Yi)/(`!). (74)

By averaging w.r.t. i, we obtain

F̂m(t)− t =
∑
`≥1

c`(t)

`!
m−1

m∑
i=1

H`(Yi). (75)

where the series in the RHS of (75) converges in L2(Pm) (by using the triangle inequality).
The proof is finished by combining (75) with (72).

Next, the following proposition shares some similarities with Lemma 4.5 of Taqqu (1977)
and Lemma 3 of Csörgő and Mielniczuk (1996).

Proposition B.1. Consider an integer d ≥ 2, a positive number ρ such that
√

3ρd < 1
and Z ∼ N (0, 1). Let g1, . . . , gd be d measurable real functions defined on R such that
E
(
|gi(Z)|4/3

)
< +∞, 1 ≤ i ≤ d. Let (U1, . . . , Ud) be d-dimensional centered Gaussian vector

with EU2
i = 1, 1 ≤ i ≤ d, and |E(UiUj)| ≤ ρ, 1 ≤ i 6= j ≤ d. Then the following holds:

E

[
d∏
i=1

|gi(Ui)|

]
≤ 1

(1−
√

3ρd)d

d∏
i=1

(
E
(
|gi(Z)|4/3

))3/4
; (76)
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Furthermore, if E(gi(Z)) = 0 and E(Zgi(Z)) = 0 for 1 ≤ i ≤ d′ for an integer d′, 1 ≤ d′ ≤ d,
we have ∣∣∣∣∣E

[
d∏
i=1

gi(Ui)

]∣∣∣∣∣ ≤ ρd′ (3d2)d
′

(1−
√

3ρd)d

d∏
i=1

(
E
(
|fi(Z)|4/3

))3/4
, (77)

where fi is any function such that fi(x) = gi(x)− αi − βix, x ∈ R, αi, βi ∈ R, for 1 ≤ i ≤ d′
and fi = gi otherwise.

Proof. The Kibble-Slepian formula Kibble (1945); Slepian (1972) (given, e.g., in expression
(2.2) of Foata, 1981) provides that

E

[
d∏
i=1

gi(Ui)

]
= E

∑
ν

∏
i<j

(E(UiUj))
νij

νij !
.
d∏
i=1

gi(Z)Hνi.(Z)


=
∑
ν

∏
i<j

(E(UiUj))
νij

νij !
.

d∏
i=1

E(gi(Z)Hνi.(Z)), (78)

where the summation is over all the d×d symmetric matrix ν = (νij)1≤i,j≤d with nonnegative
integral entries and with diagonal entries equal to zero, while νi. denotes νi1 + · · · + νid.
Above, we have implicitly used Fubini’s theorem (the summation over ν is infinite). The next
calculations show that this is indeed valid: by using the assumptions, we have

∑
ν

∏
i<j

|E(UiUj)|νij
νij !

.
d∏
i=1

E|gi(Z)Hνi.(Z)|

≤
∑
ν

d∏
i=1

(
ρνi.∏
j νij !

)1/2

E|gi(Z)Hνi.(Z)|

≤
∑

x1,...,xd∈Nd

d∏
i=1

(
ρxi.∏
j xij !

)1/2

E|gi(Z)Hxi.(Z)|

=
d∏
i=1

∑
y∈Nd

(
ρy1+···+yd∏

j yj !

)1/2

E|gi(Z)Hy1+···+yd(Z)|



=

d∏
i=1

∑
`≥0

ρ`/2E
∣∣∣gi(Z)H`(Z)/(`!)1/2

∣∣∣ ∑
y∈Nd

y1+···+yd=`

(
`!∏
j yj !

)1/2

 . (79)

Now, in the latter display, the sum over y is upper bounded by d`, which gives that the RHS
of (79) is upper bounded by

∑
`≥0

(ρd2)`/2E
∣∣∣gi(Z)H`(Z)/(`!)1/2

∣∣∣ ≤
∑
`≥0

(3ρd2)`/2

(E(|gi(Z)|4/3
))3/4

,

where the latter combines Hölder’s inequality with Lemma B.2 (used with p = 4). This proves
(76) and shows that Fubini’s theorem can be applied to get (78).
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Finally, we prove (77) by using (78) and the same calculations as above, except that the
absolute values should be kept outside the expectations. As a result, for 1 ≤ i ≤ d′, since
E(gi(Z)H`(Z)) = 0 for ` = 0, 1 by assumption, the corresponding sums over ` start at ` = 2.
This establishes (77), because for all ` ≥ 2 and 1 ≤ i ≤ d′, E(gi(Z)H`(Z)) = E(fi(Z)H`(Z)).

