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LAPLACE EQUATIONS AND THE STRONG LEFSCHETZ

PROPERTY

ROBERTA DI GENNARO, GIOVANNA ILARDI AND JEAN VALLÈS

Abstract. As in [9] we explore the link between artinian ideals that fail the Weak
Lefschetz Property (WLP) in degree d− 1 and projections of the Veronese varieties
satisfying a Laplace equation of order d−1. We extend this link to the more general
situation of artinian ideals failing the Strong Lefschetz Property (SLP) at the range
k ≥ 1 in degree d − k. This generalization is not artificial; indeed for k = 2 it is
related to the so-called Terao’s conjecture about free arrangements. We reformulate
the Terao’s conjecture for line arrangements in terms of artinian ideals failing the
SLP at the range 2. Using this new link we propose non toric examples of ideals
failing the SLP at the range 2.

Moreover we add a new characterization of WLP or SLP in terms of singular
hypersurfaces (see thm. 3.1). Thanks to this characterization we produce many
toric examples that fail the WLP and also the SLP at the range 2.

October 8, 2012

1. Introduction

The study of the surfaces satisfying Laplace equations was developed in the last
century by Togliatti [16] and Terracini [15]. Togliatti [16] gave a complete classification
of the rational surfaces embedded with linear systems of plane cubics and satisfying
a Laplace equation of order two. For a linear system of cubic surfaces that satisfy a
Laplace equation of degree two, a preliminary work was done by Ilardi in [7], and a
complete classification of such smooth threefolds is achieved by Miro-Roig, Mezzetti
and Ottaviani ( [9], Thm. 4.11). In order to do it they establish and study the link
between artinian ideals that fail the weak Leftschetz property (WLP) in degree d− 1
and the projections of Veronese varieties satisfying at least one Laplace equation of
order d− 1 ≥ 2.

In this paper we extend this link to the more general situation of artinian ideals
failing the Strong Lefschetz Property (SLP) at the range k ≥ 1 in degree d− k.

To explain more precisely what we will do in this paper, let us interrupt briefly this
introduction to fix some notations and say, at least, what mean WLP and SLP.

Let R = k[x0, · · · , xn] be the graded polynomial ring in n+ 1 variables over a field
of characteristic zero k. Let us denote by rt the dimension (that is

(
n+t
n

)
) of the vector

space Rt.

Let A = R/I =

m∑
i=0

Ai

be a graded artinian algebra. Note that A is finite dimensional over k.

Definition 1.1. Let l be a general linear form. The artinian algebra A (or the artinian
ideal I) has the Weak Lefschetz Property (WLP) if the homomorphism induced by the
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multiplication by l,

×l : Ai → Ai+1,

has maximal rank (i.e. is injective or surjective) for all i.The artinian algebra A (or
the artinian ideal I) has the Strong Lefschetz Property (SLP) if,

×lk : Ai → Ai+k,

has maximal rank (i.e. is injective or surjective) for all i and k.

The most interesting artinian ideals are certainly those that fail the WLP in some
degree or the SLP at some range and degree. To be precise,

Definition 1.2. The artinian algebra A (or the artinian ideal I) fails the WLP in
degree i if for a general linear form l the multiplication map

×l : Ai → Ai+1,

has not maximal rank. The artinian algebra A (or the artinian ideal I) fails the SLP
in degree i at the range k if for a general linear form l the multiplication map

×lk : Ai → Ai+k,

has not maximal rank.

Remark. It is clear that the SLP at the rang k = 1 corresponds to the WLP.

So, as we wrote above, we study the link between artinian ideals I = (F1, · · · , Fr) ⊂
k[x0, · · · , xn] generated by r (r ≤ rd − rd−k) homogeneous forms of degree d that
fail SLP in degree d − k at the range k ≥ 1 and projections (from the subspace

P(< F1, . . . , Fr >)) of the Veronese variety vd(Pn) ⊂ P(n+d
d )−r−1 satisfying at least one

Laplace equation of order d−k (i.e. such that the general tangent space of order d−k,
generated by partial derivatives of order d− k, has projective dimension < rd−k).

This generalization is meaningful in the topic of hyperplane arrangements and more
precisely for line arrangements. Indeed, one associates canonically to a non degenerated
line arrangement A = {l1, · · · , lr} in P2 an artinian ideal I = (ld1, · · · , ldr) ⊂ k[x, y, z].
The Terao’s conjecture which affirms that the freeness of any arrangement depends
only on its combinatorics (see for instance [12] for a good definition of combinatorics
of an arrangement) can be reformulated in terms of failure of SLP at the range 2. This
link allows us to give new examples of such artinian ideals.

The main idea to relate the notions of WLP or SLP (at the range k) and the
projections of Veronese (from a subspace P(< F1, . . . , Fr >)) satisfying a Laplace
equation is to consider the following exact sequence:

0 −−−−→ K −−−−→ Or
Pn

(F1,··· ,Fr)−−−−−−→ OPn(d) −−−−→ 0,

to tensor it by OLk for a general linear form L and to compute the dimension of the
space H0(K ⊗ OLk). In the particular case H0(OLk(d)) = r the failure of SLP at the
range k corresponds to the existence of special singular hypersurfaces. Thanks to this
link and by exploiting an idea given in [8] to explain why Togliatti’s surface verifies a
Laplace equation, we produce many examples of artinian ideals that fail the WLP (i.e.
the SLP at the range 1) or the SLP at the range 2.

2. Link WLP, SLP and Veronese varieties

First of all we extend the key lemma 2.3 in [9] to SLP.
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Proposition 2.1. Let I = (F1, · · · , Fr) ⊂ R be an artinian ideal generated by r ≤
rd − rd−k (where k is a fixed integer greater than 1) homogeneous forms of degree d.
Let L be a general linear form, let B = R/(Lk) and let J = (f1, · · · , fr) where the fi
is the image of Fi in B. Then the homomorphism of multiplication by Lk

φd−k : (R/I)d−k −→ (R/I)d

has not maximal rank if and only if f1, · · · , fr are linearly dependent.

