Mourad Bellassoued 
email: mourad.bellassoued@fsb.rnu.tn
  
Michel Cristofol 
  
Eric Soccorsi 
email: soccorsi@cpt.univ-mrs.fr
  
Inverse boundary value problem for the dynamical heterogeneous Maxwell system

Keywords: Inverse problems, Maxwell system, Carleman estimates

We consider the inverse problem of determining the isotropic inhomogeneous electromagnetic coefficients of the non-stationary Maxwell equations in a bounded domain of R 3 , from a finite number of boundary measurements. Our main result is a Hölder stability estimate for the inverse problem, where the measurements are exerted only in some boundary components. For it, we prove a global Carleman estimate for the heterogeneous Maxwell's system with boundary conditions.

Introduction

In this paper, we discuss the uniqueness and stability in determining the isotropic electromagnetic coefficients of the dynamical Maxwell equations, by boundary measurement of their solution. More precisely, given a continuous medium with dielectric permittivity λ -1 and magnetic permeability µ -1 , occupying an open, bounded and simply connected domain Ω ⊂ R 3 with C ∞ boundary Γ = ∂Ω, and T > 0, we consider the following problem for the linear system of Maxwell's equations

D ′ -curl (µB) = 0, in Q := Ω × (-T, T ), B ′ + curl (λD) = 0, in Q, div D = div B = 0, in Q, D × ν = 0, B • ν = 0, on Σ := Γ × (-T, T ), (1.1) 
where the prime stands for the time derivative. Here the electric induction D and the magnetic field B are three-dimensional vector-valued functions of the time t and the space variable x = (x 1 , x 2 , x 3 ), and ν = ν(x) denotes the unit outward normal vector to Γ. Moreover we attach the following initial condition to (1.1): B(x, 0) = B 0 (x), D(x, 0) = D 0 (x), x ∈ Ω.

(1.2)

Assume that µ and λ are scalar functions in C 2 (Ω) obeying

µ(x) ≥ µ 0 , λ(x) ≥ λ 0 , x ∈ Ω, (1.3) 
for some λ 0 > 0 and µ 0 > 0. Next, in view of deriving existence and uniqueness results for (1.1), introduce the following functional space H(curl , Ω) := {u ∈ L 2 (Ω) 3 , curl u ∈ L 2 (Ω) 3 }, and denote by γ τ the unique linear continuous application from H(curl , Ω) into H -1/2 (Γ) 3 , satisfying γ τ u = u ∧ ν when u ∈ C ∞ 0 (Ω) 3 (see [START_REF] Dautray | Mathematical analysis and Numerical Methods for Science and Technology[END_REF][Chap. IX A, Theorem 2]). Then, putting

H 0 (curl , Ω) := {u ∈ H(curl , Ω), γ τ = 0},
we see that the operator iA, where AΦ := 0 curl (µ.)

-curl (λ.) 0 , Φ = (D, B) ∈ Dom(A) := H 0 (curl ; Ω) × H(curl ; Ω), is selfadjoint in H := L 2 (Ω) 3 × L 2 (Ω) 3 , endowed with the scalar product

Φ, Φ H := λD, D L 2 (Ω) 3 + µB, B L 2 (Ω) 3 , Φ = (D, B) ∈ H, Φ = ( D, B) ∈ H.
Further, in light of the last line of (1.1), set H(div 0, Ω) := {u ∈ L 2 (Ω) 3 , div u = 0} and H 0 (div 0, Ω) := {u ∈ H(div 0, Ω), γ n u = 0}, where γ n is the unique linear continuous mapping from H(div , Ω) := {u ∈ L 2 (Ω) 3 , div u ∈ L 2 (Ω)} onto H -1/2 (Γ), such that γ n u = u • ν when u ∈ C ∞ 0 (Ω) (see [START_REF] Dautray | Mathematical analysis and Numerical Methods for Science and Technology[END_REF][Chap. IX A, Theorem 1]). Since H 0 := H(div 0; Ω) × H 0 (div 0; Ω) is a closed subspace of H and that H ⊥ 0 ⊂ ker A, the restriction

A 0 Φ = A H 0 Φ := AΦ, Φ ∈ Dom(A 0 ) = Dom(A) ∩ H 0 := V,
is, by Stone's Theorem [START_REF] Dautray | Mathematical analysis and Numerical Methods for Science and Technology[END_REF][Chap. XVII A, §4, Theorem 3], the infinitesimal generator of a unitary group of class C 0 in H 0 . Thus, by rewriting (1.1)-(1.2) into the equivalent form

Φ ′ = A 0 Φ Φ(0) = Φ 0 ,
with Φ = (D, B) T and Φ 0 = (D 0 , B 0 ) T , we get that:

Lemma 1.1 Given (D 0 , B 0 ) ∈ V there exists a unique strong solution (D, B) to (1.1) starting from (D 0 , B 0 ) within the following class

(D, B) ∈ C 0 (R; V) ∩ C 1 (R; H). (1.4) 
Moreover it holds true from [START_REF] Dautray | Mathematical analysis and Numerical Methods for Science and Technology[END_REF][Chap. IX A, Remark 1] that V = H τ,0 (curl , div 0; Ω) × H n,0 (curl , div 0; Ω), where H * ,0 (curl , div 0; Ω) = {u ∈ H 1 (Ω) 3 , div u = 0 and γ * u = 0}, * = τ, n.

