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Abstract— Current high-resolution side scan and multibeam sonars produce very large data sets. However, conventional 

interferometry-based bathymetry algorithms underestimate the potential information of such soundings, generally because they use 

small baselines to avoid phase ambiguity. Moreover, these algorithms limit the triangulation capabilities of multibeam echosounders to 

the detection of one sample per beam, i.e., the zero-phase instant. In this paper we argue that the correlation between signals plays a 

very important role in the exploration of a remotely observed scene. In the case of multibeam sonars, capabilities can be improved by 

using the interferometric signal as a continuous quantity.  This allows consideration of many more useful soundings per beam and 

enriches understanding of the environment. To this end, continuous interferometry detection is compared here, from a statistical 

perspective, first with conventional interferometry-based algorithms and then with high-resolution methods, such as the Multiple Signal 

Classification (MUSIC) algorithm.  We demonstrate that a well-designed interferometry algorithm based on a coherence error model 

and an optimal array configuration permits a reduction in the number of beam formings (and therefore the computational cost) and an 

improvement in target detection (such as ship mooring cables or masts). A possible interferometry processing algorithm based on the 

complex correlation between received signals is tested on both sidescan sonars and multibeam echosounders and shows promising 

results for detection of small in-water targets. 

 

 
Index Terms— Sonar detection, interferometry, performance analysis, beam steering, object detection. 

I. INTRODUCTION 

A. Context 

Seafloor exploration is a major objective in many fields, ranging from military applications to civilian industries. This paper 

focuses on cartographic applications that need accurate bathymetric measurements with full-swath coverage. Typical applications 

are seafloor mapping for geosciences and hydrography, shipwreck inspections, and pipeline surveys.  

Current acoustic methods of seafloor cartography are mainly dominated by multibeam echosounders (MBES), although phase-

differencing bathymetric sidescan sonars are becoming real challengers. MBES systems can, after transmission of a single signal, 

perform a large number of soundings on a wide strip of terrain perpendicular to the ship track. This paper is intended to move the 

performance of multibeam systems a step forward by improving their spatial resolution while maintaining current accuracy levels. 

We have concentrated in this paper work carried out in recent years on the analytical formalism of interferometry performance, 

comparisons with other existing methods, and different approaches to implementation in multibeam systems. 
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Fig. 1. Three-sensor-based sidescan (left panel) and multibeam (right panel) interferometry geometry, defining the baselines Bi, propagation-path delay δR 

between sensors 1 and 2, common arrival angle θ, tilt angle θs, and altitude z. Definition of the parameters used to evaluate the range-shift decorrelation 

including the resolution-cell size Dx and the footprint shift Δx. 

 

B. What is interferometric bathymetry? 

With the increase in processing and storage capacity of remote sensing systems, current multibeam bottom detectors should not 

be content with only a high-resolution description of the sea bottom. Other targets in the water column, such as ship masts or 

mooring chains, can actually be detected by current multibeam technology as previously by sidescan and synthetic aperture 

sonars. Bathymetry is derived from measurements of ocean depth made by depth sounding. Two approaches can be considered to 

estimate water depths for a given beam forming: either the estimation of the time of arrival (TOA) of backscattered signals for a 

predefined tilt angle or the estimation of the direction of arrival (DOA) for a given instant of time. Multibeam echosounders are 

used to determine the two-way propagation distance of a single emitted pulse by applying target detection techniques such as 

interferometry (Denbigh, 1989), subspace-based methods (Krim, 1996), or active contour detection (Yang, 1997). We have been 

specially looking into the interferometry method because of its simplicity and its speed. These characteristics are demonstrated 

throughout this paper. 

The interferometry method is a relevant solution provided that the illuminated area is not too large and it is well adapted for 

oblique and grazing angles (Masnadi-Shirazi, 1992; Jin, 1996). This technique provides accurate bathymetric information from 

the phase shift ΔΦ. This shift arises when the backscattered wave front reaches two close receivers at different instants (see Fig. 

1). Thus, ΔΦ is geometrically related to the path-length difference δR, giving 

 

sBR sin
22

 (1)  

This means that the true direction of the noiseless wave front, denoted here , can be determined from the phase shift ΔΦ. In 

other words, at each instant of time, we can determine the DOA of the signal by converting each measurement ΔΦ into an angular 

measurement , and by triangulation, the coordinate position of the in-water target. The other parameters in (1), such as the tilt 

angle θs, the spacing B between the two sensors, commonly called the baseline, or the acoustic wavelength λ, depend on the sonar 

configuration and are supposed to be well known. Note that (1) is true for an isotropic and non-dispersive medium assuming a 

stationary noise process and far field propagation.  

As the direction of the wave front is directly related to the phase shift ΔΦ, the goal now is to find a way to measure this shift. A 

usual approach is to measure the difference Δφ between the phases of the two signals S1 and S2 of each receiver related to a path 
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delay between sensors. 

 *

1 2
ˆ arg s s  (2)  

The operator arg{x} gives the phase of a complex value x, and S2* stands for the complex conjugate of signal S received by the 

second sensor. The parameter ˆ  corresponds to an estimation of the phase difference Δφ. An estimator is used in a statistical 

model to infer the value of an unknown parameter based on observed data. Thus, an estimator of x is denoted here by the 

symbol x̂ . 

The problem of the argument operator arg{x} is that it delivers values within a 2π-length interval. Indeed, the true phase shift 

may take values greater than 2π, but the argument operator truncates them. The result, displayed in Fig. 5 (lower panel), is a set of 

phase jumps when a phase measurement exceeds 2π. In order to interpret this figure, let us assume a flat sea floor whose 

representation is a horizontal line with a constant depth. If we convert this Cartesian coordinate system (depth, across-track 

distance) to a polar system (distance from the sonar to the sea floor or range, DOA), the result is a bell-shaped curve with a peak 

corresponding to the range at the nadir. Finally, if the DOA is converted to phase measurement ΔΦ using (1), the resulting form is 

also a bell. Each time we form a beam, a small part of the sea floor is insonified. In other words, the beamforming provides a 

piece of this bell corresponding to a curve. When this curve is estimated through (2), the resulting phase values are truncated 

between –π and π radians (or -180º and 180º), leading to the saw-tooth shape of samples between sample #600 and #800 depicted 

in Fig. 5 (lower panel). The rest of samples in this panel correspond to noise recorded by the hydrophones before and after the 

arrival of the wave front. A way to distinguish useful samples from noisy ones is discussed in Section IV. 

In order to compensate for this truncation and obtain a whole curve without discontinuities, a phase-rotation counter m is 

necessary to link the phase difference Δφ with the phase shift ΔΦ: 

 m2  (3)  

The counter m takes here integer values. The final interferometry equation, linking the estimator ˆ   of the phase difference and 

the estimator ˆ of the direction of arrival, is written as: 

 2 ˆˆ sin 2sB m  (4)  

Consequently, the estimated phase difference is ambiguous because the value of the rotational counter m is unknown.  

Two important terms appear in (4): an absolute phase shift, corresponding to the sine term, and the 2πm rotations. In order to 

retrieve the absolute shift, which leads to the target DOA estimation, it is necessary to measure the interferometric phase Δφ, and 

then to determine the rotation counter m.  The phase ambiguity can be removed by either an edge-detection algorithm (Tribolet, 

1977) (i.e. detecting phase jumps around π, and adding 2π to the phase difference) or an ad hoc method (Shensa, 1978; Sintes, 

2010) locally estimating the m counter of each ambiguous phase sample. An interferometric phase ambiguity removal step is 

crucial to estimation of the target elevation angle θ and depth z.  

So far, the description of the interferometry principle can be applied to sonar systems such as sidescan sonar, for which a single 

narrow sound beam is transmitted and received. As a result, the tilt angle θs of the receiver array is physically fixed at some given 

angle by the sonar supplier. Conversely, a MBES transmits and receives a fan of beams with small individual widths across the 

ship axis, and the tilt angle θs varies according to the desired beam direction. As a result, the physical detection geometry changes 

in such as way that the estimator of the phase difference can be written as 
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 2 ˆˆ sin( ) sin( ) 2sB m  (5)  

The existence of two sine terms in (5) compared with the unique term in (1) is due to the beam forming geometry in reception. 