Remark. We point out that when r = rd−rd−k the map is injective if and only if it is
surjective. Then in that case we will show later that failing SLP (in degree d−k at the
range k) is equivalent to the existence of a hypersurface of degree d with multiplicity
d − k + 1 at a general point in the orthogonal vector space of the vector subspace
< F1, · · · , Fr >⊂ Rd (see Thm. 3.1).

Proof. We note that (R/I)d−i ' Rd−i when i < d. Consider the exact sequence

0 −−−−→ [I:Lk]
I −−−−→ R

I
Lk

−−−−→ R
I (k) −−−−→ R

(I,Lk)
(k) −−−−→ 0.

The cokernel of φd−k is ( R
(I,Lk)

)d. According to the upper bound of r we have

dim(R/I)d−k ≤ dim(R/I)d. Hence φd−k is not of maximal rank if and only if φd−k
is not injective, if and only if rk(φd−k) <

(
n+d−k

n

)
, if and only if dim(R/(I, Lk))d =

dimBd − dimJd =
(
n−1+d
n−1

)
− dimJd > dim(R/I)d −

(
n+d−k

n

)
=
(
n+d
n

)
− r −

(
n+d−k

n

)
.

Therefore φd−k is not injective if and only if

r − dimJd >

(
n+ d

n

)
−
(
n− 1 + d

n− 1

)
−
(
n+ d− k

n

)
.

Since the right-hand side is equal to
(
n−1+d
d−1

)
−
(
n+d−k
d−k

)
which is ≥ 0 when k ≥ 1 the

map φd−k is injective if and only if dimC < f1, · · · , fr >< r. �

According to this proposition we can reformulate the WLP and the SLP in the
following form.

Proposition 2.2. Let I = (F1, · · · , Fr) ⊂ R be an artinian ideal generated by r ≤
rd − rd−k (where k ≥ 1 is a fixed integer) homogeneous forms of degree d and K the
vector bundle defined by the exact sequence

0 −−−−→ K −−−−→ Or
Pn

(F1,··· ,Fr)−−−−−−→ OPn(d) −−−−→ 0.

Then I fails the SLP in degree d− k at the range k if for a general linear form L we
have H0(K ⊗ OLk) 6= 0.

Let us briefly explain now the link with projections of vd(Pn) (a more complete
description is done in the next section). The ideal I = (F1, · · · , Fr) with deg(Fi) = d
fails the SLP at the range k in degree d− k when for a general linear form L it exists
a1, · · · , ar complex numbers and a form G of degree d− k such that

a1F1 + · · ·+ arFr = LkG.

In other terms it means that the projective d − k tangent space to vd(Pn) at the
point [Ld] intersects P(< F1, · · · , Fr >) (since this space correponds to degree d forms
divisible by Lk). Let us consider the projection map

P(Rd) \ P(< F1, · · ·Fr >)
π−−−−→ P(Rd/ < F1, · · ·Fr >).

Let us denote by Xn,(I−1)d the image of vd(Pn) by π, like in [9]. The dimension of
the d − k tangent space to Xn,(I−1)d is strictly less than the dimension of the d − k
tangent spaces to vd(Pn) since this last one meet the center of projection. In that case,
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Xn,(I−1)d satisfies a Laplace equation, i.e. there is a linear relation between the partial
derivatives of order d− k.

We propose an extended version of Tea theorem proved in [9].

Theorem 2.3. Let I = (F1, · · · , Fr) ⊂ R be an artinian ideal generated by r homoge-
neous polynomials of degree d. Let 1 ≤ k < d a positive integer. If r ≤ rd − rd−k then
the following conditions are equivalent:

(1) The ideal I fails the SLP at the range k in degree d− k.
(2) The homogeneous forms F1, · · · , Fr become linearly dependent on a general

multiple hyperplane Lk of Pn (i.e. P(< F1, · · · , Fr >) ∩ T d−k
[Ld]

vd 6= ∅).

(3) The n-dimensional variety Xn,(I−1)d satisfies a Laplace equation of order d−k.

Proof. We have already seen in the above proposition 2.1 that (1) is equivalent to (2).
As explained before, the fact that the space P(< F1, · · · , Fr >) meets the general d−k
tangent space of the Veronese vd(Pn) is equivalent to say that there is a relation

a1F1 + · · ·+ arFr = LkG

for L general, in other words (3) is equivalent to (2). �

The key example is of course the one coming from the Togliatti’s result (see for
instance [1], Example 3.1): the ideal I = (x3, y3, z3, xyz) fails the WLP in degree 2.
There are many ways to prove it. One of them comes from the polarity on the rational
normal cubic curve. It leads to a generalisation that gives one of the few non toric
examples.

Proposition 2.4 ( [17], Thm. 3.1). Let n ≥ 1 be an integer and l1, · · · , l2n+1 be non
concurrent linear forms on P2. Then the ideal

(l2n+1
1 , · · · , l2n+1

2n+1,
∏

i=1,··· ,2n+1

li)

fails the WLP in degree 2n.

Indeed on the general line L the 2n + 2 forms of degree 2n + 1 become dependent
thanks to the polarity on the rational normal curve of degree 2n+ 1. We propose the
following conjecture. For n = 1 it is again the Togliatti’s result.

Conjecture. Let li be non concurrent linear forms on P2 and f be a form of degree
2n + 1 on P2. Then, (l2n+1

1 , · · · , l2n+1
2n+1, f) fails the WLP in degree 2n if and only if

modulo linear combination

f ∈ (l2n+1
1 , · · · , l2n+1

2n+1,
2n+1∏
i=1

li).

3. Singular hypersurfaces, WLP and SLP

It is well known that according to the duality between a linear form L and its
kernel {L = 0}, that is a hyperplane, the tangent spaces to the Veronese varieties can
be interpreted as singular hypersurfaces. More precisely a hyperplane containing the
tangent space TLdvd(Pn) corresponds in the dual space Pn∨ to a hypersurface with
degree d that is singular at the point {L∨}. More generally a hyperplane containing

T d−k
Ld vd(Pn) corresponds to a hypersurface with degree d and multiplicity (d − k + 1)

at the point {L∨} (see for instance [5]).