For further reference we notice from Lemma 1.1 that the solution (D, B) to (1.1)-(1.2) actually satisfies:

(D, B) ∈ ∩ m p=0 C p ([-T, T ]; Dom(A m-p 0 ) provided (D 0 , B 0 ) ∈ Dom(A m 0 ) and λ, µ ∈ C m (Ω), m ≥ 1.

(1.5) The main purpose of this paper is to study the inverse problem of determining the dielectric permittivity λ -1 = λ -1 (x) and the magnetic permeability µ -1 = µ -1 (x) from a finite number of observations on the boundary Γ of the solution (B, D) to (1.1) which corresponds to a realistic physical approach. This is an important problem not only in electromagnetics (see [START_REF] Starostenko | Determining permittivity and permeability from the reflection coefficient of optically thin samples[END_REF]) but also in the identification of cracks/flaws in conductors (see [START_REF] He | Some explicit formulas for crack identification in conductors using boundary measurements of dc fields[END_REF]) or the localization of lightning discharges (see [START_REF] Popov | Reconstruction of lightning currents and return stroke model parameters using remote electromagnetic fields[END_REF]). On the other hand, we obtain a reconstruction result which involves only a finite number of measurements which is not the case in most of the existing results.

Inverse problem

For suitable B k 0 , D k 0 , k = 1, 2, we aim to determine λ(x), µ(x), x ∈ Ω, from the observation of

B k τ (x, t), D k ν (x, t), (x, t) ∈ Σ, k = 1, 2,
where

B τ = B -(B • ν)ν (resp. D ν = (D • ν)ν) denotes the tangential (resp. normal) component of B (resp. D).
Notice that only a finite number of measurements are needed in the formulation of this inverse problem. For an overview of inverse problems for the Maxwell system, see the monograph [START_REF] Romanov | Inverse problems for Maxwell's equations[END_REF] by Romanov and Kabanikhin. For actual examples of inverse problems for the dynamical Maxwell system involving infinitely many boundary observations (this is the case when the identification of the electromagnetic coefficients is made from the Dirichlet-to-Neumann map), we refer to Beleshev and Isakov [START_REF] Belishev | On the Uniqueness of the Recovery of Parameters of the Maxwell System from Dynamical Boundary Data[END_REF], Caro [START_REF] Caro | Stable determination of the electromagnetic coefficients by boundary measurements[END_REF], Caro, Ola and Salo [START_REF] Caro | Inverse boundary value problem for Maxwell equations with local data[END_REF], Kurylev, Lassas and Somersalo [START_REF] Kurylev | Maxwell's equations with a polarization independent wave velocity: Direct and inverse prob-lems[END_REF], Ola, Paivarinta and Somersalo [START_REF] Ola | An inverse boundary value problem in electrodynamics[END_REF] and Salo, Kenig and Uhlmann [START_REF] Salo | Inverse problems for the anisotropic Maxwell equations[END_REF]. It turns out that a small number of uniqueness and stability results for the inverse problem of determining the electromagnetic parameters of the Maxwell system with a finite number of measurements are available, such as [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF][START_REF] Li | An inverse source problem for Maxwell's equations in anisotropic media[END_REF]. In both cases, their proof is based on the methodology of [START_REF] Bukhgeim | Global uniqueness of class of multidimentional inverse problems[END_REF] or [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with single measurement[END_REF], which is by means of a Carleman estimate.

For the formulation with a finite number of observations, Bukhgeim and Klibanov [START_REF] Bukhgeim | Global uniqueness of class of multidimentional inverse problems[END_REF] proposed a remarkable method based on a Carleman estimate and established the uniqueness for similar inverse problems for scalar partial differential equations. See also Bellassoued [START_REF] Bellassoued | Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation[END_REF], [START_REF] Bellassoued | Uniqueness and stability in determining the speed of propagation of second-order hyperbolic equation with variable coefficients[END_REF], Bellassoued and Yamamoto [START_REF] Bellassoued | Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation[END_REF], [START_REF] Bellassoued | Determination of a coeffcient in the wave equation with a single measurment[END_REF], A. Benabdallah, M. