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CONES RELATED TO THE LEFSCHETZ PROPERTIES

ROBERTA DI GENNARO, GIOVANNA ILARDI AND JEAN VALLÈS

Abstract. In [16] the authors highlight the link between rational varieties satis-
fying a Laplace equation and artinian ideals that fail the Weak Lefschetz property.
Continuing their work we extend this link to the more general situation of artinian
ideals failing the Strong Lefschetz Property. We characterize the failure of SLP (that
includes WLP) by the existence of special singular hypersurfaces (cones for WLP).
This characterization allows us to solve three problems posed in [17] and to give new
examples of ideals failing the SLP. Finally, line arrangements are related to artinian
ideals and the unstability of the associated derivation bundle is linked with the fail-
ure of SLP. Moreover we reformulate the so-called Terao’s conjecture for free line
arrangements in terms of artinian ideals failing the SLP.

December 11, 2012

1. Introduction

The tangent space TaX to an integral projective variety X of dimension n in a
smooth point has always dimension n.

It is no longer true for the osculating spaces. For instance, as it was pointed out by
Togliatti in [25], the osculating space T 2

aX, in a general point a, of the rational surface
X defined by

P2 φ−→ P5, (x, y, z) 7→ (xz2, yz2, x2z, y2z, xy2, x2y),

has projective dimension 4 instead of 5. Indeed there is a non trivial linear relation
between the partial derivatives of order 2 of φ in a that define T 2

aX. This relation
is usually called a Laplace equation of order 2. More generally, we will say that X
satisties a Laplace equation of order k when its k-th osculating space T kaX in a general
point a ∈ X has dimension less than expected.

The study of the surfaces satisfying a Laplace equation was developed in the last
century by Togliatti [25] and Terracini [24]. Togliatti [25] gave a complete classification
of the rational surfaces embedded with linear systems of plane cubics and satisfying a
Laplace equation of order two.

In the dense paper [20], Perkinson gives a complete classification of smooth toric
surfaces (thm. 3.2) and threefolds (thm. 3.5) embedded with a monomial linear system
and satisfying a Laplace equation of any order.

Very recently Miro-Roig, Mezzetti and Ottaviani [16] establish a nice link between
rational varieties (i.e. projections of Veronese varieties) satisfying a Laplace equation
and artinian graded rings A = ⊕0≤i≤sAi such that the multiplication by a general
linear form has not maximal rank in one degree i. On the contrary, when the rank of
the multiplication map is maximal in any degree, the ring is said to have the Weak
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Lefschetz property (briefly WLP). This name comes from a Stanley’s preliminary work.

The Hard Lefschetz theorem is used to prove that the ring C[x0,...,xn]

(x
d0
0 ,...,xdnn )

has the WLP

[ [23], thm. 2.4]. From this example one can ask if the artinian complete intersection

rings have the WLP. Actually C[x,y,z]
(F0,F1,F2) has the WLP (first proved in [11] and then also

in [3]) but it is still not known for more than three variables. Many other questions
derive from this first example.

The same type of problems occurs when we consider the multiplication by powers
Lk (k ≥ 1) of a general linear form L. Indeed, if the rank of the multiplication map by
Lk is maximal for any k and any degree, the ring is said to have the Strong Lefschetz
property (briefly SLP). For more details about known results and some open problems
we refer to [17].

As in [11], many papers about the Lefschetz properties involve the syzygy bundle
K. It is associated to an artinian ideal I = (F1, . . . , Fr) in the following way:

0 −−−−→ K −−−−→ Or
Pn

(F1,...,Fr)−−−−−−→ OPn(d) −−−−→ 0.

Indeed, in [ [3], prop. 2.1] Brenner and Kaid proved that the graded piece of degree

d + i of the artinian ring A = C[x0,...,xn]
(F0,...,Fr) is H1(K(i)). In [ [16], thm. 3.2] the authors

characterize the failure of WLP (in degree d − 1, i.e. for the map Ad−1 → Ad) when
r ≤ h0(OL(d)) by the non injectivity of the restricted map

H0(OL)r
(F1,...,Fr)−−−−−−→ H0(OL(d)),

on a general hyperplane L.
Let us say, in few words, what we are doing in this paper and how is it organized.

First of all we recall some definitions, basic facts and we propose a conjecture (section
3). In the section 4 we extend to the SLP the previous characterization of failure of
WLP. Then we translate the failure of WLP and SLP in terms of existence of special
singular hypersurfaces (section 5). It allows us to give an answer to three unsolved
questions in [17]. In the section 6 we construct examples of artinian rings failing the
WLP and the SLP by producing the appropriate singular hypersurfaces. In the last
section we relate the problem of SLP at the range 2 to the topic of line arrangements
(section 7).

Let us now give more details about the different sections of this paper. In the section
4, more precisely in the theorem 4.1, we characterize the failure of SLP by the non
maximality of the induced map on section

H0(OLk(i))r
(F1,...,Fr)−−−−−−→ H0(OLk(i+ d)).

The geometric consequences of this link are explained in the section 5 (see theorem
5.1). The non injectivity is translated in terms of the number of Laplace equations
and the non surjectivity is related, via apolarity, to the existence of special singular
hypersurfaces. Then we give the propositions 5.3, 5.4 and 5.5 that solve three problems
posed in [ [17], problem 5.4 and conjecture 5.13].

In section 6 we produce many ideals (monomial and non monomial) that fail the
SLP. The failure of WLP is studied for monomial ideals generated in degree 4 on P2

in the theorem 6.1, monomial ideals generated in degree 5 on P2 in the proposition
6.2, monomial ideals generated in degree 4 on P3 in the proposition 6.5. The failure
of SLP is studied for monomial ideal generated in degree 4 in proposition 6.6. In the
proposition 6.7 we propose a method to produce non monomial ideals that fail the SLP
at any range.