As highlighted, what bathymetry seeks is to determine the coordinates of the measurement point, that is, time of arrival and 

direction of arrival of backscattered signals. To this end, most interferometry-based MBES bottom detectors seek to estimate the 

zero-phase instant (ZPI). Assuming farfield propagation conditions, when the backscattered signal reaches the two receivers 

perpendicularly to the interferometer line, i.e. θ=θs, the sine term (1) is null, resulting in a zero phase difference. This way, the 

coordinates of a point in the space are estimated as follows: the TOA of backscattered signals is defined by the ZPI, and the DOA 

is given by the beam pointing angle θs. The phase ramp (as a function of time) is usually fitted with a polynomial using a least 

squares fit whose intersection with the zero-phase axis provides the instant corresponding to the sounding (Lurton, 2003). This 

procedure delivers one sounding per beam. Therefore, the number of soundings contributing to the bathymetry depends on the 

number of formed beams. 

Another approach for high-resolution bathymetry consists of converting all useful samples ˆ   of a phase difference into 

DOA measurements ˆ  based on (6). This is commonly done in sidescan sonar systems (Kraeutner, 1999). 

 
1 ˆ 2ˆ sin

2 /
s

m

B
 (6)  

Equation (6) yields a dense series of angular measurements as a function of time: indeed, the data density may be as high as given 

by the sampling frequency of the time signals. For instance, the beam forming that delivers the phase difference depicted in Fig. 5 

would produce about 200 angular measurements. 

In conclusion, two approaches can be considered: 

 Estimation of the target range R (i.e. TOA) for a predefined angle θ (equal to the beam pointing angle θs), based on a 

polynomial fit of the phase ramp using N phase samples. 

 Estimation of the DOA θ for a given instant t=tk based on (6) where ( )kt  could be the result of an N sample 

filtering process used to reduce the interferometric phase variance. 

Now, let us quantify the levels of accuracy for these two approaches. 

C. Why interferometric bathymetry? 

To demonstrate why interferometry should be of interest, we will briefly examine the quality of soundings.  Basically, a depth 

sounding z can simply be evaluated through trigonometry as 

 cosz R  (7)  

For the sake of simplicity, we present here a relative measurement error instead of a classical calculation based on variance 

estimators which would the right way to quantity statistical performances of an estimator. Thus, the relative depth measurement 

error δz/z can be expressed as a function of the angular and range measurement errors as (Lurton, 2003): 

 
tanln

R

R

z

z
z  (8)  

The term z  can be assimilated to 
2ẑ  where ẑ  represents an estimation of z. The same could be done for , , and 

t . 
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Equation (8) is composed of two terms: the first term, depending on δR, represents the part of the error corresponding to the TOA 

estimation. The second term is linked to the DOA measurement error. On one hand, if phase detection is based on (6), only the 

second term is considered because R is constant. Thus, the depth measurement error δz can be written as a function of the 

interferometric error δΔφ based on (4), resulting in (Sintes, 2010): 

 
tan

)cos(2 sBz

z
 (9)  

See then that the depth measurement error depends on sonar parameters such as the distance B between the two receivers or the 

acoustic wavelength . 

On the other hand, the error in interferometry measurements based on ZPI detection only concerns the first term in (8) because 

θ is a constant value equal to θs, and therefore  is equal to zero. As a result, 

 z R t

z R t
 (10)  

The simplest ZPI detection takes advantage of the time evolution shape of the interferometric phase and consists in a linear 

regression (LR) of the (assumed linear) phase ramp around the ZPI (Lurton, 2003). This approach, called here LR ZPI, can be 

improved by weighting the calculations with the amplitude of the cross product s1s2*, denoted here WLR ZPI (for weighted linear 

regression zero-phase instant). With this linear approximation of the interferometric phase difference, the depth measurement 

error δz becomes proportional to the interferometric phase error δΔφ. In other words, a time error can be converted into an 

interferometric phase error: 

 tabat  (11)  

The next step is to analyze the performances of these techniques. Thus, in order to quantify the depth estimation error based on 

a known ground truth, a Monte Carlo simulation was performed based on the parameters of a 300-kHz MBES composed of an 

array with 80 sensors at half wavelength spacing and a pulse length of 150 µs. The baseline of the interferometer was of 13 . The 

seafloor was 23 meters deep and the beam pointing angle θs was preset at 50°. Under these conditions, a phase ramp composed of 

41 time samples was simulated for a π radian dynamic range and with the true ZPI exactly in the center of the ramp.  

Fig. 2 shows how the errors associated with the different estimators  involved in this simulation have been computed: in the 

absence of noise, the linear regression leads to the solid curve without errors, whereas in the presence of noise, the linear 

regression is biased resulting in the dashed curve. For this figure, we assume that the phase ramp is a straight line near the ZPI for 

the sake of simplicity. Thus, two estimation errors can be considered: the error between the true ZPI and the estimated ZPI, and 

the estimation error between the true zero phase (solid curve) and non-zero phase (dashed curve) at the true ZPI. These 

estimation errors are called ZPI error and Phi error, respectively. As the ZPI error is given in the time domain (difference 

between two instants of time), and the Phi error is in the phase domain, the former must be converted into the phase domain in 

order to be compared with the Phi error. 
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Fig. 2. Sketch showing two ways to compute the misdetection of the ZPI: (1) the Phi error represents the difference between noisy phase difference and true 

phase difference at true ZPI; (2) the ZPI error represents the difference between the true and the estimated instants of zero phase. 

  

Finally, a stationary maximum likelihood estimator (SMLE) and a nonstationary maximum likelihood estimator (NSMLE) 

were also performed on these simulated data in order to enrich the estimation error comparison. The interest in such estimators 

lies in the fact that estimators based on a maximum likelihood criterion are known to produce estimates with the lowest possible 

variance (reaching the Cramer Rao bound) (Kendall, 1961). In our case, the SML estimator of N complex samples is given by 

(14) in (Masnadi-Shirazi, 1992): 

 
2 *

1 2
1 1

2 *

1 2

1

( ) Im ( ) ( )

ˆ tan

( ) Re ( ) ( )

N

k k k

k

N

k k k

k

W t S t S t

W t S t S t

 (12)  

S1(tk) represents here the signal received by the first sensor at instant tk, Re{x} and Im{x} are the real and imaginary parts of a 

complex value x, and W is a window function. Stationary estimators are widely implemented because they assume that the 

statistical characteristics of a given process (in our case, the mean, variance, and correlation of the received signal) do not change 

over time. Put another way, if one were to observe a stationary random process at some time t1, its statistical characteristics would 

be the same as the one observed at some other time t2. This is roughly the definition of a stationary process and an example is the 

noise received by sensors. However, the signal backscattered by an in-water target may not be stationary. Hence, (Llort-Pujol, 

2012b) discusses the advantages of a nonstationary estimator and proves that coefficients a and b of the linear regression in (11) 

can be estimated as follows: 

 

k

taj

kk

k

ketStSb

tSSFTa

ˆ*

21

*

21

)()(argˆ

))((maxarg2ˆ

 (13)  

The argument operator arg of the first equation in (13) gives the maximum value of the Fourier transform FT of the product S1S2* 

at the instant tk, while the same operator in the second equation gives the phase of the summation. 
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Fig. 3. Relative depth-measurement error obtained by six estimators: nonstationary maximum likelihood estimator (solid line), stationary maximum likelihood 

estimator („*‟ line), phase estimation from linear regression (dashed-dotted line), phase estimation from weighted linear regression (dashed line), zero-phase 

instant from linear regression („x‟ line), and zero-phase instant from weighted linear regression (diamond line). Parameters: H= 23 m, θs= 50°. 

 

The error comparison resulting from these six estimators is shown in Fig. 3. First, it appears that the estimation errors are lower 

for LR Phi and WLR Phi if the phase in the center of the analysis window is used rather than the ZPI. Second, the SMLE obtains 

poor results for low SNR compared with other estimators such as LR Phi and WLR Phi, due to the unstable characteristics of 

interferometry. Moreover, Fig. 3 demonstrates the great benefit of using an estimator adapted to the evolution of phase. Indeed, 

the NSMLE is not applied to the phase Δφ as done by the linear regression, but to the complex signal S1S2*. As a result, the 

NSMLE is not affected by the presence of phase jumps and delivers promising performances. This could be an asset for large 

baseline interferometers (generating phase discontinuities) or beam apertures used by sidescan sonars or MBES to process data 

from outer beams close to 2π. In conclusion, the non-stationary approach represents one solution to noise reduction with phase 

ambiguities during sounding processing among other techniques based on correlating information between each sensor of an 

array.  