The following result was obtained in the proof of Lemma 3.1 in Taqqu (1977). We provide
an elementary proof below. Also, let us mention that there are more accurate such results
when ` grows to infinity, see Theorem 2.1 in Larsson-Cohn (2002).

Lemma B.2. For all even integer p ≥ 2 and ` ≥ 0, we have
[
E
(
H`(Z)/

√
`!
)p]1/p

≤ (p−1)`/2,

for Z ∼ N (0, 1).

Proof. For some ` ≥ 1, by using H ′` = `H`−1 and (71), we obtain∫
[H`(x)]pφ(x)dx = (−1)`

∫
[H`(x)]p−1φ(`)(x) dx,

= `(p− 1)

∫
[H`(x)]p−2[H`−1(x)]2φ(x) dx.

Next, by using Hölder’s inequality, we get
(∫

[H`(x)]pφ(x)dx
)2/p ≤ `(p−1)

(∫
|H`−1(x)|pφ(x)dx

)2/p
,

and the result is obtained by induction on `.

Lemma B.3. Consider the function ht(·) defined by (46) and c`(·) defined by (5). Let us
consider a two-dimensional centered Gaussian vector (U, V ) with EU2 = EV 2 = 1. Then for
any t, s ∈ [0, 1], the following holds:

E(ht(U)hs(V )) =
∑
`≥2

c`(t)c`(s)

`!
(Cov(U, V ))`. (80)

Proof. Expression (80) is a direct consequence of (72) and of Fubini’s theorem.

Lemma B.4. The function c1(·) = φ(Φ−1(·)) satisfies the following: for all ν ∈ (0, 1), there
exists some constant Cν > 0 such that for all s, t ∈ [0, 1],

|c1(t)− c1(s)| ≤ Cν |t− s|1−ν . (81)

Proof. First note that the derivative of c1 on (0, 1) is Φ−1. Classically (see, e.g., Lemma 12.3
of Abramovich et al. (2006)), there is some x0 ∈ (0, 1/2) such that for any u ∈ (0, x0),
Φ−1(u) ≤

√
2 log(1/u). Also, obviously, for some fixed ν > 0, there is some C ′ν > 0 such

that for any u ∈ (0, x0),
√

2 log(1/u) ≤ C ′νu
−ν . As a consequence, since |Φ−1| is bounded on

[x0, 1− x0], there exists some constant C ′′ν > 0 such that for all u ∈ (0, 1), |Φ−1(u)| ≤ C ′′νu−ν .
This entails that for all 0 < s ≤ t < 1,

|c1(t)− c1(s)| ≤
∫ t

s
|Φ−1(u)|du ≤ C ′′ν

1− ν
(t1−ν − s1−ν) ≤ Cν(t− s)1−ν

by letting Cν = C ′′ν /(1 − ν) > 0 and because (x + y)δ ≤ xδ + yδ for any x, y ≥ 0 and any
δ ∈ (0, 1).
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Appendix C: Useful auxiliary results

The following result can certainly be considered as well known, although we failed to find a
precise reference for it. It can be seen as a reformulation in our framework of classical tightness
results as given, e.g., in Lemma 2 of Csörgő and Mielniczuk (1996), in Remark 2.1 of Shao
and Yu (1996) and Proposition 6 of Dedecker and Prieur (2007).