In the last section Lefchetz property and line arrangements are linked. The theory
of line arrangements, more generally of hyperplane arrangements, is an old and deep
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subject that concerns combinatorics, topology and algebraic geometry. One can say
that it began with Jakob Steiner (in the first volume of Crelles’s journal, 1826) that
determined in how many regions a real plane is divided by a finite number of lines. It is
relevant also with the amazing Sylvester-Gallai’s problem. Hyperplane arrangements
come back in a modern presentation in the Arnold’s fundamental work [1] on the
cohomology ring of Pn\D (whereD is the union of the hyperplanes of the arrangement).
For a large part of mathematicians, working on arrangements, it culminates today
with the Terao’s conjecture (see the last section of this paper or directly [19]). This
conjecture concerns more particularly the derivation sheaf (also called logarithmic
sheaf) associated to the arrangement. In this paper we recall the conjecture. In the
proposition 7.2 we prove that the failure of the SLP at the range 2 of some ideals
is equivalent to the unstability of the associated derivation sheaves. Thanks to the
important literature on arrangements, we find artinian ideals that fail the SLP. For
instance the Coxeter arrangement, called B3, gives an original ideal that fails the SLP
at the range 2 in a non trivial way (see proposition 7.3).

We finish by a reformulation of Terao’s conjecture in terms of SLP.

2. Notations

The ground field is C.
The dual HomC(V,C) of a vector space V is denoted by V ∗.
The dimension of the vector space H0(OPn(t)) is denoted by rt where n is clearly known
in the context.
The vector space generated by the set E ⊂ Ct is < E >.
The join variety of s projective varieties Xi ⊂ Pn is denoted by Join(X1, · · · , Xs)
(see [10] for the definition of join variety).
The fundamental points (1, 0, . . . , 0), (0, 1, . . . , 0), . . . , (0, 0, . . . , 0, 1) in Pn are denoted
by P0, P1, . . . , Pn.
We often write in the same way a projective hyperplane and the linear form defining
it; we use in general the notation Li on Pn and the notation li on P2 for hyperplanes.
The ideal sheaf of a point P is IP

3. Lefschetz property

Let R = C[x0, . . . , xn] be the graded polynomial ring in n+ 1 variables over C. The
dimension of the vector space Rt is rt.

Let A = R/I =
m∑
i=0

Ai

be a graded artinian algebra. Note that A is finite dimensional over C.

Definition 3.1. Let L be a general linear form. The artinian algebra A (or the artinian
ideal I) has the Weak Lefschetz Property (WLP) if the homomorphism induced by the
multiplication by L,

×L : Ai → Ai+1,

has maximal rank (i.e. is injective or surjective) for all i. The artinian algebra A (or
the artinian ideal I) has the Strong Lefschetz Property (SLP) if,

×Lk : Ai → Ai+k,

has maximal rank (i.e. is injective or surjective) for all i and k.

Remarks. • It is clear that the SLP for k = 1 corresponds to the WLP.
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• We will often be interested in artinian rings A that fail the SLP (or WLP), i.e.
when for a general linear form L there exist i and k such that the multiplication
map

×Lk : Ai → Ai+k,

has not maximal rank. In that case we will say that A (or I) fails the SLP at
range k and degree i. When k = 1 we will say simply that A fails the WLP in
degree i.

One of the main examples comes from the Togliatti’s result (see for instance [3],
Example 3.1): the ideal I = (x3, y3, z3, xyz) fails the WLP in degree 2. There are
many ways to prove it. One of them comes from the polarity on the rational normal
cubic curve. It leads to a generalisation that gives one of the few known non toric
examples.

Proposition 3.2 ( [26], Thm. 3.1). Let n ≥ 1 be an integer and l1, . . . , l2n+1 be non
concurrent linear forms on P2. Then the ideal

(l2n+1
1 , . . . , l2n+1

2n+1,
2n+1∏
i=1

li)

fails the WLP in degree 2n.

Indeed on the general line L the 2n + 2 forms of degree 2n + 1 become dependent
thanks to the polarity on the rational normal curve of degree 2n+ 1. We propose the
following conjecture. For n = 1 it is again the Togliatti’s result.

Conjecture. Let li be non concurrent linear forms on P2 and f be a form of degree
2n + 1 on P2. Then, (l2n+1

1 , . . . , l2n+1
2n+1, f) fails the WLP in degree 2n if and only if

modulo linear combination

f ∈ (l2n+1
1 , . . . , l2n+1

2n+1,
2n+1∏
i=1

li).

4. Lefschetz property and the syzygy bundle

In [ [16], prop. 2.3] the failure of WLP in degree d − 1 is related to the restriction
of the syzygy bundle on a general hyperplane. We extend here this relationship to the
SLP situation at any range and in many degrees.

Theorem 4.1. Let I = (F1, . . . , Fr) ⊂ R be an artinian ideal generated by homoge-
neous forms of degree d and K the vector bundle defined by the exact sequence

0 −−−−→ K −−−−→ Or
Pn

ΦI−−−−→ OPn(d) −−−−→ 0,

where ΦI(a1, . . . , ar) = a1F1 + . . . + arFr. Let i be an integer such that h0(K(i)) = 0
and k be an integer such that k ≥ 1. Then I fails the SLP at the range k in degree
d− k+ i if and only if the induced homomorphism on sections (denoted by H0(ΦI,Lk))

H0(OLk(i))r
H0(Φ

I,Lk )
−−−−−−→ H0(OLk(i+ d))

has not maximal rank for a general linear form L.

Remark. The theorem is not true if h0(K(i)) 6= 0 i.e. if there exits a syzygy of degree
i between F1, . . . , Fr. In [16] the authors consider the injectivity of the map H0(ΦI,Lk)

for i = 0 and for r ≤ h0(OL(d)). In that case, since the forms Fj are the generators of
I, we have of course h0(K) = 0.
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Proof. In [prop. 2.1, [3]] the authors proved that Ad+i = H1(K(i)) for any i ∈ Z. Let
us consider the canonical exact sequence

0 −−−−→ K(i− k)
Lk

−−−−→ K(i) −−−−→ K ⊗ OLk(i) −−−−→ 0.

We obtain a long exact sequence of cohomology

0→ H0(K ⊗ OLk(i))→ Ad−k+i
×Lk

−→ Ad+i → H1(K ⊗ OLk(i))→ H2(K(i− k))→ 0.

Let us assume first that n > 2. Then we have always h2(K(i− k)) = 0 and it gives a
shorter exact sequence:

0 −→ H0(K ⊗ OLk(i)) −→ Ad−k+i
×Lk

−→ Ad+i −→ H1(K ⊗ OLk(i)) −→ 0.

Moreover, since n > 2, we have also h1(OLk(i)) = 0. Then tensoring the exact se-
quence defining the syzygy bundle K by OLk(i) and taking the long cohomology exact
sequence, we find:

0 −→ H0(K⊗OLk(i)) −→ H0(OLk(i))r
H0(Φ

I,Lk )
−→ H0(OLk(i+d)) −→ H1(K⊗OLk(i))→ 0.