In order to precise this correspondence let us introduce some formalism. Let R1 be
a complex vector space of linear form of dimension n + 1 such that H0OPn(1) = R1.
We consider the Veronese embedding vd : P(R1) = Pn ↪→ P(Rd) = P(H0OPn(d)). The
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image vd(Pn) is called Veronese n-fold of order d. At the point [Ld] ∈ vd(Pn), where L
is an hyperplane in P(R1), the (k + 1)-osculating space, 1 ≤ k ≤ d− 1 (defined by the
partial derivatives of order k) is identified to P(Rk), i.e. to degree d forms possessing
a factorization Ld−k.G where G is a degree k form. The set of hyperplanes containing
the (k + 1) tangent space at the point [Ld] is the projective space P((H0(mk+1

L∨ (d))∨)
of degree d hypersurfaces with multiplicity (k + 1) at the point L∨. Then we have

vd(Pn)(k+1)∨ = ∪Ld∈vd(Pn)P((H0(mk+1
L∨ (d))∨ =: Xd,k+1,

where mL∨ is the ideal sheaf of the point L∨. It is the set of degree d hypersurfaces
that are (k + 1)-singular at one point.

For instance the dual variety of vd(P2) is the discriminant variety that parametrizes
the singular degree d curves.

The smooth model of this variety Xd,k+1 is a projective bundle usually called bundle
of principal parts. Indeed the derivation map, dual of the multiplication map

∂k : Rd −→ Rk ⊗Rd−k, f 7→
∑

a0+···+ar=k

Xa0
0 ...Xan

n

∂kf

∂Xa0
0 ...∂Xan

n
,

induces the following homomorphism of vector bundles on P(R1):

0 −−−−→ R∨k ⊗ OPn(−d+ k)
∂k−−−−→ R∨d ⊗ OPn −−−−→ Pd,k+1 −−−−→ 0.

The first map can be represented by the matrix ∂k of partial derivatives of order
k of a R∨d -basis. The projective bundle P(Pd,k+1) ⊂ Pn × P(R∨d ) is the incidence

variety {(x, f) | ∂kf(x) = 0} and the fiber over a point x ∈ Pn is identified with the
projective space P(H0(mk+1

x (d))∨) (of hypersurfaces of degree d passing through x with
multiplicity (k+ 1)) where mx is the ideal sheaf of the point x. Its image in P(R∨d ) by
the second projection is Xd,k+1. It is an irreducible variety birational to P(Pn,k+1).

3.1. Projections of Veronese and sections of Principal bundles. Let ∧ ⊂ Rd
be a vector subspace of dimension less or equal to rd−rd−k. We consider the projection
map:

P(Rd) \ P(∧) −−−−→ P(Rd
∧ ).

Let K be the kernel of the induced map:

0 −−−−→ K −−−−→ ∧⊗ OPn −−−−→ OPn(d) −−−−→ 0.

We introduce the multiple incidence variety [point/hyperplane]:

Fk = {(
∑
XiX

∨
i )k = 0} qk−−−−→ P∨n

pk

y
Pn

Applying the functor pk∗q
∗
k to the exact sequence defining K, we obtain

0 −−−−→ qk∗p
∗
kK −−−−→ ∧⊗ OP∨n −−−−→ Pd,k+1 −−−−→ R1qk∗p

∗
kK −−−−→ 0.
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The surjective homomorphism Hom(Rd,k) → Hom(∧,k) gives an embedding
P(Hom(∧,k)) ⊂ P(Hom(Rd,k)). Let us consider the diagram

∧ ⊗ OPn ∧ ⊗ OPny y
0 −−−−→ Rd−k ⊗ OPn(−k) −−−−→ Rd ⊗ OPn −−−−→ Pd,k+1 −−−−→ 0∥∥∥ y y
0 −−−−→ Rd−k ⊗ OPn(−k) −−−−→ Rd

∧ ⊗ OPn −−−−→ R1qk∗p
∗
kK −−−−→ 0.

It is important to understand that supp(R1qk∗p
∗
kK) = {x | ∧ ∩H0(mk+1

x (d)) 6= 0}. We
remark that ∧ induces an artinian ideal since the map given by it is surjective. Then
we have the following result when dim(∧) = rd − rd−k.

Theorem 3.1. Let I ⊂ R be an artinian ideal generated by r homogeneous polynomials
F1, · · · , Fr of degree d. Let k ≤ d a positive integer. If r = rd− rd−k then the following
conditions are equivalent:

(1) The ideal I fails the SLP at the range k in degree d− k.
(2) The homogeneous forms F1, · · · , Fr become linearly dependent on a general

multiple hyperplane Lk of Pn.
(3) The n-dimensional variety Xn,(I−1)d satisfies at least one Laplace equation of

order d− k.
(4) It exists f ∈ Rd

<F1,··· ,Fr>
such that f ∈ H0(md−k+1

L∨ ) for a general linear form

L ∈ R1.

Proof. In the case of equality h0(K⊗OLk) = h1(K⊗OLk) for any linear form L. Then
H0(K⊗OLk) 6= 0 (see proposition 2.2) implies H1(K⊗OLk) 6= 0 and the non vanishing
of this last vector space means that L∨ belongs to the support of the sheaf R1qk∗p

∗
kK.

Since supp(R1qk∗p
∗
kK) = {x |< F1, · · · , Fr > ∩H0(mk+1

x (d)) 6= 0}, we have done. �

In the next section we will give many examples of ideals failing the WLP or the SLP
by producing ad-hoc singular hypersurfaces. Moreover we will give also an exhaustive
list of monomial ideals in degree 3 in four variables and degree 4 in three variables that
fail the WLP.

3.2. Monomial ideals coming from singular hypersurfaces. In their nice paper
about osculating spaces of Veronese surfaces, Lanteri and Mallavibarena remark that
the equation of the curve given by three concurrent lines depends only on six monomials
instead of seven. More precisely let us consider a cubic with a triple point at (a, b, c)
passing through (1, 0, 0), (0, 1, 0) and ((0, 0, 1). Its equation is

(bz − cy)(az − cx)(ay − bx) = 0

and it depends on the monomials x2y, xy2, x2z, xz2, y2z, yz2. So there is a non zero
form in R3

<x3,y3,z3,xyz>
that is triple at a general point. By this way they explain the

Togliatti surprising phenomena ( [8], Thm. 4.1, [6] and [3]).