D. What can we expect from interferometric bathymetry: Guide to the Reader 

Although interferometric measurement is simple in principle, it can be interesting to compare it to other goniometric 

techniques which use the same kind of information (correlation), and to examine the result of processing data coming from larger 

baselines in order to improve performance. Two main drawbacks are involved in the evaluation of the interferometry equation 

(6). As interferometry processing depends on the quality of the signal, the first drawback is the need to distinguish the phase 

samples containing bathymetric information from noisy samples. The second is that estimating the phase rotation counter m of 

each phase sample may be needed according to the interferometer configuration, i.e. large or narrow baselines.  

This paper proposes a set of processing enhancements in order to extract greater precision in seafloor depth, capture of in-

water objects generally not captured with conventional techniques, and reduction of computational burden in generating images 

and bathymetric maps. The reading may be difficult for a general readership at first glance, but behind each equation, we have 

tried to give them a comprehensive meaning by showing the interest of having them.  

We have divided this paper into five sections. In the introduction, we have presented the interferometry principle and two 

solutions for bathymetry purposes: detection of the zero-phase instant, and conversion of each phase sample into an angular 



JOURNAL OF MARINE TECHNOLOGY SOCIETY 

 

8 

measurement. In order to success in the transition from one simple approach to the other, Section II describes a solution based on 

a probability model, that is, evaluation of the quality of phase samples and analysis of interferometry performance prediction, 

making it possible to reject samples without information. This section may be the most cumbersome for a general readership. 

After introducing our solution, in Section III we compare interferometry processing with other well-known performing techniques 

in order to quantify if it is worthwhile implementing the interferometry method. It turns out that the proposed modeling provides 

similar results to other techniques, but with a lower computational burden. This way, we justify the interest of such processing. 

Then, knowing that interferometry can challenge other techniques, the next step reported in Section IV consists of proposing how 

to implement optimally interferometry to current MBES. In this section, we integrate the contributions of Sections II and III into 

a bathymetry algorithm that enables the removal of phase ambiguities and optimizes the performances of interferometers with 

respect to computational time and spatial resolution. Finally, in Section V we show the experimental bathymetry results of such 

processing obtained from shipwreck inspections (involving complex in-water targets). From a particular set of experimental data, 

we quantify the reduction of number of beam formings and the increase of resolution, and we demonstrate the potential of the 

interferometric information contained in the cross product S1S2*. 

II. PERFORMANCE EXPECTATION 

One of the main difficulties of interferometry, apart from the SNR level or multipath arrivals, concerns the sensitivity of phase 

measurements to the baseline length. Indeed, the baseline is only a few wave lengths long, while the two-way propagation-path 

distance is several hundred wave lengths long. As a result, a small error due to noise on the signal can rapidly damage the quality 

of the DOA estimation. Furthermore, the impact of noise in a phase measurement is not only important in terms of accuracy and 

performance prediction, but also in terms of confidence on the acquired data to build nautical charts. This section is devoted to 

the analysis of the correlation coefficient, which plays a central role in the accuracy determination and bathymetric performance 

estimation (Bird, 2005). 

A. Correlation coefficient-based prediction 

The statistical behavior of the interferometric signal is at the heart of the problem as it allows the bathymetric mean square 

error to be derived. The backscattered signal si received by the i-th sensor can be modeled as a second-order circular Gaussian 

process (Sintes, 2010) for high frequency sonar. The main sources of signal degradation found in phase-difference measurements 

can be divided into two classes: intrinsic noises, corresponding to phenomena responsible for signal decorrelation, and extrinsic 

noises, such as roll effects or water velocity fluctuations, which directly degrade the bathymetry measurements. Note that both 

interferometry and beam forming are based on the Huygens principle, and the correlation between signals turns out to be an 

important indicator of the measurement quality. 

Intrinsic noises are a combination of four phenomena: angular decorrelation, spatial decorrelation or sliding footprint, ambient 

noise, and multipath. The decorrelation phenomena occur when two closely spaced receivers do not see exactly the same 

resolution cell because of the spacing between them (range-shift decorrelation aka sliding footprint) or when the interference 

patterns of backscattered signals are slightly different, resulting in a loss of coherence between the two receiver outputs (angular 

decorrelation aka baseline decorrelation). The first decorrelation can be minimized by a pre-registration of signals (Sintes, 2010). 

Multipath propagation is also a cause of fading by interfering with the backscattered signal and damaging the reception of the 

wave front of the main signal. This phenomenon can be very detrimental for outer beams depending on sidelobe levels. Finally, 

the ambient noise features several contributions such as surface agitation, living organisms, ship traffic noise, and internal noises 

of sonar systems, both acoustical and electrical. The more severe phenomena are decorrelation and ambient noise, at the nadir 
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angles and at the ends of the swath respectively. 

The aim now is the fusion of these degrading phenomena into a predictive error model. Traditionally, any phenomenon causing 

a loss of correlation level is separately studied (Denbigh, 1989; Jin, 1996; Lurton, 2000) and their impacts on the bathymetry are 

root-mean squared (RMS) accumulated. However, in (Sintes, 2010) the noise aspect was not analyzed as a classical additive 

perturbation, but as a decorrelation between receivers. Thus, the proposed coherent error fusion (CEF) made it possible to 

directly integrate the impact of degrading phenomena into the probability density function (PDF) of interferometric phase and 

thus to improve the accuracy of the bathymetric performance prediction compared with a classical root mean squared error 

integration. Indeed, the interferometric PDF, widely available in the literature (Tough, 1994; Oliver, 2004) and expressed in (12), 

only depends on the correlation coefficient : 

 
1

2/322

2

sin
211

1

2

1
)(f  (14)  

In this equation )cos( , and  and  denote the modulus and phase of the correlation coefficient. The interest of the 

correlation coefficient lies in the information that it delivers: the delay between the two signals coming from the sea. The cross 

product S1S2* represents a particular form of cross correlation (integration during one time sample) between two sensors. So by 

computing S1S2* we create an estimator of the time delay. In practice, hydrophones composing an antenna record underwater 

sound. The signal received before and after the arrival of the wave is considered as noise because it contains no useful 

information for bathymetry applications. This noise is usually modeled as an uncorrelated circular Gaussian process (Tough, 

1994; Jin, 1996). The property of being uncorrelated means that the expected value of the cross product of noises recorded by 

each receiver is zero. Conversely, the useful signal, corresponding to the backscattered acoustic wave front, is roughly the same 

on both receivers and therefore, such expectation yields values close to one. Therefore, the computation of the correlation 

coefficient represents a way to distinguish useful signal from noise. The analytical expression of the correlation coefficient is 

written in (15) and corresponds to the cross product S1S2* normalized by the energy of both signals. 

 

j
ssEssE

ssE
exp

*

22

*

11

*

21
 (15)  

S1 and S2 stand for the backscattered signals received by the two receivers composing the interferometer, and E{x} denotes the 

mean value of a parameter x. We note in (14) the importance of the correlation coefficient as it controls the shape of the 

interferometric PDF. For a given phase difference  between signals, the higher the correlation between received signals, the 

higher the PDF and the better the SNR level, and vice versa. In other words, a good interference between signals, needed for the 

beam forming process, leads to a high correlation. Therefore, if we are capable of integrating phenomena that cause a loss of 

signal quality into the evaluation of the correlation coefficient, then the resulting model will give us access to the contribution of 

each phenomenon to the bathymetric measurement error. As a result, we will be able to distinguish which particular phenomenon 

is disturbing a bathymetry the most during a survey and then, try to find ways to compensate for it on board. After several 

derivations we obtained, in (Sintes, 2010), a general expression for   that embeds the effects of all phenomena mentioned and 

that permits coherence estimation: 

 

isiiDssD BjBj sin
2

expEsin
2

expE ,0  (16)  

where Es stands for the backscattered signal energy, Ei is the interference signal energy associated with the multipath contribution, 
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Di contains the spatial and angular decorrelation of the resolution cell projected on the sea surface, and 

 

 

 000 sin
2

cotgcossinc ss

x

xx

D B
cT

H

B

D

D
 (17)  

where Dx denotes the footprint length at the grazing angle, Δx stands for the footprint shift, and θ0 is the arrival angle at the 

position x0 corresponding to the center of the intersection of the two footprints. All of these parameters are depicted in Fig. 1 and 

analytically defined in (Sintes, 2010). This series of equations demonstrates that the possible effects of signal and receiver 

decorrelations can be quickly quantified provided that the sonar equipment is correctly calibrated. Moreover, (17) was obtained 

for a single frequency wave pulse, but can be adapted to other types of signals, such as chirp signals, in the far field for spatially 

stationary Gaussian noise.  