Since the kernel and cokernel of both maps, H0(ΦI,Lk) and ×Lk are the same, the
theorem is proved for n > 2.

If n = 2, let us introduce the number t = h2(K(i − k)). This number is equal to
t = rrk−i−3 − rk−i−d−3 and we have a long exact sequence:

0→ H0(K ⊗ OLk(i)) −→ Ad+i−k
×Lk

−→ Ad+i −→ H1(K ⊗ OLk(i)) −→ Ct → 0.

Let us consider now the long exact sequence:

0 −−−−→ H0(K ⊗ OLk(i)) −−−−→ H0(OLk(i))r
H0(Φ

I,Lk )
−−−−−−→ H0(OLk(i+ d))y

.0 ←−−−− H1(OLk(i+ d)) ←−−−− H1(OLk(i))r ←−−−− H1(K ⊗ OLk(i))

Since h1(OLk(i)) = h2(OP2(i−k)) = rk−i−3 (and h1(OLk(i+d)) = h2(OP2(i+d−k)) =
rk−i−d−3), it remains a shorter exact sequence

0 −−−−→ H0(K ⊗ OLk(i)) −−−−→ H0(OLk(i))r
H0(Φ

I,Lk )
−−−−−−→ H0(OLk(i+ d))y

.0 ←−−−− Ct ←−−−− H1(K ⊗ OLk(i))

As before, since the kernel and cokernel of both maps are the same, the theorem is
proved. �

Let us introduce the numbers N(r, i, k, d) := r(ri − ri−k)− (rd+i − rd+i−k),

N+ = sup(0, N(r, i, k, d)) and N− = sup(0,−N(r, i, k, d)).

The following corollary is a didactic reformulation of the theorem above.

Corollary 4.2. Assume that there is no syzygy of degree i between the Fj’s. Then I
fails the SLP at the range k in degree d+ i− k if and only if one of the two following
equivalent conditions occurs:

• h0(K ⊗ OLk(i)) = ker(H0(ΦI,Lk)) > N+,

• coker(H0(ΦI,Lk)) > N−.

In the next section we translate this corollary in geometric terms.
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5. Syzygy bundle and Veronese variety

We recall that the k-th osculating space to a n-dimensional complex projective
variety X ⊂ PN at P is the subspace of PN spanned by P and by all the derivative
points of degree less or equal to k of a local parametrization of X, evaluated at P .
A n-dimensional variety X ⊂ PN whose k-th osculating space at a general point has
dimension inf(

(
n+k
n

)
− 1, N) − δ is said to satisfy δ independent Laplace equations of

order k. We will say, for shortness, that the number of Laplace equations is δ.
Let us briefly explain now the link with projections of vd(Pn).
Let R1 be a complex vector space of linear form of dimension n + 1 such that

H0OPn(1) = R1. We consider the Veronese embedding

vd : P(R∗1) ↪→ P(R∗d).

The image vd(Pn) is called Veronese n-fold of order d. At the point [Ld] ∈ vd(Pn),
where [L] ∈ P(R∗1), the s-th osculating space, 1 ≤ s ≤ d−1, denoted by T s

[Ld]
vd(Pn) and

defined by the partial derivatives of order s, is the space of degree d forms possessing
a factorization Ld−sG where G is a form of degree s. It is identified with P(R∗s).

Let us think about the projective duality in terms of derivations (it is in fact the
so-called apolarity, see [5]). A canonical basis of R∗d is given by the rd derivations:

∂d

∂xi10 . . . ∂x
in
n

with i1 + . . .+ in = d.

Let I = (F1, . . . , Fr) ⊂ R an ideal generated by r forms of degree d. Note that Fi
are points in P(R∗d). We denote by Id the vector subspace of Rd generated by the F ′is.
Let us introduce the orthogonal vector space to Id

I⊥d = {δ ∈ R∗d | δ(F ) = 0, ∀F ∈ Id}.

It gives an exact sequence of vector spaces

0 −−−−→ I⊥d −−−−→ R∗d −−−−→ I∗d −−−−→ 0

and the corresponding projection map P(R∗d) \ P(I∗d)
πI−−−−→ P(I⊥d ). Of course one can

identify Rd/Id ' (I⊥d )∗ and write the decomposition Rd = Id ⊕ (I⊥d )∗.

Remark. In the following two situations, the orthogonal space I⊥d is easy to describe:

(1) When Id is generated by r monomials of degree d, (I⊥d )∗ is generated by the
remainings rd − r monomials.

(2) When Id = (Ld1, . . . , L
d
r) where [Li] ∈ P(R∗1), (I⊥d )∗ is generated by degree d

polynomials that vanish at the points [L∨i ] ∈ P(R1).

It is well known that the tangent spaces to the Veronese varieties can be interpreted
as singular hypersurfaces. More precisely a hyperplane containing the tangent space
T[Ld]vd(Pn) corresponds in the dual space Pn∨ to a hypersurface of degree d that is

singular at the point [L∨]. More generally a hyperplane containing the s-th (s ≤ 1)
osculating space T s

[Ld]
vd(Pn) corresponds to a hypersurface of degree d and multiplicity

(s+ 1) at the point [L∨] (see for instance [10]).

Thus the dual variety of vd(Pn) is the discriminant variety that parametrizes the sin-
gular hypersurfaces of degree d when the s-th osculating variety of vd(Pn) parametrizes
the hypersurfaces of degree d with a point of multiplicity s+ 1.

We propose now an extended version of the “main” theorem of [ [16]] (to be precise
thm. 3.2).
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Theorem 5.1. Let I = (F1, . . . , Fr) ⊂ R be an artinian ideal generated by r homoge-
neous polynomials of degree d. Let i, k, δ be integers such that i ≥ 0, k ≥ 1. Assume
that there is no syzygy of degree i between the Fj’s. The following conditions are
equivalent:

(1) The ideal I fails the SLP at the range k in degree d− k + i.
(2) There exist N++δ, with δ ≥ 1, independent vectors (G1j , . . . , Grj)j=1,...,N++δ ∈

R⊕ri and N+ + δ forms Gj ∈ Rd−k+i such that G1jF1 + . . . + GrjFr = LkGj
for a general linear form L of Pn.

(3) The n-dimensional variety πI(vd+i(Pn)) satisfies δ ≥ 1 Laplace equations of
order d+ i− k.