We apply this idea in our context. In the monomial case being artinian for the
ideal I means that it contains the forms xd0, · · · , xdn. Let us consider the (n+ 1) basis
point (1, 0, · · · , 0), (0, 1, · · · , 0), · · · , (0, 0, · · · , 0, 1) and let us assume that the number
of monomials in I is equal to rd − rd−k for k ≥ 1 a fixed integer. Let us denote by ∧I
the vector subspace of Rd generated by the monomials generating I. Then, as we said
above, the ideal I fails the SLP at the range k in degree d−k if and only if there exists
at any point x = (a0, · · · , an) a hypersurface of degree d with multiplicity d− k+ 1 at
x given by a form in Rd/∧I .
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Let us consider first the case k = 1, i.e. the WLP case. Then the wanted singular
hypersurface at x is given by d hyperplanes meeting at x and passing through the n+1
basis points. If this equation depends only on the monomials of Rd/∧I then the image
of vd(Pn) by π : P(Rd) \ P(∧I) −→ P(Rd/∧I) verifies a Laplace equation. Let us give
some examples.

Case n = 2, d = 4, k = 1.

We describe exhaustively the monomial ideals (x4, y4, z4, f, g) ⊂ k[x, y, z] of degree 4
that do not verify the WLP.

Theorem 3.2. Up to permutation of variables the monomial ideals generated by 5
forms that fail the WLP in degree 3 are one of the following (x4, y4, z4, x3z, x3y) and
(x4, y4, z4, x2y2, xyz2).

Remark. Geometrically it is evident that the first ideal (x4, y4, z4, x3z, x3y) fails the
WLP. Indeed modulo a linear form L the restricted monomials x̄iȳj can be interpre-
tated as points of the projective P4 defined by the rational normal curve of degree four
image of L by the Veronese map. Then the tangent line to the rational quartic curve
(isomorphic to L) at the point [x̄4] contains the two points [x̄3ȳ] and [x̄3z̄]. This line
meets the plane P(< x̄4, ȳ4, z̄4 >) in one point; it implies that

dimC < x̄4, ȳ4, z̄4, x̄3ȳ, x̄3z̄ >≤ 4.

It is not so evident for the second ideal to see that the line P(< x̄2ȳ2, x̄ȳz̄2 >) always
(when we restrict at any line) meet the plane P(< x̄4, ȳ4, z̄4 >).

Proof. Let us consider the points (1, 0, 0) , (0, 1, 0) and (0, 0, 1) and the degree 4 curves
with a quartuple point in (a, b, c) passing through these three points. These curves are
product of four lines:

f(x, y, z) = (ay − bx)(az − cx)(cy − bz)(α(ay − bx) + β(az − cx)).

We develop f . We find the following coefficients for monomials.

Figure 1. quartic with a quartuple point.

f(x, y, z) = bc(βc2 − αab)x2yz + ac(−αab− β(ac+ c2))xy2z + ac2(2αb+ βc)x2y2 +
bc2(−αb−βc)x3y+a2b(2αb+βc)xyz2+a2b(2αb+βc)x2z2+b2c(αb+βc)x3z+αa3cy3z−
αa2c2xy3 + a2(−αab+ βc2)y2z2 − βa2bcyz3 + βab2c.xz3.

Then, twelve monomials appear to write the wanted quartic with a quartuple point.
The forms x4, y4, z4 are missing. We want only ten forms. The coefficients of two
forms have to vanish. The following possibilities appear:
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• α = 0,
the remaining linear system is (x4, y4, z4, y3z, xy3).
• β = 0

the remaining linear system is (x4, y4, z4, yz3, xz3).
• α 6= 0 and β 6= 0 but αb+ βc = 0,

the remaining linear system is (x4, y4, z4, x3z, x3y).
• α 6= 0 and β 6= 0 but βc2 = αab

the remaining linear system is (x4, y4, z4, x2yz, y2z2).
• α 6= 0 and β 6= 0 but 2αb+ βc = 0,

the remaining linear system is (x4, y4, z4, x2y2, xyz2).
• α 6= 0 and β 6= 0 but αab+ β(ac+ c2) = 0,

the remaining linear system is (x4, y4, z4, x2z2, xy2z).

�

Case n = 2, d = 5, k = 1.

We cannot apply the same technique to describe exhaustively the monomial ideals
(x5, y5, z5, f, g, h) ⊂ k[x, y, z] of degree 5 that do not verify the WLP. Indeed the
computations become too tricky. We can give some cases by geometric arguments.

Proposition 3.3. The following monomial ideals (x5, y5, z5, x3y2, x3z2, x3yz) and
(x5, y5, z5, x4z, x4y,m), where m is any monomial, fail the WLP in degree 4.

Proof. Modulo a linear form L the restricted monomials x̄iȳj can be interpretated as
points of the projective P5 defined by the rational normal curve of degree 5 image of L
by the Veronese map. Then the tangent line to the rational quintic curve (isomorphic
to L) at the point [x̄5] contains the two points [x̄4ȳ] and [x̄4z̄]. This line meet the
plane P(< x̄5, ȳ5, z̄5 >) in one point; it implies that

dimC < x̄5, ȳ5, z̄5, x̄4ȳ, x̄4z̄, m̄ >≤ 5.

In the same way the osculating plane at [x̄5] i.e. P(< x̄3ȳ2, x̄3z̄2, x̄3ȳz̄ >) meets the
plane P(< x̄5, ȳ5, z̄5 >) in one point. �

Case n = 3, d = 3, k = 1.

We describe exhaustively the monomial ideals

(x3, y3, z3, t3, f1, f2, f3, f4, f5, f6) ⊂ k[x, y, z, t]

of degree 3 that do not verify the WLP.