Proposition C.1 (Tightness criterion for empirical distribution function with non-stan-
dard scaling parameters). Consider ξ1, . . . , ξm real random variables (that need not to be

independent or identically distributed) such that ξm
P−→ 0 as m tends to infinity, for ξm =

m−1
∑m

i=1 ξm, and consider the process

Zm(t) = (am/m)
m∑
i=1

gt(ξi), for t ∈ [0, 1],

where (am)m is some positive sequence tending to infinity as m tends to infinity and where
gt(x) = 1 {Φ(x) ≤ t} − f0(t) − f1(t)x for functions f0, f1 on [0, 1] such that |f0(t) − f0(s)| ∨
|f1(t) − f1(s)| ≤ L|t − s|q, 0 ≤ s, t ≤ 1, for some q ∈ (0, 1] and L > 0. Assume that the
following holds: for large m,

E
∣∣Zm(t)− Zm(s)

∣∣κ ≤ C(|t− s|δ1 + (am)−δ2/q|t− s|q′
)
, for all t, s ∈ [0, 1], (82)

for constants κ > 0, C > 0, δ1 > 1, q′ ∈ (0, 1] and δ2 > 1− q′. Then, as m grows to infinity,
the sequence of processes (Zm)m is tight in D(0, 1) (endowed with the Skorokhod topology and
the corresponding Borel σ-field) and any limit is a.s. a continuous process.

Proof. The proof is based on standard arguments and is similar to the proof of Theorem 22.1
in Billingsley (1968). Fix ε ∈ (0, 1) and η > 0. Following Theorem 15.5 in Billingsley (1968),
it is sufficient to prove that there exists a δ ∈ (0, 1) such that for large m,

P

 sup
0≤s,t≤1
|s−t|≤δ

|Zm(t)− Zm(s)| > ε

 < η.

We merely check (see, e.g., the proof of Theorem 8.3 in Billingsley (1968)) that the latter
holds if there exists δ ∈ (0, 1) such that for large m,

∀s ∈ [0, 1], P

(
sup

t:s≤t≤(s+δ)∧1
|Zm(t)− Zm(s)| > ε

)
< ηδ. (83)

Let us now prove (83). Fix s ∈ [0, 1]. Assumption (82) entails that for all u, v ∈ [0, 1] such
that (v − u)q ≥ ε/am, we have

E
∣∣Zm(v)− Zm(u)

∣∣κ ≤ 2C

εδ2/q
|v − u|δ3

for δ3 = δ1 ∧ (q′ + δ2) > 1. Hence, if p > 0 is such that pq ≥ ε/am, applying Theorem 12.2 of
Billingsley (1968) we have for all integer M such that s+Mp ≤ 1 and for all λ > 0,

P
(

max
1≤i≤M

|Zm(s+ ip)− Zm(s)| > λ

)
≤ K

λκεδ2/q
(Mp)δ3 (84)
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for some positive constant K > 0 (only depending on δ3, κ and C). Next, we use the following
inequality: for all 0 ≤ u, v ≤ 1, u ≤ v ≤ u+ p,

|Zm(v)− Zm(u)| ≤ |Zm(u+ p)− Zm(u)|+ 2Lamp
q(1 + |ξm|). (85)

The latter holds because we have

Zm(v)− Zm(u) = (am/m)
m∑
i=1

1 {u < ξi ≤ v} − am(f0(v)− f0(u))− am(f1(v)− f1(u))ξm

≤ Zm(u+ p)− Zm(u) + 2Lamp
q(1 + |ξm|)

and Zm(u)− Zm(v) ≤ am(f0(v)− f0(u)) + am(f1(v)− f1(u))ξm ≤ Lampq(1 + |ξm|).
Now, by using (85), we obtain

sup
t:s≤t≤s+Mp

|Zm(t)− Zm(s)| ≤ 3 max
1≤i≤M

|Zm(s+ ip)− Zm(s)|+ 2Lamp
q(1 + |ξm|). (86)

Furthermore, provided that amp
q ≤ 2ε, we have P(2Lamp

q(1 + |ξm|) > 5Lε) ≤ P(|ξm| > 1/4).
Hence, combining (84) and (86), by taking δ ∈ (0, 1) such that Kδδ3−1/εκ+δ2/q < η/2, we will
obtain that for all s ∈ [0, 1− δ], for large m,

P

(
sup

t:s≤t≤s+δ
|Zm(t)− Zm(s)| > (3 + 5L)ε

)
≤ K

εκ+δ2/q
δδ3 + P(|ξm| > 1/4) < ηδ,

as soon as we can choose p > 0 and an integer M such that Mp = δ and ε/am ≤ pq ≤ 2ε/am.
This holds if there exists an integer into the interval [δ(am/ε)

1/q, δ(am/(2ε))
1/q], which is true

for large m because am tends to infinity. This entails (83) with ε replaced by (3 + 5L)ε and
the proof is finished.