(4) For any L ∈ R1, dimC((I⊥d+i)
∗ ∩H0(Id+i−k+1

L∨ (d+ i)) ≥ N− + δ, with δ ≥ 1.

Proof. The equivalence (1)⇔ (2) is proved in the theorem 4.1.
Since I is generated in degree d, the map Ri×Id → Id+i is surjetive and the relation

G1F1+. . .+GrFr = LkG is equivalent to P(I∗d+i)∩T
d+i−k
[Ld+i]

vd+i(Pn) 6= ∅. More generally

the number of independent relations G1jF1 + . . .+GrjFr = LkGj is the dimension of
the kernel of the map H0(ΦI,Lk) i.e. the dimension of H0(K ⊗ OLk); this number of
independent relations, written in a geometric way, is

δ = dim[P(I∗d+i) ∩ T d+i−k
[Ld+i]

vd+i(Pn)] + 1,

where the projective dimension is −1 if the intersection is empty. This number is the
number of Laplace equations. Indeed, the dimension of the (d + i − k)-th osculating
space to πI(vd+i(Pn)) is rd+i−k− δ since the (d+ i−k)-th osculating space to vd+i(Pn)
meets the center of projection along a Pδ−1. In other words, the n-dimensional variety
πI(vd+i(Pn)) satisfies δ Laplace equations and (3) is equivalent to (2).

The image by πI of the (d + i − k)-th osculating space to the Veronese vd+i(Pn)
in a general point has codimension h0(K ⊗ OLk) − N+ in P(I⊥d+i). The codimension

corresponds to the number of hyperplanes in P(I⊥d+i) containing the osculating space to
πI(vd+i(Pn)). These hyperplanes are images by πI of hyperplanes in P(R∗d+i) containing

P(I∗d+i) and the (d+ i− k)-th osculating plane to vd+i(Pn) at the point [Ld+i]. In the

dual setting it means that these hyperplanes are forms of degree d+ i in (I⊥d+i)
∗ with

multiplicity (d+ i− k + 1) at [L∨]. It proves that (3) is equivalent to (4).
To summarize, the number of Laplace equation is h0(K ⊗ OLk) − N+ and

coker(H0(ΦI,Lk)) ' (I⊥d+i)
∗ ∩H0(Id+i−k+1

L∨ (d+ i)). �

Remarks. • Let I = (Ld1, . . . , L
d
r) where L1, . . . , Lr be general linear forms. The

vector space (I⊥d+i)
∗, where Id+i = Ld1Ri + . . . + LdrRi, is the vector space of

forms of degree d + i vanishing in r points [L∨j ] with multiplicity (i + 1). In

other words f ∈ ∩rj=1H0(Ii+1
L∨
j

(d+ i)) (see [ [7], cor. 3]) . Geometrically it can

be described as P(I∗d+i) = Join(T i
[Ld+i

1 ]
vd+i(Pn), · · · , T i

[Ld+i
r ]

vd+i(Pn)).

• By the theorem above, when N(r, i, k, d) ≥ 0, the ideal I fails the SLP at the
range k in degree d − k + i if and only if there exists a hypersurface {f = 0}
with f ∈ I⊥d+i passing through the point [L∨] with multiplicity d + i − k + 1,
i.e. when the following intersection is not empty:

Join(T i
[Ld+i

1 ]
vd+i(Pn), · · · , T i

[Ld+i
r ]

vd+i(Pn)) ∩ T d+i−k
[Ld+i]

vd+i(Pn).

• On P2 a hypersurface of degree d + i with a point of multiplicity d + i is an
union of lines. On Pn, with n > 2, a hypersurface of degree d+i with a point of
multiplicity d+i is more generally a cone over a hypersurface in the hyperplane
at infinity.
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Thanks to this remark we can answer in the three following propositions to a list
of questions posed by Migliore and Nagel ( [17], problem 5.4 and conjecture 5.13 ).
When I = (Ld1, . . . , L

d
r) we verify now that the hypothesis in the theorem 5.1 on the

sygygy is not restrictive.

Lemma 5.2. Let I be the ideal (Ld1, . . . , L
d
r) where the Lj are linear forms and r < rd.

Let K be its syzygy bundle. Then

h0(K(i)) = 0⇔ rri ≤ rd+i.

Proof. One direction is obvious. Let us assume that rri ≤ rd+i and that there exists a
relation

G1L
d
1 + . . .+GrL

d
r = 0,

with G1, . . . , Gr forms of Ri. Both hypotheses imply that the projective space
Join(T i

[Ld+i
1 ]

vd+i(Pn), · · · , T i
[Ld+i

r ]
vd+i(Pn)) has dimension strictly less than expected.

Since the linear forms are general, it implies that the algebraic closure of
∪L∈Rd+i

1
T i

[Ld+i]
vd+i(Pn) has not the expected dimension. It contradicts the lemma

3.3 in [2]. �

This following proposition is a generalization of the example 1.1 in [12].

Proposition 5.3. Let N be an integer such that N ≥ 3. Then the ideal
(xN0 , x

N
1 , x

N
2 , x

N
3 , (x0 + x1 + x2 + x3)N ) fails the WLP in degree N − 2.

Remark. Of course it is equivalent to say that (LN1 , . . . , L
N
5 ) fails the WLP in degree

N − 2 for L1, . . . , L5 general linear forms.

Proof. Let us consider the syzygy bundle associated to the linear system

0 −−−−→ K −−−−→ O5
P3

(xN0 ,x
N
1 ,x

N
2 ,x

N
3 ,(x0+x1+x2+x3)N )

−−−−−−−−−−−−−−−−−−−−−−→ OP3(N) −−−−→ 0.

Since 5rN−2 < r2N−2 the lemma 5.2 implies h0(K(N − 2)) = 0. Let L be a linear
form. When N ≥ 3 we have 5h0(OL(N −2)) ≥ h0(OL(2N −2)). According to theorem
5.1 the failure of WLP in degree N − 2 is equivalent to the existence of a surface
with multiplicity N − 1 in the points P0, P1, P2, P3 and P (1, 1, 1, 1) and multiplicity
2N − 2 at the moving point M . The five concurrent lines in M passing through
P0, P1, P2, P3, P belong to a quadric cone with equation {F = 0} (the cone over the

conic at infinity through the five points). Since FN−1 ∈ H0(I2N−2
M (2N − 2)) the

hypersurface {FN−1 = 0} has the wanted properties. �

The same idea gives a hint to answer to the third question in the same list of problem

(problem 5.4). Indeed, in Pn there is always a quadric through n(n+3)
2 points in general

position. Then by any general point M ∈ Pn+1 there is a quadratic cone with a vertex

at M and passing through n(n+3)
2 fixed points in general position. Then we prove,

Proposition 5.4. In the following cases the ideal (LN1 , . . . , L
N
n(n+3)

2

) fails the WLP in

degree N − 2:

• N = 3 and n ≥ 2,
• N = 4 and 2 ≤ n ≤ 4,
• N > 4 and 2 ≤ n ≤ 3.