Theorem 3.4. Up to permutation of variables the monomial ideals generated by ten
forms that fail the WLP in degree 2 are the ideals I = (x3, y3, z3, t3, f1, f2, f3, f4, f5, f6)
where the forms fi are chosen among one of the following sets of monomials:

(1) {x2y, xy2, x2z, x2t, y2z, y2t, z2t, zt2, xyz, xyt}. (Case (A1))
(2) {x2y, xy2, xz2, y2z, yz2, y2t, zt2, z2t}. (Case (A2))
(3) {x2y, xy2, z2t, zt2, xyz, xyt, xzt, yzt}. (Case (A2))
(4) {x2y, xy2, x2z, xz2, x2t, xt2, xyz, xzt, xyt, yzt}. (Case (B1))

Proof. We look for a vector subspace ∧ ⊂ R3 of dimension 10 that fails the WLP.
According to theorem 3.1, we look for a surface of degree 3 with multiplicity 3 at a
general point M = (a, b, c, d) (i.e. three concurrent planes) that passes through the
points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) such that its equation f depends only
on the monomials in R3/∧.

Remark. One has to write this equation with a number of monomials as small as
possible. Then the orthogonal space becomes bigger and we will cover all the possible
choices.
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First of all, there is at least one plane passing through (a, b, c, d) and two basis
points; without lost of generality we assume that its equation is dz− ct = 0. Then two
cases occur.

• (A) There is another plane through the two remaining points, and one free, i.e.
f = (bx− ay)(dz − ct)(αx+ βy + γz + δt), with αa+ βb+ γc+ δd = 0.
• (B) Each remaining plane passes through one basis point, i.e.

f = (dz − ct)(u1x+ v1y + w1z)(u2x+ v2y + w2t)

with u1ba+ v1b+ w1c = u2a+ v2b+ w2d = 0.

Case (A) The equation of f is the following:

f(x, y, z, t) = αbdx2z − αbcx2t+ d(βb− αa)xyz + c(αa− βb)xyt− βady2z +
βacy2t+ γbdxz2 + b(δd− γc)xzt− γadyz2 + a(γc− δd)yzt− δbcxt2 + acδyt2.

In order to remove the biggest number of coefficients, different cases occur.

• (A1) The case α = 0 and β = 0 (i.e. one plane through (0, 0, 1, 0) and
(0, 0, 0, 1) and one double plane through (1, 0, 0, 0) and (0, 1, 0, 0). It needs
six coefficients to write its equation that are xz2, xzt, yz2, yzt, xt2, yt2. In R3

it remains 14 monomials that are the four powers x3, y3, z3, t3 and ten more
x2y, xy2, x2z, x2t, xyz, xyt, y2z, y2t, z2t, zt2. The ideal generated by the four
powers and six forms among these ten fails the WLP in degree 2.
• (A2) The case β = 0 and γ = 0. The equation of the cubic is

f = (bx− ay)(dz − ct)(cx− az).
This equation depends on the eight following monomials

Figure 2. cubic with a triple point. Case (A2).

yt2, xyt, yzt, xyz, xt2, x2t, xzt, x2z.

In R3 it remains 12 monomials that are
(x3, y3, z3, t3, x2y, xy2, xz2, y2z, yz2, y2t, zt2, z2t). The four powers and
eight more. The ideal generated by the four powers and six forms among these
eight fails the WLP in degree 2.
• (A3) The case βb = αa and δd = γc. The supplementary plane do not pass

through one of the four basis points. There exists at any point (a, b, c, d) a
function u(a, b, c, d) such that ab + u(a, b, c, d)cd = 0. The equation of the
supplementary plane is bx + ay + udz + uct = 0. Then the equation of the



10 ROBERTA DI GENNARO, GIOVANNA ILARDI AND JEAN VALLÈS

cubic depends only on (x2z, x2t, y2z, y2t, xz2, yz2, xt2, yt2). In R3 it remains 12
monomials that are (x3, y3, z3, t3, xyz, xyt, xzt, yzt, x2y, xy2, z2t, zt2). The four
powers and eight more. The ideal generated by the four powers and six forms
among these eight fails the WLP in degree 2.

Case (B) The equation of f is f = (dz− ct)(u1x+v1y+w1z)(u2x+v2y+w2t). This

equation depends on 14 monomials (i.e. all of them except the four powers and x2y,
xy2). We have to remove at least the coefficients of four of them. If w1 = 0 or w2 = 0
it is again the first situation. We cannot choose ui = vi = 0 because the plane has to
pass through (a, b, c, d).

• (B1) If u1 = u2 = 0 we remove 7 coefficients. Then f depends on 6 mono-
mials that are (y2z, yz2, z2t, y2t, yt2, zt2). In R3 it remains 14 monomials that
are (x3, y3, z3, t3, x2y, xy2, x2z, xz2, x2t, xt2, xyz, xzt, xyt, yzt). The four pow-
ers and ten more. The ideal generated by the four powers and six forms among
these ten fails the WLP in degree 2.

Figure 3. cubic with a triple point. Case (B1)

• (B2) If u1 = v2 = 0 the cubic consists in three plan with equations dz− ct = 0,
cy − bz = 0 and dx − at = 0. By permutation it corresponds to the case
β = γ = 0 which is done above (see figure 2).
• (B3) If u1v2 +u2v1 = du1w2− cu2w1 = cv2w1−dv1w2 = 0. Then f depends on

ten monomials that are (x2z, xz2, x2t, xt2, y2z, yz2, y2t, yt2, z2t, zt2). In R3 it
remains 10 monomials that are (x3, y3, z3, t3, x2y, xy2, xyz, xyt, xzt, yzt). The
four powers and eight more. The ideal generated by the four powers and six
forms among these eight fails the WLP in degree 2. It appears that it is a
subcase of A3.

The other cases are obtained by permutation. �

Remark. If we want ∧ of dimension r ≤ 10 (for instance 8, like in the examples [9])
we need numerous independent cubics with a triple point. Indeed we have

0 −−−−→ qk∗p
∗
kK −−−−→ Or

P3 −−−−→ S3Ω∨P3(−1) −−−−→ R1qk∗p
∗
kK −−−−→ 0,

and the kernel is non zero if and only if the generic rank of the cokernel is 10− r + 1
(in other terms 10 − r + 1 independent cubics with triple points). As an example let
us give two linear systems of eight cubic forms that fail the WLP in degree 2.