In conclusion, the correlation coefficient is the keystone of this model and must be estimated either by integrating a prediction 

of all the involved phenomena, both extrinsic (environment effects) and intrinsic (decorrelation), or through an ad hoc algorithm. 

The following section presents an attempt at estimation. 

B. Correlation coefficient estimation for multisensor systems 

Giving the importance of the correlation coefficient  to our modeling, the challenge now is to find ways to measure it. Indeed, 

the correlation model given by (16) required the knowledge of several parameters such as the backscattered signal energy or the 

interference signal energy that are not always available or not always well defined. One approach to estimate the correlation 

coefficient is to evaluate the expected value of the conjugate product S1S2* at an instant tk, based on the neighboring samples: 

 l

li

kkk itsits
l

tssE )()(
12

1
)( *

21

*

21  (18)  

The term s2(tk+i) represents the signal received by the second sensor at an instant tk+i, and the term 2l+1 is the length of the 

sliding window centered on the sample tk under consideration. In other words, the correlation coefficient at a given instant tk is 

measured from the average of the neighboring time samples (tk+i). Physically speaking, this may not be accurate enough for low 

sampling rates, short wavelengths or non-stationary signals as neighboring time samples may not have any relationship between 

them.  

Another solution is to take advantage of the multisensor array geometry of MBES. Based on the Welch estimator, the array is 

split into multiple pairs of overlapping sub-arrays, each one providing a measurement of signals s1 and s2 (see illustrative sketch 

in Fig. 4). Then, the expected value of the cross product is obtained from these measuerements. 
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The term s1,i(tk) denotes the value of signal s1 received by the pair i of sub-arrays at sample time tk, and p denotes the number of 

pairs of sub-arrays. This time, the correlation coefficient can be instantaneously measured at each sample time, independently of 

its neighborhood. We do not need to know what happen before and after a given time sample. This solution is already used in 

other fields to smooth for instance the covariance matrix and thus improve the detection capabilities of subspace-based methods 

(Krim, 1996). A discussion of the optimal number p of sub-arrays can be found in (Rao, 1990). 
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Fig. 4. Sketch showing a way to instantaneously estimate the correlation coefficient based on (19): the multisensor array (top) is split into several pairs of 

subarrays, each one providing a measurement of the cross product *

,2,1 ii SS . Then, the correlation coefficient can be determined from the average of 

measurements as given in (19).  

 

A comparison between these two solutions is shown in Fig. 5. The point-wise approach (18) (upper plot) was obtained from a 

9-sample sliding window (l=4), whereas signals s1 and s2 in (19) (lower plot) were collected with sub-arrays composed of 30 

sensors, 15 sensors apart. As the multibeam array was composed of 80 sensors, 36 pairs of sub-arrays (i.e. p=36 realizations of 

the same process) were generated. See in Fig. 5 that both plots have a similar shape, but the sub-arrays-based computation 

permits a better detection of drops of signals. This result could be expected because the average carried out in (18) acts as a 

correlation smoothing that filters out drops of signals.  

Finally, the form of the correlation coefficient and its relation with the interferometric phase are to be emphasized. Indeed, 

most of phase samples obtained from a MBES do not provide any useful information. Only those within the acoustic beam can be 

exploited as shown in the lower panel of Fig. 5 (from samples #600 to #800). Note the low correlation level of noisy samples 

(middle panel) compared with samples within the acoustic beam. As correlation values are limited between 0 and 1, a way to 

reject poor samples is to provide thresholds (f.i. 0.80) that permits phase samples to be marked as useful samples if their value is 

greater than same threshold value, or as noise otherwise (Llort-Pujol, 2012a). This also constitutes a potential step in the 

denoising direction. 

C. Application of the coherence model 

A correlation coefficient of 0.7 or 0.8 may be difficult to interpret as high or low. However, there are equations such as (20) 

that permit this parameter to be converted into a signal-to-noise ratio (SNR) level (Jin, 1996).    

 

1
SNR  (20)  

Now, the analysis previously carried out which permitted the identification of the most degrading phenomena can now be 

expressed in terms of SNR.  
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Fig. 5. Estimation of the correlation coefficient (after beam forming at 55°) based on the point-wise approach (18) (upper plot) compared with the estimation 

based on sliding pairs of sub-arrays, each one providing a realization of signals S1 and S2. The result is the generation of an interval of continuity as described in 

Section IV-A. Parameters: f= 300 kHz, z= 23 m 

 

Another parameter widely used by hydrographers and sonar suppliers is the signal variance that is usually used to compare 

bathymetries, estimators or measurements. The variance is a measure of the amount of variation of the signal; the lower the 

variance, the lower the uncertainty of a measurement. Equation (9) shows that the interferometry error is directly proportional to 

the depth-measurement error. The goal now is to convert a correlation measurement into a variance level. The first step for this 

goal was to express the correlation in terms of SNR through (20). Then, in (Llort-Pujol, 2011) we derived empirical 

interferometric variance expressions obtained after analyzing the interferometric signal in both single look and multilook cases. 

The notion of multilook arises when several independent snapshots are collected from the same resolution cell. As the return 

signal is random due to the contribution of multiple scatterers inside the considered cell, N measurements are averaged to 

estimate an arrival angle, resulting in a reduction of the signal variance level. In the single look case, i.e. N=1, the interferometric 

variance can be evaluated using the following simple expression: 

 

2

ln(SNR 1)
ˆvar

3
SNR

SLK  
(21)  

The term ˆvarSLK
detones the variance of the interferometric estimator ˆ  in the single look case. In the multilook case 

we have: 

 

2

2 2

1 1
ˆvar

3 ( 1)( 2) 3
( 1)SNR SNR

(1 )

MLK

N N

N N
N

N

 
(22)  

with N defining the number of independent looks. See that the above expressions only depend on two parameters, SNR and the 

number of independent realizations N, and both expressions are inversely proportional to these parameters. As a result, the more 

snapshot we considered (or the higher the SNR level), the lower the variance and the better the accuracy of the estimation..These 

two simple equations enable a fast and instantaneous evaluation of the depth measurement error. The parameter γN is an empirical 
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fitting term that was derived to improve the agreement between the interferometric variance estimation and the theoretical value. 

Table I gives different values for γN and the corresponding agreement between the theoretical variance value and the estimation as 

a function of N. See that the higher the number N of realizations, the better the agreement. This is due to the form of the 

interferometry variance as a function of the SNR. The computation of the fitting error (third column) was bounded to SNR levels 

higher than 10 dB because this range of values represents the most common used.  For more details, the reader is referred to 

(Sintes, 2012). 

TABLE I 

BEST FITTING VALUE OF EMPIRICAL FORMULAS (21) AND (22) AND  

ASSOCIATED FITTING QUALITY FOR SNR>10dB 

N γN 
% of fitting error for 

SNR>10 dB 

1 2.1 1.86 

3 5/8 1.24 

5 1/2 1.01 

11 1/3  1.05 

21 1/3 1.21 

 

The difficulty with sidescan sonars, compared with MBES, is that the correlation coefficient is not easily available because we 

do not have at our disposal an array of sensors to determine the correlation coefficient from (19) as for multribeam echosounders. 

One solution is to use environmental and propagation models which deliver the different parameters involved in (17) and then 

estimate the interferometric variance and the correlation coefficient. Indeed, a preliminary coherence estimation can be obtained 

by measuring the backscattered signal energy, ambient noise energy and interference signal energy, and evaluating (16). Then this 

coherence estimation is converted into SNR through (20), which in turn is inserted into either (21) or (22) to obtain a phase 

measurement error. Finally, the depth measurement error is obtained by inserting the latter estimation into (9). 