Proof. Let us consider the syzygy bundle associated to the linear system

0 −−−−→ K −−−−→ O
n(n+3)

2

Pn+1 −−−−→ OPn+1(N) −−−−→ 0.
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Let L a linear form. Then the inequality n(n+3)
2 h0(OL(N − 2)) ≥ h0(OL(2N − 2)) is

true if and only if N and n are one of the possibilities stated in the theorem. In all

these cases we have n(n+3)
2 rN−2 ≤ r2N−2, and by the lemma 5.2, h0(K(N − 2)) = 0.

According to theorem 5.1 the failure of WLP is equivalent to the existence of a
hypersurface with multiplicity N − 1 in the points [L∨i ] and multiplicity 2N − 2 at
the moving point M . The lines through M and [L∨i ] belong to a quadratic cone
with equation {F = 0} (the cone over the quadric at infinity through the points).

Since FN−1 ∈ H0(I2N−2
M (2N − 2)) the hypersurface {FN−1 = 0} has the wanted

properties. �

The same idea gives the proof of the following result that was conjectured in [15].

Proposition 5.5. The ideal I = (L3
1, . . . , L

3
8) fails the WLP in degree 3 where

L1, . . . , L8 be general linear forms on P6.

Proof. Since 8r1 < r4 the lemma 5.2 implies h0(K(1)) = 0. We have to prove that, on
a general hyperplane L, the cokernel of H0(OL(1))8 −−−−→ H0(OL(4)) has dimension

strictly greater than h0(OL(4))−h0(OL(1))8 = 78. The dimension of this cokernel is the
dimension of quartics with a quadruple point [L∨] and 8 double points. We consider
on the hyperplane at infinity the vector space V of quadrics through the images of the
8 points [L∨1 ], . . . , [L∨8 ]. It has dimension 13. Let Q1, . . . , Q13 be a basis of this space
of quadrics. Then the vector space Sym2(V ) of quartics generated by the products
QiQj has dimension 91 and all these quartics are singular in the 8 points. In P6 the
independent quartic cones over these quartics belong to the cokernel. �

The characterization of SLP in theorem 5.1 allows us to give, in the next section,
many examples of ideals failing the WLP or the SLP by producing ad-hoc singular
hypersurfaces.

6. Classes of ideals failing the WLP and SLP

6.1. Monomial ideals coming from singular hypersurfaces. In their nice paper
about osculating spaces of Veronese surfaces, Lanteri and Mallavibarena remark that
the equation of the curve given by three concurrent lines depends only on six monomials
instead of seven. More precisely let us consider a cubic with a triple point at (a, b, c)
passing through P0, P1 and P2. Its equation is (bz − cy)(az − cx)(ay − bx) = 0 and
it depends only on the monomials x2y, xy2, x2z, xz2, y2z, yz2. So there is a non zero
form in

(I⊥3 )∗ =< x2y, xy2, x2z, xz2, y2z, yz2 >' R3

< x3, y3, z3, xyz >

that is triple at a general point. By this way they explain the Togliatti surprising
phenomena ( [14], Thm. 4.1, [13] and [8]).

We apply this idea in our context. Recall that in the monomial case being artinian
to the ideal I means that it contains the forms xd0, . . . , x

d
n. Let us consider the (n+ 1)

fundamental point P0, P1, . . . , Pn and let us assume that the number r of monomials
generating I is chosen such N(r, i, k, d) = 0 for i ≥ 0, k ≥ 1 fixed integers. Then, as
it is proved in theorem 5.1, the ideal I fails the SLP at the range k in degree d+ i− k
if and only if there exists at any point M(a0, . . . , an) a hypersurface of degree d + i
with multiplicity d + i − k + 1 at M given by a form in (I⊥d+i)

∗ ' Rd+i/Id+i. One
has to write this equation with a number of monomials as small as possible. Then the
orthogonal space becomes bigger and we will cover all the possible choices.

First of all we describe exhaustively the monomial ideals (x4, y4, z4, f, g) ⊂ C[x, y, z]
of degree 4 that do not verify the WLP.
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Theorem 6.1. Up to permutation of variables the monomial ideals generated by five
quartic forms in C[x, y, z] that fail the WLP in degree 3 are the following

• I1 = (x4, y4, z4, x3z, x3y),
• I2 = (x4, y4, z4, x2y2, xyz2).

Remark. Geometrically it is evident that the first ideal (x4, y4, z4, x3z, x3y) fails the
WLP. Indeed modulo a linear form L the restricted monomials x̄iȳj can be interpreted
as points of the projective space P4 defined by the rational normal curve of degree four
image of L by the Veronese map. Then the tangent line to the rational quartic curve
at the point [x̄4] contains the two points [x̄3ȳ] and [x̄3z̄]. This line meets the plane
P(< x̄4, ȳ4, z̄4 >) in one point; it implies that

dimC < x̄4, ȳ4, z̄4, x̄3ȳ, x̄3z̄ >≤ 4.

For the second ideal, it is not evident to see that the line P(< x̄2ȳ2, x̄ȳz̄2 >) always
(for any restriction) meets the plane P(< x̄4, ȳ4, z̄4 >).

Proof. Let us consider the points P0 , P1 and P2 and the degree 4 curves with a quadru-
ple point in (a, b, c) passing through these three points. These curves are product of
four lines:

f(x, y, z) = (ay − bx)(cx− az)(cy − bz)(α(ay − bx) + β(cx− az)) = 0.