Proposition 3.5. The following monomial ideals
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(1) I = (x3, y3, z3, t3, x2y, xy2, zt2, z2t) and
(2) J = (x3, y3, z3, t3, xyz, xyt, xzt, yzt)

fail the WLP in degree 2.

Remark. It should be possible to give a complete list by this method. Anyway the
complete classification is already done, see [9], Thm. 4.11.

Proof. Let us consider the following three forms defining singular cubics passing
through the basis points and the general point (a, b, c, d):

(ct− dz)(at− dx)(ay − bx) = 0, (ct− dz)2(ay − bx) = 0, (ct− dz)(ay − bx)2 = 0.

They are specialisations of the case (1) in the proof of theorem 3.4. They are linearly
independent and can be written with twelve monomials. Then it remains only 8 forms
for ∧I :

I = (x3, y3, z3, t3, x2y, xy2, zt2, z2t).

Let us consider the following three forms defining singular cubics passing through
the basis points and the general point (a, b, c, d):

(bz−cy)(az−cx)(ay−bx) = 0, (bx−ay)(at−dx)(dy−bt) = 0, (az−cx)(dx−at)(dz−ct) = 0.

They are specialisations of the case (2) in the proof of theorem 3.4. They are linearly
independent and can be written with twelve monomials:

(x2y, x2z, xy2, xz2, y2z, yz2, t2y, t2z, ty2, tz2, t2x, x2t).

It remains only

J = (x3, y3, z3, t3, xyz, xyt, xzt, yzt).

The ideals I and J correspond respectively to the cases (3) and (1) of the theorem
4.11 in [9]. �

Case n = 4, d = 3, k = 1.

Again we do not give a complete classification but only one example of monomial ideal
in ⊂ k[x, y, z, t, w] that fails the WLP.

Proposition 3.6. The following monomial ideal

I = (x3, y3, z3, t3, w3, xyz, xyt, xyw, xzt, xzw, xtw, yzt, yzw, ytw, ztw),

fails the WLP in degree 2.

Proof. A cubic solid with a triple point at the general point x = (a, b, c, d, e) is given
by three P3 through x and through the points

(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1).

Still copying the Togliatti’s case we consider the P3 that contain the P2 de-
fined by the points (0, 0, 0, 1, 0), (0, 0, 0, 0, 1) and the point (a, b, c, d, e). More pre-
cisely we consider three P3 obtained by choosing a supplementary point among
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0). Like in the following figure. We have to per-
mute in order to have six independent cubics with triple point. Then it remains at the
end

I = (x3, y3, z3, t3, w3, xyz, xyt, xyw, xzt, xzw, xtw, yzt, yzw, ytw, ztw),

and I fails the WLP in degree 2. �

Case n = 3, d = 4, k = 1.

Again we do not give a complete classification but only one example of monomial ideal
of degree 4 in ⊂ k[x, y, z, t] that fails the WLP..
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Figure 4. cubic with a triple point.

Proposition 3.7. Let f1, · · · , f11 be eleven monomials chosen among

x3y, x3z, x3t, xy3, xz3, xt3, y3z, y3t, yz3, yt3, z3t, zt3, x2y2, z2t2, y2z2, x2t2.

Then the ideal I = (x4, y4, z4, t4, f1, · · · , f11) fails the WLP in degree 3.

Proof. We want at any point x = (a, b, c, d) a surface of degree 4 with multiplicity 4 at
x and that passes through the basis points (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1).
It means four concurrent planes. Let us see an example.

f = (ct− dz)(at− dx)(ay − bx)(bz − cy) = 0.

Then we need the following monomials to write this f :

yzt2, xyzt, yz2t, xyz2, xzt2, x2zt, xz2t, x2z2, y2t2, xy2t, y2zt, xy2z, xyt2, x2yt, x2yz.

Twenty monomials are missing. More precisely:

x4, y4, z4, t4, x3y, x3z, x3t, xy3, xz3, xt3, y3z, y3t, yz3, yt3, z3t, zt3, x2y2, z2t2, y2z2, x2t2.

Then if we choose 11 monomials f1, · · · , f11 among

x3y, x3z, x3t, xy3, xz3, xt3, y3z, y3t, yz3, yt3, z3t, zt3, x2y2, z2t2, y2z2, x2t2,

the ideal I = (x4, y4, z4, t4, f1, · · · , f11) fails the WLP in degree 3. �

Let us give now an example when k = 2. We look for singular hypersurfaces of
degree d with multiplicity d− 1 at a point p that consist of d− 1 hyperplanes meeting
at p and an extra hyperplane such that their union passes through the n + 1 basis
points. As before, such a hypersurface has an equation in the canonical monomial
basis of degree d forms; if this equation depends only on the monomials of Rd/∧I then
the image of vd(Pn) by π : P(Rd) \ P(∧I) −→ P(Rd/∧I) verifies a Laplace equation.
Let us give examples.

Case n = 2, d = 4, k = 2.

Proposition 3.8. The ideal I = (x4, y4, z4, xy3, xz3, x2yz, y2z2, y3z, yz3) ⊂ k[x, y, z]
fails the SLP at the range 2 in degree 2.

Proof. We consider the curve of degree 3 through p1 = (1, 0, 0), p2 = (0, 1, 0) and
p3 = ((0, 0, 1) with multiplicity 3 in (a, b, c) and the line through p3 and p2 i.e. x =
0. Then the union of both curves is a quartic passing through p1, p2, p3 and triple
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Figure 5. quartique with a quartuple point.