Examples of correlation coefficient estimation, phase variance, and bathymetric accuracy are plotted in Fig. 6, where 

experimental data was collected with a 455-kHz sidescan sonar. This figure shows three curves corresponding to three ways to 

compute the correlation, variance and depth error. The first approach (bold gray lines) consists in numerically evaluating the 

interferometric variance based on its theoretical definition, that is, the integral of the probability density function (14). As this 

PDF is fully expressed as a function of the correlation coefficient, the theoretical interferometric variance also depends on the 

correlation. In turn, the correlation coefficient is computed from the prediction model (16) for a given bathymetry scenario 

(estimation of the backscattered signal and interference energies, footprint length …). The second approach (solid lines) consists 

in using the empirical variance expressions (21) and (22) which are also fully expressed as a function of the correlation. The third 

approach (dotted lines) consists in computing the correlation and variance based on experimental data. Thus, Fig. 6 shows that 

the different curves of these three approaches perfectly overlap. In other words, the simplification of the variance evaluation 

given by (21) and (22) does not perturb the resulting prediction of the theoretical variance based on a PDF. Nonetheless, the 

depth errors obtained from numerical (dark line) and empirical (gray line) models for N=11 and N=21 do not match the 

experimental data (dotted line) at all. This is due to the imperfect decorrelation between data samples and the non-stationarity of 

the interferometric signal. As discussed in Section I.C, the non-stationarity of a signal means that its mean and variance change 

over time. The more snapshots we use to compute the correlation, the more the mean and variance change with time, and the 

worst the mismatch between curves. However, the empirical model (gray line) shows perfect agreement with the theoretical 
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model (dark line). In other words, the simplification of the prediction model (gray line) is in good agreement with the theoretical 

one. 

For bathymetric prediction, developed empirical formulas simplify the complicated processing of second order computation 

based on interferometric PDF integration (e.g. Fig. 6) and provide formulas accurate enough to be used analytically in 

performance calculations. 

In Fig. 6 the reader can notice the bell-shaped form of the correlation. One could expect a peak of correlation at the beginning 

of the range with best signal and lower noise. However, experimental data were obtained with a sidescan sonar physically tilted at 

60° (=θs). As a result the best correlation level is obtained at the interferometric axis. Since the seafloor depth was of 19.4 meters, 

the peak of correlation is expected around 38.8-meter range as shown in Fig. 6. 

In conclusion, due to its simple principle, the correlation coefficient provides a prediction of the bathymetry quality. The 

equations presented in this section make it possible to validate in situ the bathymetric quality and to validate or reject soundings. 

Moreover, the approximate variance expressions allow a quick manipulation of the variance computation and can also be used for 

performance prediction of an interferometer based on the coherence model. All these properties make interferometry be a well 

known and controlled technique. But, one can wonder if the interferometry method can challenge goniometric methods with 

widely high capabilities of detection with high accuracy such as the Multiple Signal Classification (MUSIC) algorithm or 

ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques). Interferometry PDF and variance are both 

basically parameterized by the coherence   (Tough, 1994) that led to the error model discussed in Section II.A. Some 

goniometric methods are also based on the notion of correlation between sensors. Therefore, the goal of the next section is to 

investigate whether interferometry can be an alternative method to high-resolution methods when optimally adapted to the 

receiver system. 
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     (a) Single-look bathymetric error analysis           (b) Multilook bathymetric error analysis 

Fig. 6. For the single-look case, the upper figure plots the estimated correlation coefficient based on real data (dark line) and the theoretical model of 

decorrelation (gray line); the middle figure plots the variance of experimental data (dark line), the phase variance obtained from the theoretical interferometric 

PDF (bold gray line) and the variance computed through the empirical formulas (21) and (22) (dark thin line); the lower figure plots the same three variances, 

but expressed in terms of depth-measurement error. The multilook figures plot the same three depth-measurement errors (9) for N=3,5,11,21 snapshots. 

Interferometric parameters: z= 19.4m, B= 2.5λ, θs=60°, and fc=455 kHz. 
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III. INTERFEROMETRY AS A CHALLENGER OF GONIOMETRIC METHODS 

This section puts interferometry to the test and compares it with high-resolution methods, which are often used in other fields 

of application (Krim, 1996). Assets and drawbacks of the different techniques are highlighted. 

A. Goniometry methods 

The complex nature of the backscattered signals makes it possible to detect their arrival using either an amplitude-based or a 

phase-based approach. A third way consists of locating signal sources through complex signal-based detections, i.e. using both 

amplitude and phase information. These are the so-called high-resolution methods (Krim, 1996), which are mainly based upon 

the eigen-decomposition of the sample covariance matrix. These methods take advantage of the properties of the signal 

covariance matrix of the observed sensor outputs to improve the ability to resolve targets. Note that although these techniques 

were developed for passive detection, they can also be applied to active detection (Ronhovde, 1999). 

The high-resolution methods were a breakthrough in array spectral analysis of plane signals received in noise first appearing in 

the early 1970s. They are particularly appropriate in applications where the observed data consists of harmonic signal 

components in additive noise of known spectral shape but unknown power level. An especially-important property of 

eigenstructure-based methods is their ability to provide asymptotic unbiased estimates of the parameters of a multiple signal set, 

even in the presence of measurement noise. This is an important property because it means that the bathymetry obtained by these 

methods does not contain a systematic intrinsic error; the method does not contribute to increase possible errors due to noise or 

decorrelation between receivers. 

Many subspace-based methods (Krim, 1996) have been suggested since Pisarenko's pioneering works (Pisarenko, 1973): 

MUSIC (Bienvenu, 1979) proposed by Bienvenu, Minimum-Norm (Kumaresan, 1983) proposed by Kumaresan and Tuft, 

ESPRIT (Roy, 1989) proposed by Roy, or CLOSEST vector approach (Buckley, 1990) proposed by Buckley and Xu, among 

others. 

The eigen-decomposition of the covariance matrix allows the estimate of the received signal covariance matrix to be split into 

orthogonal subspaces named signal and noise subspaces, respectively. The DOA estimation can then be formulated in one of 

these mutually orthogonal subspaces. For these methods, as well as other spectrum estimation approaches, the DOAs are 

estimated from the positions of the spectral peaks or, alternatively, from the locations of the nulls of the inverse of the spectrum 

(called the null-spectrum here). Thus, sources are resolved if the estimated pseudo-spectrum contains maxima at or in the 

immediate neighborhoods of the true directions of arrival. For instance, the pseudo-spectrum of the MUSIC algorithm that 

defines the localization function is expressed as: 
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nn

MUSIC  (23)  

where a(θ) stands for a steering vector and Vn are the estimated eigen vectors belonging to the noise subspace (Stoica, 1989). 

Physically speaking, the possible directions of signal arrival are projected on a noise space. As signal and noise are decorrelated 

in this space, the direction of signals will result in a null value. Inverted, it gives maximum values. 

The implementation of spectral methods based on functions such as (22) consists of generating a vector a(θ) containing all 

possible DOAs to be tested. Then this vector is introduced into the algorithm, providing a pseudo-power level attributed to each 

θ. There are other high-resolution methods that, in contrast to the previous approach, do not provide a power spectrum, but rather 

DOA values that fulfill a condition. Thus, the DOA estimation does not depend on the tested values introduced into the 

algorithm; it is the algorithm itself that gives the exact values. The estimated DOAs are obtained from the solution of an 

analytical equation, e.g. the nearest roots to the unit circle for the polynomial methods (Barabell, 1983) or the highest eigenvalues 
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for ESPRIT (Roy, 1989). 

The main drawback of parametric methods is that they require a specific array configuration (usually uniform linear arrays). 

Moreover, the estimation of the covariance matrix, the evaluation of eigen values and vectors, and the estimation of the number 

of sources to be detected, are some of the associated processing required for some of these methods that increase the 

computational cost. The empirical estimator (the sample covariance matrix) is often of poor quality, requiring additional 

preprocessing (Van Trees, 2002). In addition to this, the ability to resolve closely spaced sources is dramatically reduced for 

highly correlated signals. One solution is spatial smoothing of the covariance matrix using forward-backward filtering (Shan, 

1985; Rao, 1990) based on the Welch estimator used to estimate the correlation coefficient in Section II.B. Such processing 

induces a random phase modulation which in turn tends to decorrelate the signals that caused the rank deficiency (Krim, 1996). 

In conclusion, the existence of multiple sensors may favor the implementation of high-resolution methods to sonar systems. 

The more sensors are available, the more uncorrelated sources can be resolved. This is particularly an asset in multipath 

configurations. Furthermore, the accuracy performance of these methods also increases with the number of sensors (Stoica, 

1989). Unfortunately, the associated computational time cost is not negligible compared with the low time cost of interferometry-

based algorithms. The question now is whether the statistical performances of interferometry and high-resolution methods are 

comparable (Hislop, 2011). To this end, the high-resolution methods are represented by the MUSIC algorithm due to its broad 

use. 

B. Statistical comparison 

Both interferometry and MUSIC aim at determining the arrival angle of the backscattered signal, but in a different manner 

using two different estimators: the phase difference between two receivers (interferometry) and the phase of the arrival signal 

(MUSIC). In the following paragraphs their corresponding variances are rewritten as a function of the DOA in order to compare 

them directly. 