Developing f explicitly in the coordinates (x, y, z), we see that the forms x4, y4, z4 are

 

 

 

 

(a, b, c)

P2

P1

P0

 

 

 

  

 

 

  

Figure 1. Quartic with a quadruple point

missing and that twelve monomials appear to write its equation. Since we want only
ten monomials, we have to remove two. The following possibilities occur:

• α = 0 (or equivalently by permutation of variables [β = 0] or [α 6= 0, β 6=
0 and bα = cβ]) then the remaining linear system is (x4, y4, z4, y3z, xy3). It
corresponds to the first case i.e. to the ideal I1.
• α 6= 0 and β 6= 0 but cβ + bα = 0 (or equivalentely by permutation of vari-

ables [2bα − cβ = 0] or [bα − 2cβ = 0]) then the remaining linear system is
(x4, y4, z4, x2yz, y2z2). It corresponds to the second case i.e. to the ideal I2.

�

Remark. The quartic curve with multiplicity four in (a, b, c) consists, in the first case,
in two simple lines and a double line that are concurrent. In the second case, it consists
in four concurrent simple lines in harmonic division.

We cannot apply the same technique to describe exhaustively the monomial ideals
(x5, y5, z5, f, g, h) ⊂ C[x, y, z] of degree 5 that do not verify the WLP because the
computations become too tricky. But we can give some cases by geometric arguments.
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Proposition 6.2. The following monomial ideals

• (x5, y5, z5, x3y2, x3z2, x3yz),
• (x5, y5, z5, x4z, x4y,m), where m is any monomial,
• (x5, y5, z5, x3y2, x2y3, x2y2z),

fail the WLP in degree 4.

Proof. Modulo a linear form L the restricted monomials x̄iȳj can be interpreted as
points of the projective P5 defined by the rational normal curve of degree 5 image of L
by the Veronese map. Then the tangent line to the rational quintic curve at the point
[x̄5] contains the two points [x̄4ȳ] and [x̄4z̄]. This line meets the plane P(< x̄5, ȳ5, z̄5 >)
in one point; it implies that

dimC < x̄5, ȳ5, z̄5, x̄4ȳ, x̄4z̄, m̄ >≤ 5.

In the same way the osculating plane at [x̄5] i.e. P(< x̄3ȳ2, x̄3z̄2, x̄3ȳz̄ >) meets the
plane P(< x̄5, ȳ5, z̄5 >) in one point.
In the last case, the geometric argument is not so evident. Let us pose X = bz − cy
and Y = cx − az. Then the equation of the product of the five concurrent lines is
f(X(x, y, z), Y (x, y, z)) = XY (aX + bY )(αX + βY )(γX + δY ) =
aαγX4Y + (aαγ + bαγ + aαδ)X3Y 2 + (bβγ + bαδ + aβδ)X2Y 3 + bβδXY 4 = 0.
For any point M(a, b, c, d) we choose (α, β, γ, δ) such that aαγ + bαγ + aαδ = 0 and
bβγ + bαδ + aβδ = 0. Then the equation depends only on 15 monomials and the
remaining monomials are (x5, y5, z5, x3y2, x2y3, x2y2z). �

We describe now some monomial ideals in C[x, y, z, t], generated in degree 3, that
do not verify the WLP.

Proposition 6.3. The monomial ideals I = (x3, y3, z3, t3, f1, f2, f3, f4, f5, f6) where
the forms fi are chosen among one of the following sets of monomials:

• {x2y, xy2, x2z, x2t, y2z, y2t, z2t, zt2, xyz, xyt}, (Case (A1))
• {x2y, xy2, xz2, y2z, yz2, y2t, zt2, z2t}, (Case (A2))
• {x2y, xy2, z2t, zt2, xyz, xyt, xzt, yzt}, (Case (A3))
• {xz2, yz2, xyz, xyt, x2y, xy2, z2t, zt2}, (Case (A4))
• {x2y, xy2, x2z, xz2, x2t, xt2, xyz, xzt, xyt, yzt}, (Case (B1))

fail the WLP in degree 2.

Remark. We do not know if under permutation of variables the description above
is exhaustive or not. The singular cubic that we are considering here are union of
concurrent planes and not all the cubic cones.

Proof. We look for a surface of degree 3 with multiplicity 3 at a general point
M(a, b, c, d) that passes through the points P0, P1, P2, P3 such that its equation de-
pends only on the remaining monomials in R3/I3. Such a cubic surface is a cone over
a cubic curve. Here, instead of a general cubic cone we consider only three concurrent
planes. Since these 3 planes have to pass through P0, P1, P2 and P3 it remains only,
after a simple verification, the following cases:

• (A1) The equation of the cubic is (bx− ay)(dz − ct)2 = 0.
• (A2) The equation of the cubic is (bx− ay)(dz − ct)(cx− az) = 0.
• (A3) The equation of the cubic is (bx−ay)(dz−ct)(bx+ay+udz+uct) = 0 where

at any point (a, b, c, d) the function u(a, b, c, d) verifies ab+ u(a, b, c, d)cd = 0.
• (A4) The equation of the cubic is (bx− ay)(dz − ct)(bdx+ ady − 2abt) = 0.
• (B1) The equation of the cubic is (cy − bz)(dz − ct)(dy − bt) = 0.

�
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(a) Case (A1). (b) Case (A2).

(c) Case (A3). (d) Case (A4).

(e) Case (B1)

If we want I3 to be of dimension r < 10 (for instance r = 8) we need 10 − r + 1
independent cubics with a triple point. So we need 10−r+1 independent cubics with a
triple point to describe the failure of WLP. Let us recover with our method two linear
systems of eight cubic forms (the complete classification is already done in [ [16], thm.
4.11]) that fail the WLP in degree 2.

Proposition 6.4. The following monomial ideals

• I = (x3, y3, z3, t3, x2y, xy2, zt2, z2t),
• J = (x3, y3, z3, t3, xyz, xyt, xzt, yzt)

fail the WLP in degree 2.

Remark. The ideals I and J correspond respectively to the cases (3) and (1) in [ [16],
Thm. 4.11].

Proof. Let us consider the following three forms defining singular cubics passing
through the fundamental points and a general point (a, b, c, d):

(ct− dz)(at− dx)(ay − bx) = 0, (ct− dz)2(ay − bx) = 0, (ct− dz)(ay − bx)2 = 0.

They are particular cases of type (A) in the proof of the proposition 6.3. They are
linearly independent and can be written with twelve monomials. Then it remains only
8 forms for I3:

I = (x3, y3, z3, t3, x2y, xy2, zt2, z2t).