Figure 6. quartic with a triple point.

at (a, b, c). It depends on the six monomials x3y, x3z, x2y2, xy2z, x2z2, xyz2. Then it
remains 9 = 15− 6 monomials

∧I =< x4, y4, z4, xy3, xz3, x2yz, y2z2, y3z, yz3 >

such that the kernel K of the following map

0 −−−−→ K −−−−→ O9
P2

∧I−−−−→ OP2(4) −−−−→ 0,

verifies h0(K ⊗ OL2) 6= 0 for a general linear form L. According to theorem 3.1 it
proves that I = (x4, y4, z4, xy3, xz3, x2yz, y2z2, y3z, yz3) fails the SLP at the range 2
in degree 2. �

4. SLP at the range 2 and derivation bundle on P2

Let us point out the interesting case ∧ = H0(IZ(n))∨ where Z is a finite set of points
in P2. This case leads to non toric examples. But mostly, it leads to derivation bundles
associated to line arrangements. More precisely, let us denote by f = 0 the equation of
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the union of dual lines of the d points of Z and by D0(Z) the vector bundle appearing
as the kernel of the jacobian map:

0 −−−−→ D0(Z) −−−−→ O3
P2

(∂f)−−−−→ OP2(d− 1).

This bundle is called derivation bundle of the line arrangement and it is studied by
many different authors (see for instance [14] and [13]). The arrangement of lines is
said free with exponents (a, b) when its derivation bundle splits on P2 as a sum of two
line bundles, more precisely when D0(Z) = OP2(−a)⊕ OP2(−b).

The splitting of D0(Z) over a line l ⊂ P2 is related to the existence of curves (with
a given degree d) passing through Z that are multiple (with multiplicity d − 1) at
l∨ ∈ P2∨. More precisely,

Theorem 4.1. Let Z ⊂ P2∨ be a set of 2n + r + 1 distinct points with n ≥ 1, r ≥ 0
and l be a general line in P2. Then the following conditions are equivalent:

(1) D0(Z)⊗ Ol = Ol(−n)⊕ Ol(−n− r).
(2) H0((JZ ⊗ J nl∨)(n+ 1)) 6= 0 and H0((JZ ⊗ J n−1

l∨ )(n)) = 0.

Proof. Let us introduce the variety F ⊂ P2 × P2∨. which is the incidence variety
point-line in P2, and the projections p and q on P2 and P2∨.

F q−−−−→ P2∨

p

y
P2

We recall first that the derivation bundle is obtained by looking at IZ(1) on P2. More
precisely, we have D0(Z) = p∗q

∗IZ(1) (see [4], prop.1.3).

Let us denote by P̂ the blowing up of P2∨ along the point x = l∨. We recall that

P̂ ' p−1(x∨) ⊂ F and we consider the induced incidence diagram:

P̂ q̂−−−−→ P2∨

p̂

y
l = x∨

Moreover we have the following resolution of P̂ in F:

0 −−−−→ p∗OP2(−1) −−−−→ OF −−−−→ OP̂ −−−−→ 0.

Then tensoring the exact sequence above by q∗JZ(1) and taking the direct image by
p we obtain:

0 −→ D0(Z)(−1)
x∨−→ D0(Z) −→ p̂∗q̂

∗JZ(1) −→

−→ [R1p∗q
∗JZ(1)](−1)

x∨−→ [R1p∗q
∗JZ(1)] −→ R1p̂∗q̂

∗JZ(1) −→ 0.

Since x is general, any line through x is at most 1-secant to Z. Then the support of
the sheaf R1p̂∗q̂

∗JZ(1), which is the locus of 3-secant lines to Z through x (by base
change theorem, see [11] for instance), is empty. So it proves that we have in fact a
short exact sequence:

0 −→ D0(Z)(−1)
x∨−→ D0(Z) −→ p̂∗q̂

∗JZ(1) −→ 0,

and consequently p̂∗q̂
∗JZ(1) = TZ ⊗ Ox∨ .

Then the decomposition D0(Z)⊗Ox∨ = Ox∨(−n)⊕Ox∨(−n− r) gives an injective
homomorphism: Ox∨(−n) ↪→ p̂∗q̂

∗JZ(1).

This means that we have a non zero map p̂∗Ox∨(−n) ↪→ q̂∗JZ(1) on P̂, that we can
write also as: OP̂ ↪→ q̂∗JZ(1)⊗ p̂∗Ox∨(n).
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By the projection formula this last map is equivalent to a non zero map on P2∨:

OP2∨ ↪→ JZ(1)⊗ J nx (n) = (JZ ⊗ J nx )(n+ 1).

Let us now prove that H0(JZ ⊗J n−1
x )(n)) = 0. Assume that H0(JZ ⊗J n−1

x )(n)) 6= 0

and consider a non zero section: OP2∨ ↪→ JZ⊗J n−1
x (n). The corresponding section on P̂

Ox∨ ↪→ q̂∗JZ(n) vanishes in codimension 1 along (n−1)-times the exceptionnal divisor
q−1(x). After simplification by its equation (f ∈ H0(p̂∗Ox∨(n − 1) ⊗ q̂∗OP2∨(1 − n)))
we obtain:

p̂∗Ox∨(1− n) ↪→ q̂∗JZ(1).

It induces on x∨ a non zero map: Ox∨(1− n) ↪→ p̂∗q̂
∗JZ(1), contradicting the decom-

position of D0(Z) along x∨. �

In our context it implies the following characterization of unstability. We recall
that a rank two vector bundle E on Pn, n ≥ 2 is unstable if and only if its splitting
El = Ol(a) ⊕ Ol(b) on a general line l verifies | a − b |≥ 2. This characterization is a
consequence of the Grauert-Mülich theorem, see [11].

Theorem 4.2. Let I ⊂ R = C[x, y, z] be an artinian ideal generated by 2d+ 1 polyno-
mials ld1, · · · , ld2d+1 where li are distinct linear forms in P2. Let Z = {l∨1 , · · · , l∨2d+1} be

the corresponding set of points in P2∨. Then the following conditions are equivalent:

(1) The ideal I fails the SLP at the range 2 in degree d− 2.
(2) The derivation bundle D0(Z) is unstable.

Proof. The failure of SLP at the range 2 in degree d− 2 is equivalent to the existence
at a general point l∨ of a curve of degree d with multiplicity d − 1 at l∨ belonging
to ∧ = H0(IZ(d)). But, the description of D0(Z) as the image of IZ(1) implies that
such a curve imposes the splitting of D0(Z) over the line l. More precisely we have the
following equivalence:

Ol(1− d) ↪→ D0(Z)⊗ Ol ⇔ H0((IZ ⊗md−1
l∨ )(d)) 6= 0.