As far as the MUSIC estimator is concerned, let us assume a uniform linear M-sensor array with an inter-sensor spacing Δ of 

one half wavelength. Then the phase ψ of a given arrival signal can be expressed with respect to the arrival angle θ and the inter-

sensor spacing as 

 
sin

2
 (24)  

From the above equation, the angular measurement error δθ can be expressed as a function of the phase measurement error δψ as: 

 

cos2
 (25)  

Then, for a single DOA, the variance of the MUSIC DOA estimator can be written as proposed in (Stoica, 1989) using (25): 
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The term varMUSIC{x} denotes the variance of the MUSIC algorithm to estimate the variable x. Moreover, N in (27) is the number 

of independent snapshots and M is the number of sensors composing the multibeam array. See that the MUSIC variance 

decreases with the inter-sensor spacing Δ, the number M of sensors composing the array receiver, and the number of snapshots. In 

other words, the more the sensors we use to compose the receiver array (or the higher the SNR), the lower the variance to 
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estimate the DOA.  

As far as interferometry is concerned, its statistics are given in Section II-C. In order to simplify (22) to avoid the dependence 

on the weighting parameter γN, the interferometric variance can be written simply as (Llort-Pujol, 2011): 

 1
ˆvar 1

( 1)SNR ( 2)SNR
INTF

N

N N
 (28)  

Again, the variance of the interferometric method to estimate the phase shift, i.e. ˆvarINTF
, is inversely proportional to the 

SNR level and, under some conditions, to the number N of snapshots. In order to compared the interferometric variance with the 

MUSIC variance, we want to quantify the variance of the interferometric method to estimate the DOA, and thus compared it with 

(27). To this end, two concerns should be addressed. First, the implementation of beam forming, prior to interferometry, increases 

the output SNR by a factor of the number of sensors Ms composing the sub-arrays with respect to the SNR of an omnidirectional 

sensor (Thorner, 1990). Second, when the receiving array is tilted at a given angle θs, the effective length decreases by a factor of 

cos(θs). Therefore, the baseline B can be decomposed as 

 
sBMB cos  (29)  

where MB denotes the number of sensors between the centers of the sub-arrays and Δ stands for the spacing between sensors, 

usually half wavelength. Consequently, the interferometric variance of the DOA estimator from two multisensor arrays can be 

written using the relation (25) and (28): 
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The variance of the interferometry method to estimate the DOA is inversely proportional to the number Ms of sensors composing 

the sub-array receiver, the number MB of sensors between the center of sub-arrays, the SNR level, and the number N of snapshots. 

Moreover, beams close to the interferometer axis θs leads to lower variance because the term cos(θs-θ) takes its maximal value 

equal to 1. Conversely, the further the beam angle θ from the axis, the lower the cosine, and therefore the higher the variance.  

In order to compare (27) and (31), note that both the interferometry and the MUSIC (approximate) variances were obtained 

assuming good bathymetric conditions, i.e. large SNR. Therefore, let us neglect the second term in the second bracket of both 

expressions, supposing that 1/(N
2
SNR

2
)0, in order to simplify the variance comparison. Furthermore, it is also assumed that the 

interferometric detection is carried out near the zero-phase difference, leading to θ≈θs. Under these assumptions, the ratio 

between MUSIC variance (27) and interferometry variance (31) becomes 

 2

2

ˆvar 1

ˆ 1 6var

INTF

B sMUSIC

M MN

N M M
 (32)  

See now that the ratio between variances depends on the way the multisensor receiving array is split, i.e. on the number M of 

sensors composing the receiver array, the number Ms of sensors composing the sub-arrays, and the number MB of sensors between 

the center of sub-arrays. In order to better interpret the ratio (32), we can define an array-splitting factor  such that 
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As a result, (32) can be rewritten, after some simplification, as 
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Equation (34) is a convex function with a minimum for =2/3 where the ratio between estimators of 9/8 (=1.125). This means 

that the variance of the interferometry method is always greater than the variance of the MUSIC algorithm, and at best, the 

interferometric variance is 1.125 times greater than the MUSIC variance. If we consider the standard deviation, i.e. the square 

root of the variance, then the interferometry standard deviation is 1.06 times greater than the MUSIC standard deviation. In other 

words, at best the interferometry method has the same standard deviation as the MUSIC algorithm. 

Rigorously speaking, this comparison is not fair because the detection surfaces of the two methods are different. Indeed, the 

MUSIC detection surface is composed of M sensors, while the two interferometer receivers are composed of Ms(=M/3) sensors. 

Therefore, a fairer interferometric-antenna geometry would be to have two M/2-sensor receivers, M elements apart, in order to 

work with the same number of sensors as with MUSIC. In this case, the ratio between variances (34) becomes 1/3 (0.6 in terms of 

standard deviation), meaning that interferometry would outperform MUSIC for a split array. 

We see that the physical geometry of the array is crucial to improving the performance of interferometry. A splitting factor 

equal to 2/3 corresponds to a wide baseline and short sub-arrays. The same result will be obtained in Section III-C when deriving 

the optimal array configuration in terms of minimal angular error. 

In conclusion, we have shown that the interferometry method can also be applied to multibeam systems due to its speed and 

simplicity. The main difference between interferometry and MUSIC is that interferometry provides ambiguous phase estimates, 

whereas MUSIC is not subject to this problem because the information provided by sensors is not used in the same way. With an 

interferometry algorithm dealing with ambiguities, the triangulation capabilities are improved compared with MUSIC, which 

remains an unbiased method. Nevertheless, as mentioned above, MUSIC has the ability to resolves several DOA at the same 

instant, which is an important capability. But if interferometry is used with appropriate constraints, these drawbacks can be 

avoided. Indeed, for MBES, beam forming prior to interferometry enables the rejection of signals reaching the interferometer 

from unwanted directions. The use of large baselines is not a real obstacle provided that the two sub-arrays retain sufficient 

aperture. Concerning sidescan sonars, good design of the emitter and receiver beam patterns can block echoes coming from the 

surface even during close approach by the sonar. 

C. Optimal interferometry 

The way in which the multibeam array is split to apply interferometry affects the shape of the phase difference because the 

baseline B changes the phase slope (1). A wide baseline increases the number of phase jumps, leads to narrower sub-arrays, and 

therefore a wider beam pattern and a larger insonified seafloor region. In this way, the number of soundings to be processed 

increases, as does the decorrelation (Sintes, 2010). Conversely, a narrow baseline leads to wider sub-arrays, reducing the width of 

the beam pattern and the insonified seafloor region. Although the decorrelation decreases, the triangulation capacity also 

decreases because of the closeness of the receivers (Denbigh, 1989). 

Two array-splitting configurations are usually taken into account by current bottom detectors: =1/2 and =1/3. The first 

configuration is a trade-off between wide baselines with better triangulation capacity and short baselines with lower depth-
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measurement error. The advantage of the second configuration lies in the form of the phase ramp. As discussed in Section I-B, 

most current interferometry-based bottom detectors estimate the position of a sounding through the ZPI and the implementation 

of short baselines, such as =1/3, provides long phase ramps, which simplify the detection of the ZPI through a polynomial fit. 

The matter now is to determine whether these two widely-implemented configurations are optimal. In (Llort-Pujol, 2006), we 

proved that the array splitting factor   that is optimal with respect to minimum angular error can be written as: 
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with v depending on the antenna degradation coefficient , aperture efficiency , multibeam receiver width l and length L, and 

input SNRi: 
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We also showed in (Llort-Pujol, 2006) that for several MBES, this optimal splitting factor  is bounded between 1/2 and 2/3, and 

that for SNRi>-30 dB, opt is almost constant around 2/3. This range is counter to the sub-array configuration that is usually 

implemented because the optimal array splitting uses a wide baseline and narrow sub-arrays. To reinforce this result, the relative 

angular error ( ) produced when the optimal baseline is not taken into account was evaluated for several input SNR levels: 
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with the angular error δθ( ) and opt=2/3. The result is plotted in Fig. 7. We see that for SNR=0 dB, this error ratio is about 8.8% 

greater than the optimal baseline for =1/2 and about 42% greater for =1/3. For other SNRi levels these ratios change, but the 

convex form of the relative angular error remains the same with an optimal baseline ranging from L/2 for very low SNRi to 2L/3 

for practical conditions. 
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Fig. 7. Evaluation of the relative angular error (37) as a function of the array-splitting factor  (with a baseline composed of M sensors) relative to the optimal 

array splitting opt=2/3. Parameters: input SNR: -30 dB, -20 dB, -10 dB, 0 dB, λ: 5.2mm, array size: 20.15 cm x 5 cm (L x W). 