Let us consider the following three forms defining singular cubics passing through
the basis points and the general point (a, b, c, d):

(bz−cy)(az−cx)(ay−bx) = 0, (bx−ay)(at−dx)(dy−bt) = 0, (az−cx)(dx−at)(dz−ct) = 0.
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They are cases of type (B1) in the proof of proposition 6.3. They are linearly inde-
pendent and can be written with twelve monomials:

(x2y, x2z, xy2, xz2, y2z, yz2, t2y, t2z, ty2, tz2, t2x, x2t).

It remains only
J = (x3, y3, z3, t3, xyz, xyt, xzt, yzt).

�

Of course the same argument (concurrent planes or hyperplanes) can be used in
degree or dimension bigger than 3. For instance let us give a set of monomial ideals in
C[x, y, z, t], generated in degree 4 that fail the WLP.

Proposition 6.5. Let f1, . . . , f11 be eleven monomials chosen among

x3y, x3z, x3t, xy3, xz3, xt3, y3z, y3t, yz3, yt3, z3t, zt3, x2y2, z2t2, y2z2, x2t2.

Then the ideal I = (x4, y4, z4, t4, f1, . . . , f11) fails the WLP in degree 3.

Proof. At any point p = (a, b, c, d) an equation of a surface of degree 4 with multiplicity
4 at p that passes through the points P0, P1, P2, P3 is given by

f(x, y, z, t) = (ct− dz)(at− dx)(ay − bx)(bz − cy) = 0.

�

We conclude this section with an example that fails the SLP at the range 2.

Proposition 6.6. The ideal I = (x4, y4, z4, xy3, xz3, x2yz, y2z2, y3z, yz3) ⊂ C[x, y, z]
fails the SLP at the range 2 in degree 2.

Proof. Let P0, P1, P2 and M(a, b, c) be four points. We consider the quartic curve
consisting in the union of the four lines (MP0), (MP1), (MP2) and (P0P1). It is a
quartic passing through P0, P1, P2 and triple at M(a, b, c). It depends on the six
monomials x3y, x3z, x2y2, xy2z, x2z2, xyz2. Then it remains 9 = 15− 6 monomials

I4 =< x4, y4, z4, xy3, xz3, x2yz, y2z2, y3z, yz3 > .

The associated syzygy bundle K verifies h0(K ⊗OL2) 6= 0 for a general linear form L.
It proves that I = (x4, y4, z4, xy3, xz3, x2yz, y2z2, y3z, yz3) fails the SLP at the range
2 in degree 2. �

6.2. Non monomial examples coming from singular hypersurfaces. Let us
study now the interesting case I⊥d = H0(IZ(d))∗ where Z is a finite set of distinct
points in P2∨ of length |Z| and IZ its ideal sheaf. The set Z corresponds by projective
duality to a set of |Z| distinct lines in P2 defined by linear forms l1, . . . , l|Z|. We will

now consider the ideal I ⊂ R generated by (ld1, . . . , l
d
|Z|). We have |Z| = dimCId.

Proposition 6.7. Let k ≥ 1, r = rd − rd−k and Z = {l∨1 , . . . , l∨r } a finite set of r
distinct points in P2∨ where li are linear forms on P2. Assume that there exists a
subset Z1 ⊂ Z, of length r − d+ k − 1, contained in a curve Γ1 of degree k − 1. Then
the ideal I = (ld1, . . . , l

d
r) fails the SLP at the range k in degree d− k.

Proof. The union of Γ1 and (d− k + 1) concurrent lines at a point P passing through

the remaining points Z \ Z1, is a non zero section of H0(IZ ⊗ Id−k+1
P (d)). By the

theorem 5.1 it proves that I fails the SLP at the range k in degree d− k. �

With this method it is always possible to find systems of any degree that fail the
SLP by exhibiting a curve of degree d with multiplicity d − k + 1 at a general point
P . But one can find some set of points for which these special curves do not split as
product of lines (see proposition 7.3 in the next section).
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7. SLP at the range 2 and line arrangements on P2

A line arrangement is a collection of distinct lines in the projective plane. Arrange-
ment of lines or more generally of hyperplanes is a famous and classical object related
to combinatorics, commutative algebra, topology and geometry. It has been studied
by many different authors for a very long time (see [4] or [19] for a good introduction
to this topic).

Let us denote by {f = 0} the equation of the union of lines of the considered
arrangement. Another classical object associated to the arrangement is the vector
bundle D0 defined as the kernel of the jacobian map:

0 −−−−→ D0 −−−−→ O3
P2

(∂f)−−−−→ OP2(d− 1).

The bundle D0 is called derivation bundle (sometimes logarithmic bundle ) of the line
arrangement (see [21] and [22] for an introduction to derivation bundles).

One can think about the lines of the arrangement in P2 as a set of distinct points
Z in P2∨. Then we will denote by D0(Z) the associated derivation bundle.

The arrangement of lines is said free with exponents (a, b) when its derivation bundle
splits on P2 as a sum of two line bundles, more precisely when

D0(Z) = OP2(−a)⊕ OP2(−b).
The splitting of D0(Z) over a line l ⊂ P2 is related to the existence of curves (with

a given degree a + 1) passing through Z that are multiple (with multiplicity a) at
l∨ ∈ P2∨. More precisely,

Lemma 7.1 ( [27], prop. 2.1). Let Z ⊂ P2∨ be a set of a+ b+ 1 distinct points with
1 ≤ a ≤ b and l be a general line in P2. Then the following conditions are equivalent:

(1) D0(Z)⊗ Ol = Ol(−a)⊕ Ol(−b).
(2) h0((JZ ⊗ J al∨)(a+ 1)) 6= 0 and h0((JZ ⊗ J a−1

l∨ )(a)) = 0.

In our context it implies the following characterization of unstability. We recall
that a rank two vector bundle E on Pn, n ≥ 2 is unstable if and only if its splitting
El = Ol(a) ⊕ Ol(b) on a general line l verifies | a − b |≥ 2. This characterization is a
consequence of the Grauert-Mülich theorem, see [18].

Proposition 7.2. Let I ⊂ R = C[x, y, z] be an artinian ideal generated by 2d+1 poly-
nomials ld1, . . . , l

d
2d+1 where li are distinct linear forms in P2. Let Z = {l∨1 , . . . , l∨2d+1}

be the corresponding set of points in P2∨. Then the following conditions are equivalent:

(1) The ideal I fails the SLP at the range 2 in degree d− 2.
(2) The derivation bundle D0(Z) is unstable.