Proposition C.2 (Partial functional delta method on D(0, 1)). Consider the linear space
D(0, 1) of càd-làg function on [0, 1] and the linear space C(0, 1) of continuous functions on
[0, 1]. Let θ = (θ0, θ1) ∈ D(0, 1)2. Let φ : D(0, 1)2 7→ R be Hadamard differentiable at θ
tangentially to C(0, 1), w.r.t. the supremum norm, and such that the derivative is of the form

φ̇θ(H0, H1) = gθ(H0), for any (H0, H1) ∈ C(0, 1)2,

for a continuous linear mapping gθ : C(0, 1) 7→ R. Consider Z0,m, Z1,m, m ≥ 1, processes
valued in D(0, 1) and Z0, Z1 two processes valued a.s. in C(0, 1). Assume that the two following
distribution convergences hold (w.r.t. the Skorokhod topology and the corresponding Borel σ-
field), for some positive sequence (am)m tending to infinity:

am(Z0,m − θ0) Z0;

am(Z1,m − θ1) Z1.

Then we have

am(φ(Z0,m,Z1,m)− φ(θ)) gθ(Z0). (87)
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Proof. Classically, let us show that for any subsequence {n} there exists a further subsequence
{`} such that (87) holds along this subsequence. For any {n}, since both processes an(Z0,n −
θ0) and an(Z1,n − θ1) are (Skorokhod-)tight, the joint process (an(Z0,n − θ0), an(Z1,n − θ1))
also is. Hence, by Prohorov’s theorem, there exists a further subsequence {`} such that
(a`(Z0,` − θ0), a`(Z1,` − θ1)) converges in distribution. Now applying the Skorokhod’s repre-
sentation theorem (see, e.g., Theorem 6.7 page 70 in Billingsley (1999)), there exists random
elements T` = (T0,`, T1,`), ` ≥ 1, T = (T0, T1), defined on a common probability space, such
that L(T`) = L (a`(Z0,` − θ0), a`(Z1,` − θ1)), L(T0) = L(Z0), L(T1) = L(Z1) and T` converges
a.s. to T . Since both T0 and T1 belong to C(0, 1) (a.s.) and since any sequence of càd-làg func-
tions converging (w.r.t. to the Skorokhod distance) to a continuous function also converges
uniformly, we obtain

||T0,` − T0||∞ + ||T1,` − T1||∞ → 0 a.s.

Hence, the Hadamard differentiability of φ entails:

φ(θ + t`T`)− φ(θ)

t`
→ gθ(T0) a.s. ,

for any sequence t` → 0. By taking t` = 1/a`, we derive (87) along the subsequence {`}, which
proves the result.

Lemma C.3. Assume that Γ satisfies (A). Then for any h : R → R measurable such that
E|h(Z)| <∞, we have

m−1
m∑
i=1

h(Yi)
P−→ E[h(Z)], for Z ∼ N (0, 1). (88)

Proof. By Section 2, Assumption (A) implies that ∀t ∈ [0, 1], F̂m(t)
P−→ t. Since h ∈ L1(R,N (0, 1)),

for any ε > 0, there is a continuous bounded function hε such that E|h(Z) − hε(Z)| ≤ ε.
Moreover, by definition of the weak convergence, (88) holds for h = hε (for instance, the
convergence in probability can be seen as an a.s. convergence up to consider subsequence).
Since we have

sup
m≥1

{
E

∣∣∣∣∣m−1
m∑
i=1

(h(Yi)− hε(Yi))

∣∣∣∣∣
}
≤ sup

m≥1

{
m−1

m∑
i=1

E |h(Yi)− hε(Yi)|

}
≤ ε,

we can conclude by using Lemma C.4.

The following lemma is classical, see, e.g., Theorem 4.2 in Billingsley (1968).

Lemma C.4. For n ≥ 1 and ε > 0, let Xε
n, Xn, Xε, X be real random variables (Xn and

Xε
n being defined on the same probability space) and such that

(a) ∀ε > 0, Xε
n  Xε as n→∞;

(b) Xε  X as ε→ 0;
(c) lim supn→∞{E|Xε

n −Xn|} → 0 as ε→ 0.

Then Xn  X.
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