 

One of the consequences of using narrow baselines is that the DOA accuracy increases, as shown in Fig. 7, and a harder 

smoothing filter is necessary to compensate for the lower accuracy. In order to obtain similar depth-measurement accuracy levels 

for the wide and narrow baseline configurations, the complex signal issued from a narrow baseline should be smoothed out with a 
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longer sliding window to reduce the fluctuation. Consider the following simulation: a flat seafloor with a 50-meter depth was 

simulated using the parameter settings of a 300-kHz MBES. Five beams were formed at 40°, 45°, 50°, 55°, and 60° with wide- 

and  narrow-baseline interferometers. The standard deviation of the resulting five phase differences was computed and then 

converted into a relative depth-measurement error based on (9). A comparison of depth-measurement errors is given in Table II 

(left-hand table), showing that without any phase smoothing, a narrow-baseline interferometer leads to a more fluctuating phase 

difference. See then that, in order to obtain similar depth-measurement accuracy levels for the two baseline configurations, the 

complex signal issued from a narrow baseline should be smoothed out with a longer sliding window to reduce the fluctuation. For 

instance, Table II (right-hand table) shows the depth-measurement error obtained with a sliding smoothing window of 15 points 

for the narrow-baseline interferometer ( =1/3) and of 5 points for the wide-baseline interferometer ( =2/3). Therefore, using the 

optimal-baseline configuration not only permits a better angle estimation, but also makes it possible to implement softer noise 

smoothing (Llort-Pujol, 2012a). 

Again, the interferometric estimator (i.e. the argument of S1S2*) represents a good trade-off between acceptable statistical 

performance and simple implementation with multibeam arrays. Thus we increase spatial resolution by taking more soundings per 

beam into account, while recognizing that the use of wide baselines leads to more phase ambiguities to be handled.  

In conclusion at first glance, the interferometry method applied to sonar systems can appear less performing than advanced 

goniometry techniques as it only uses two receivers. However its detection capability is highly enhanced when applied to multi-

sensor arrays together with beam forming. In particular due to the sparse features of the interferometry principle, the increase of 

the baseline improves triangulation capabilities over classical goniometric techniques, but in return it entails phase ambiguities. 

As the intrinsic drawbacks of interferometry (2π ambiguity removal, distinction of useful phase samples, or interferometer design) 

need to be compensated for, the last part of this paper deals with these issues by integrating the coherence error model and 

optimal array splitting.  

 

TABLE II 

EVALUATION OF THE RELATIVE DEPTH-MEASUREMENT ERROR (9) USING TWO BASELINE CONFIGURATIONS AND 

APPLIED TO RAW (LEFT) AND SMOOTHED (RIGHT) PHASE DIFFERENCE 

Without signal smoothing  With signal smoothing 

θ 3/1z

z

 
3/2z

z
  

θ 3/1z

z

 
3/2z

z
 

N=1 N=1  N=15 N=5 

40° 1.32% 0.63%  40° 0.17% 0.14% 

45° 1.49% 0.64%  45° 0.14% 0.12% 

50° 2.36% 0.70%  50° 0.13% 0.13% 

55° 1.95% 0.68%  55° 0.13% 0.15% 

60° 3.31% 0.83%  60° 0.16% 0.17% 
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IV. A FEASIBLE OPTIMAL BATHYMETRY BASED ON AMBIGUOUS INTERFEROMETERS 

This last section demonstrates how classical interferometric processing can be improved, resulting in high-resolution 

bathymetry. 

A. Introduction 

In order to increase the resolution of bathymetric detections, we propose here an algorithm based on the exploitation of the 

maximum quantity of information provided by sonar systems, while recognizing that not all phase samples can, or should, be 

used. The parameter used to distinguish useful samples from noisy ones is the correlation coefficient. It was the fact that the 

interferometry PDF and the resulting variance only depend on the correlation coefficient that led us to develop an error model 

based on this parameter. Therefore, the evaluation of the correlation coefficient of each complex sample yields the SNR quality 

(20). When a seafloor discontinuity occurs, the coherence level drops drastically. Conversely, when the wave front reaches a new 

object in the scene, the coherence level increases. Therefore, any coherence sample lower than a given threshold (statistically 

defined) is rejected. In this way the limits of a target within a beam will be defined by the rise and fall of the coherence. An 

interval of continuity (Sintes, 2000; Llort-Pujol, 2006) is thus defined to be the set of samples continuously exceeding a 

coherence threshold. An example is shown in Fig. 5. Such a set of samples can be ascribed to a common (and unique) target; 

homogeneity and continuity within the interval of continuity are guaranteed.  It now remains to remove 2π phase ambiguity. 

B. Phase unwrapping and multisensor design 

The implementation of the optimal interferometry configuration discussed in Section III-C leads to an ambiguous 

interferometric phase. A naive unwrapping algorithm based on the detection of π phase jumps and the increment of the phase 

rotation counter m may fail to remove the ambiguity of phase ramps when encountering repeated short discontinuities (Lin, 

1992). However, the introduction of the notion of an interval of continuity guarantees that all phase samples inside the same 

interval have the same phase rotation counter. 

To take advantage of the spatial diversity, a multi-tool method called Vernier not only makes it possible to remove ambiguities 

of phase for individual samples (Sintes, 2000; Llort-Pujol, 2008), but can also be used to design interferometers (Sintes, 2011). 

This double utility makes it interesting for MBES and sidescan sonars. The Vernier method differs from other techniques in 

requiring at least three aligned sensors to create two pairs of receivers (two interferometers) to determine the phase ambiguity 

(Denbigh, 1989) (see interferometry geometry in Fig. 1). For each interferometer, we can write the interferometry equation (4) as: 
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The subscripts 1 and 2 stand for the parameters of the first and second sensor, respectively. Note that the arrival angle θ has no 

subscript as the wave front is assumed planar when received (far field) and the two interferometers are assumed to be aligned. 

The received target echo is thus viewed from the same θ by both interferometers. Rewriting the system of equations (38) as a 

function of the arrival angle then establishes the following equality: 
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The unknown parameters are θs, m1 and m2. Δφi (with 3,2,1i ) are the measured phase differences, and λ and Bi are known 

from the interferometer specifications. The arrival angle θ can be estimated from the pair (m1, m2). 
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In practice, implementation of the Vernier method is limited by the fact that each pair of sensors provides different noisy phase 

measurements, so the two sides of (39) are not actually equal. Therefore we replace the equality with a minimization of phase 

measurements, and the pair (m1, m2) can be estimated as follows: 
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 (40)  

This equation means that we compute the difference between the two terms in (40) for all possible (integer) values of k1 and k2. 

Then we search for the minimum of the resulting set of differences. Finally, the estimation of m1 and m2 is given by the pair (k1,k2) 

that produce the minimum. 

A practical example of Vernier ambiguity removal is displayed in Fig. 8 that corresponds to data collected during a shipwreck 

survey. The phase differences of two interferometers (with B1=20λ and B2=13λ) after beam forming are shown with respect to 

sin(θs-θ), i.e. 

i

i

B2
, in solid and dashed-dotted lines respectively. Then, the three curves are vertically shifted by a factor of 

±λ/Bi, i.e. ki=±1. While in Fig. 5, the beam only insonified a section of the seafloor, in this figure the beam at 68° not only 

insonifies the seafloor, but also part of a mooring cable and part of a shipwreck stern. (The existence of such objects is discussed 

in the following subsection.) As a result, the three in-water targets detected within the same beam produce three intervals of 

continuity. The minimum distance (40) between shifted curves for the second and third intervals was obtained for (m1,m2)=(0,0), 

while, for the first interval, the minimum occurs for (m1,m2)=(1,1). Note that if we had considered a ZPI approach, only one of 

these three targets would have been detected as this type of approaches only produces one sounding per beam. 