Proof. The failure of SLP at the range 2 in degree d− 2 is equivalent to the existence
at a general point l∨ of a curve of degree d with multiplicity d− 1 at l∨ belonging to
I⊥d = H0(IZ(d)). By the lemma 7.1 it is equivalent to the following splitting

D0(Z)⊗ Ol = Ol(d− s)⊕ Ol(d+ s) with s > 0,

on a general line l. In other words the failure of SLP is equivalent to have a non
balanced decomposition and according to Grauert-Mülich theorem it is equivalent to
unstability. �

Let us give now an ideal generated by non monomials quartic forms that fails the
SLP at the range 2. It comes from a line arrangement, called B3 arrangement (see [19],
pages 13, 25 and 287), such that the associated derivation bundle is unstable (in fact
even decomposed). The existence of a quartic curve with a general triple point is the
key argument. But contrary to the previous examples, this quartic is irreducible and
consequently not obtainable by the proposition 6.7.
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Proposition 7.3. The ideal

I = (x4, y4, z4, (x+ y)4, (x− y)4, (x+ z)4, (x− z)4, (y + z)4, (y − z)4) ⊂ C[x, y, z]

fails the SLP at the range 2 and degree 2.

Proof. Consider the set Z of the nine dual points of the linear forms x, y, z, x+ y, x−
y, x+ z, x− z, y+ z, y− z. Let I be the artinian ideal (x4, y4, z4, (x+ y)4, (x− y)4, (x+
z)4, (x− z)4, (y+ z)4, (y− z)4) and K its syzygy bundle. The derivation bundle of the
arrangement is D0(Z) = OP2(−3) ⊕ OP2(−5) (it is free with exponents (3, 5); see [19]
for a proof). Then, according to the lemma 7.1 there is at any point P a degree 4
curve with multiplicity 3 at P passing through Z. In other words, by the theorem 5.1,
I fails the SLP at the range 2 and degree 2. �

 

 

 

  

 

 

  

Figure 2. Dual set of points of the B3 arrangement

More generally non balanced free arrangements leads to ideals that fail the SLP.

Proposition 7.4. Let A = {l1, . . . , la+b+1} a line arrangement that is free with expo-

nents (a, b) such that a ≤ b, b− a ≥ 2 and a+ b even. The ideal I = (l
a+b
2

1 , . . . , l
a+b
2

a+b+1)

fails the SLP at the range 2 and degree a+b
2 − 1.

Remark. If a+ b is odd we can add to Z one point P in general position with Z and

we can prove in the same way that I = (l
a+b+1

2
1 , . . . , l

a+b+1
2

a+b+1, (P
∨)

a+b+1
2 ) fails the SLP at

the range 2 and degree a+b
2 .

Proof. Let us denote by Z = {l∨1 , . . . , l∨a+b+1} the dual set of points of A. Since there
exists at any general point l∨ a curve of degree a + 1 passing through Z, the lemma
7.1 implies that D0(Z) is unstable and the proposition 7.2 implies that I fails the SLP
at the range 2 and degree a+b

2 − 1. �

7.1. SLP at the range 2 and Terao’s conjecture. One of the main conjecture
about hyperplane arrangements (still open also for line arrangements) is the Terao’s
conjecture. It concerns the free arrangements. The conjecture says that freeness
depends only on the combinatorics of the arrangement. Let us recall that the combi-
natorics of the arrangement A = {l1, . . . , ln} is determined by an incidence graph. Its
vertices are the lines lk and the points Pi,j = li∩ lj . Its edges are joining lk to Pi,j when
Pi,j ∈ lk. We refer again to [19] for a good introduction to the subject. The Terao’s
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conjecture is valid not only for line arrangement but more generally for hyperplane
arrangements.

Conjecture (Terao). The freeness of a hyperplane arrangement depends only on its
combinatorics.

In other words if an arrangement has the same combinatorics than a free arrange-
ment it is also free.

Let us consider a free arrangement A0 = {h1, . . . , hn} with exponents (a, b) (a ≤ b)
and let us denote by Z0 its dual set of points. We assume the Terao’s conjecture is
not true i.e, that there exists a non free arrangement A = {l1, . . . , ln} with the same
combinatorics than A0. Let us add b− a points {M1, . . . ,Mb−a} in general position to
Z0 in order to form Γ0 and to th dual set Z ofA to form Γ. Then the length of both
sets of points is 2b+ 1. On the general line l we have

D0(Z0)⊗ Ol = Ol(−a)⊕ Ol(−b),
when, since Z is not free, we have a less balanced decomposition for D0(Z) (this
affirmation is proved in [6]):

D0(Z)⊗ Ol = Ol(s− a)⊕ Ol(−s− b), s ≥ 1.

It implies that

h0(IZ ⊗ Ia−1
l∨ (a)) 6= 0,h0(IZ0 ⊗ Ia−1

l∨ (a)) = 0 and h0(IZ0 ⊗ Ial∨(a+ 1)) 6= 0.

Then adding b − a lines passing through l∨ and the b − a added points we obtain
h0(IΓ ⊗Ib−1

l∨ (b)) 6= 0, h0(IZ0 ⊗Ib−1
l∨ (b)) = 0 and h0(IZ0 ⊗Ibl∨(b+ 1)) 6= 0. The bundle

D0(Γ0) is balanced with splitting Ol(−b)⊕ Ol(−b) and

D0(Γ)⊗ Ol = Ol(1− b)⊕ Ol(−1− b).
Then D0(Γ0) is semistable and D0(Γ) is unstable. In other words the ideal

(lb1, . . . , l
b
a+b+1, (M

∨
1 )b, . . . , (M∨b−a)

b)

fails the SLP at the range 2 and degree b− 2 when

(db1, . . . , d
b
a+b+1, (M

∨
1 )b, . . . , (M∨b−a)

b)

has the SLP at the range 2 and degree b− 2.
The following conjecture written in terms of SLP is equivalent to the Terao’s conjecture
on P2.

Conjecture. Let Z0 = {d∨1 , . . . , d∨2b+1} a set of points of length 2b+1 in P2∨ such that

the ideal I = (db1, . . . , d
b
2b+1) has the SLP at the range 2 and degree b−2. Assume that

Z = {l∨1 , . . . , l∨2b+1} has the same combinatorics than Z0. Then J = (lb1, . . . , l
b
2b+1) has

the SLP at the range 2 and degree b− 2.
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