Then on the general line

D0(Z)⊗ Ol = Ol(d− s)⊕ Ol(d+ s) with s > 0.

In other words it gives a non balanced decomposition and according to Grauert-Mülich
theorem it is equivalent to unstability, see [11]. �

Let us give now an ideal (not generated by monomials) that fails the SLP at the
range 2. It comes from a line arrangement such that the derivation bundle associated
is unstable (in fact even decomposed).

Example 4.3. Consider the set of nine points

Z = {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1,−1, 0), (1, 0, 1), (1, 0,−1), (0, 1, 1), (0, 1,−1)}.
The dual linear forms are x, y, z, x+ y, x− y, x+ z, x− z, y+ z, y− z. We consider the
map

0 −−−−→ K −−−−→ O9
P2

φ−−−−→ OP2(4) −−−−→ 0,

where φ(a1, · · · , a9) =

a1x
4+a2y

4+a3z
4+a4(x+y)4+a5(x−y)4+a6(x+z)4+a7(x−z)4+a8(y+z)4+a9(y−z)4.

The associated derivation bundle is D0(Z) = OP2(−3)⊕OP2(−5) (it is free with expo-
nents (3, 5); see [12] for a proof). Then, according to theorem 4.1 there is at any point
p a degree 4 curve with multiplicity 3 at p passing through Z. In other words we have
H0(K ⊗ OL2) 6= 0 for a general linear form L and we have proved that:
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Proposition 4.4. The ideal

I = (x4, y4, z4, (x+ y)4, (x− y)4, (x+ z)4, (x− z)4, (y + z)4, (y − z)4)k[x, y, z]

fails the SLP at the range 2 and degree 2.

More generally we can produce examples that come from free arrangements.

Proposition 4.5. Let A = {l1, · · · , la+b+1} a line arrangement that is free with expo-

nents (a, b) such that a ≤ b, b− a ≥ 2 and a+ b even. The ideal I = (l
a+b
2

1 , · · · , l
a+b
2

a+b+1)

fails the SLP at the range 2 and degree a+b−1
2 .

Remark. If a+ b is odd we can add to Z one point p in general position with Z and

we can prove in the same way that I = (l
a+b+1

2
1 , · · · , l

a+b+1
2

a+b+1, (p
∨)

a+b+1
2 ) fails the SLP at

the range 2 and degree a+b
2 .

Proof. Let us denote by Z = {l∨1 , · · · , l∨a+b+1} the dual set of points of A. Since there
exists at any general point l∨ a curve of degree a + 1 passing through Z theorem 4.1
implies that D0(Z) is unstable and theorem 4.2 implies that I fails the SLP at the
range 2 and degree a+b−1

2 . �

4.1. SLP at the range 2 and Terao’s conjecture. One of the main conjecture
about hyperplane arrangements (still open also for line arrangements) is the Terao’s
conjecture. It concerns the arrangements that are called free. The conjecture says that
freeness depends only on the combinatorics of the arrangement (the combinatorics of
the arrangement A = {l1, . . . , ln} is encoded by a incidence graph with vertices given
by the lines li and the points li ∩ lj and edges joining point and line when the point
belongs to the line). We refer to [12] for a good introduction to the subject.

Conjecture (Terao). The freeness depends only on combinatorics.

In other words if an arrangement has the same combinatorics than a free arrange-
ment it is also free.

Let us consider an arrangement of lines and let us denote by Z0 its dual set of points.
We assume that Z0 is free with exponents (a, b) with a ≤ b. We assume that there
exists a non free arrangement Z with the same combinatorics than Z0, i.e. that the
Terao’s conjecture is not true. Let us add b − a points in general position to Z0 in
order to form Γ0 and to Z to form Γ. Then the length of both sets of points is 2b+ 1.
On the general line l we have

D0(Z0)⊗ Ol = Ol(−a)⊕ Ol(−b),

when, since Z is not free we have a less balanced decomposition for D0(Z) (this affir-
mation is not so easy; it is proved in [2]), more precisely

D0(Z)⊗ Ol = Ol(s− a)⊕ Ol(−s− b), s ≥ 1.

It implies that

H0(IZ ⊗ma−1
l∨ (a)) 6= 0,H0(IZ0 ⊗ma−1

l∨ (a)) = 0 and H0(IZ0 ⊗ma
l∨(a+ 1)) 6= 0.

Then adding b − a lines passing through l∨ and the b − a added points we obtain
H0(IΓ ⊗ mb−1

l∨ (b)) 6= 0, H0(IZ0 ⊗ mb−1
l∨ (b)) = 0 and H0(IZ0 ⊗ mb

l∨(b + 1)) 6= 0, in other
words D0(Γ0) is balanced with splitting Ol(−b)⊕ Ol(−b) when

D0(Γ)⊗ Ol = Ol(1− b)⊕ Ol(−1− b).
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Then D0(Γ) is unstable. In other words if Z0 = {d∨1 , · · · , d∨a+b+1},
Γ0 = {d∨1 , · · · , d∨a+b+1, p1, · · · , pb−a}, Z = {l∨1 , · · · , l∨a+b+1} and Γ =
{l∨1 , · · · , l∨a+b+1, p1, · · · , pb−a} then the ideal

(lb1, · · · , lba+b+1, (p
∨
1 )b, · · · , (p∨b−a)b)

fails the SLP at the range 2 and degree b− 2 when

(db1, · · · , dba+b+1, (p
∨
1 )b, · · · , (p∨b−a)b)

has SLP at the range 2 and degree b− 2.
The following conjecture written in terms of SLP implies the Terao’s conjecture on P2.

Conjecture. Let Z0 = {d∨1 , · · · , d∨2b+1} a set of points of length 2b+1 in P2∨ such that

the ideal I = (db1, · · · , db2b+1) has the SLP at the range 2 and degree b−2. Assume that

Z = {l∨1 , · · · , l∨2b+1} has the same combinatorics than Z0. Then J = (lb1, · · · , lb2b+1) has
the SLP at the range 2 and degree b− 2.
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