One of the main problems of the Vernier method is the compatibility of the required interferometers: Indeed, not all the 

configurations are possible (Sintes, 2011). The parameter that permits identification of the most compatible baselines and the 

design of interferometers is the Vernier efficiency (Sintes, 2011) defined as the minimum of the difference given below: 
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Fig. 8. Example of Vernier ambiguity removal showing the curves created for several values of k1 and k2 based on (40). The smallest distance between shifted 

curves, computed independently for each interval of continuity, defines the correct phase removal. Parameters: B1= 20λ, B2=13λ, θs=68°, f= 300 kHz, z= 23 m. 
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Consider the application of the Vernier efficiency to the design of sub-arrays for a multibeam system composed of 80 sensors 

with half wavelength spacing. As discussed in Section III-C, the optimal way to split sub-arrays is to use a wide configuration 

with =2/3. Therefore, the first interferometer is B1=26.67λ. The following step is to find out the most compatible baseline for the 

second interferometer need by the Vernier method. Fig. 9 displays the evolution of the efficiency (41) (solid line) with a 

sawtooth-like form. A minimum of compatibility is obtained when the length of the second baseline equal that of the first 

interferometer. This result could be expected because if the two interferometers have the same configuration in terms of baselines 

and sub-array length, then they will produce exactly the same phase difference and no minimization of phase curves will be 

possible. On the other hand, the maximum compatibility is reached for a second baseline length of 23.82λ. 

In practice, not all the values for B2 can be implemented because the sub-arrays are composed of a finite and integer number of 

sensors with fixed spacing. Consequently the possible values for B2, depicted in circles in Fig. 9, correspond to a λ/2 sub-

sampling of the continuous line. In this example, two possible baselines provide similar Vernier efficiencies: either shortening the 

sub-arrays of the second interferometer by five sensors with respect to the first interferometer (i.e. B2=B1+5λ/2=28.68λ), or 

widening them by four sensors (i.e. B2=B1+4λ/2=24.18λ). The second configuration is preferred here because it involves wider 

sub-arrays receiving more energy. 
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Fig. 9. For a given baseline B1, the second baseline length can be determined by analyzing the Vernier efficiency (solid line). Applied to multibeam 

echosounders, only some array configurations are feasible according to the number of sensors composing the sub-arrays (in circles). 

 

In conclusion, we can see the simplicity of designing interferometers with the Vernier efficiency, which makes it possible to 

benefit from splitting the array to generate larger baselines even though this leads to ambiguities. The same analysis can be 

carried out for sidescan sonar interferometers but, in this case, it is a matter of hardware design rather than geometry. 

C. Experimental results 

The coherence-based bathymetry algorithm was tested on data collected with a 300-kHz MBES over an area that contained a 

shipwreck. The multibeam sonar head was mechanically tilted about 40° to the side towards the wreck, which was at a depth of 

25 meters. Fig. 10 compares the ship reconstruction obtained by a ZPI-based bottom detector with our coherence-based algorithm 

(Llort-Pujol, 2012a). Each point in the image corresponds to an estimated pair of coordinates (across-track distance, depth). 

Moreover, gray colors do not represent any intensity level. The reconstruction was obtained from almost 250 tracks, 

perpendicular to the shipwreck, each one corresponding to a pulse of sound (or ping). For each track (visible in the upper right 

panel of Fig. 10), a different number of beams according to the considered bathymetry technique were formed to retrieve the 
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bathymetry. Thus, the proposed algorithm only formed 18 beams between 25° and 70° to supply about 640 bathymetric 

soundings, while the ZPI-based detector formed 256 beams to cover the swath. Despite the lower number of beams (18 compared 

to 256), the proposed algorithm fully exploits the phase difference. Thus, the ZPI principle is “one beam, one sounding” and 

therefore, the number of soundings composing a bathymetry depends on the number of formed beams. Conversely, our principle 

is “one beam, several samples”, and the final number of soundings per beam depends (somehow) on the sampling rate. For 

instance, in Fig. 5 the ZPI algorithm would only retrieve one sample, the zero-phase instance, while the proposed algorithm 

would process about 200 samples. As a result, we do not need to form a lot of beams as one beam may cover up to 5° width of the 

sea bottom. The improvement is clearly visible in Fig. 10: the four holds and the bow and stern are better described by the 

coherence-based algorithm. Note particularly the lack of soundings corresponding to the area covering the shipwreck stern in the 

ZPI image. This is an area of approximately 250 m
2
 for which ZPI returned essentially no information while the coherence-based 

algorithm shows a number of details.  

However, the main contribution of the proposed algorithm is the capacity to detect small in-water objects. In this data set a 

mooring cable was detected over 29 consecutive pings, a continuous detection from the top of the stern to the sea bottom (see 

lower panel in Fig. 10). Importantly, the coherence-based interferometry processing was 1.59 times faster than the polynomial 

fitting approach in generating the bathymetry of a ping. This is mainly due to the fact that the coherence-based algorithm formed 

fewer beams (18 compared to 256) and required a softer filter to reduce the signal fluctuation. Indeed, in order to obtain the same 

accuracy levels, the complex interferometric signal for the coherence-based interferometry detection was smoothed out with a 

sliding window shorter than that of the polynomial fitting. Such reduction of the sliding window length lies in the fact that, as 

shown in Section III-C, the phase-ramp fluctuation level obtained through a wide baseline is almost one third lower than that of a 

narrow baseline (see Table II). Therefore, the resolution of the continuous detection algorithm was at least three times better than 

that of the polynomial approach. 

A similar algorithm was tested on 450-kHz sidescan sonar data collected over the area where the tanker Erika sank off the 

coast of France in 1999. The results are shown in Fig. 11 where a picture of the Erika before sinking and a layout of the ship are 

compared to the 3-D reconstruction. The interferometry-based algorithm clearly detects and characterizes a number of small in-

water objects, including the radar dome, rear masts, and cranes. 

The 3-D images show the potential of interferometry-based algorithms for bathymetric detection in complex scenarios such as 

shipwreck inspections and pipeline tracking. The insonified sea bottom is reconstructed with high resolution, providing small 

details and detecting in-water targets. This algorithm is just an example of the multiple ways to exploit data coming from a 

complex array for DOA estimation and shows the high potential of well-designed interferometric sonars. 

V. CONCLUSION: BATHYMETRY BEYOND INTERFEROMETRY 

The interferometry principle makes it possible to reconstruct the subsea bottom with an acceptable statistical performance and 

a simple implementation to multibeam systems. We have shown that an interferometry-based processing that only searches for the 

detection of one sample per beam represents a waste of information. Indeed, the S1S2* and the associated phase difference, 

properly processed, contain a great quantity of information that permits a reconstruction of the scene with a significant increase of 

resolution and accuracy. An increase in the number of soundings per beam leads to a reduction of beam formings because there is 

no benefit to forming beams at angles already covered by adjacent beams. Some commercial MBES are already proposing high-

density modes for which more than one sounding per beam can be produced, but they do not generally exceed 5 soundings per 

beam. This quantity represents a low latency if we consider that beams at oblique and grazing angles could provide more than 
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200 soundings per beam under good detection conditions (obviously depending on the sonar characteristics).  

The required processing to select samples containing bathymetric information from noisy one is based on the coherence-based 

prediction model of Section II and the approximate variance expression of Section III. Furthermore, if the optimal array splitting 

is considered, i.e. wide baselines and short sub-arrays, the resulting phase difference fluctuates less than with other array 

configurations and, therefore, it requires softer phase filtering, which improves spatial resolution. This has the added advantage 

that the computational burden is reduced. Sidescan sonars can also take advantage of in situ beam forming to solve some of the 

difficulties related to phase ambiguity. And processing based on the properties of the correlation coefficient permits sorting out 

relevant samples to reach the interesting bathymetry. The results plotted in Figs. 11 demonstrate the advantages of such a “risky” 

approach involving phase ambiguities and large baselines. 

 Interferometry is clearly an interesting technique that can provide high quality bathymetric data. The approach, with 

lengthening baselines and an increasing number of ambiguities, can reach its physical limits due to decorrelation. However, 

spatial decorrelation can be reduced provided that two received signals S1 and S2 are co-registered.  Even so, baseline 

decorrelation remains a difficulty. To reach their potential, interferometers must be correctly designed according to the SNR 

level. This also suggests that largely unexplored approaches such as advanced wide band signals, nonstationary array processing, 

and synthetic array processing have genuine promise as ways to improve detection accuracy.  

 

 

 
Fig. 10. Three-dimensional mapping of a shipwreck in 25-meter water depth seen from above and showing that the coherence-based bathymetry algorithm (top 

right and lower panel) is better able to characterize the shipwreck and to detect small, in-water objects such as a mooring cable. The data were collected with a 

300-kHz multibeam echosounder. 
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Fig.11. Three-dimensional reconstruction of the tanker Erika at a depth of 75m using a 450-kHz interferometric sidescan sonar leading to the detection of in-

water targets such as a telecom dome, a rear mast, and a crane. Each pixel in the figure can be converted into a voxel that contains both bathymetry and intensity 

information (imagery).  
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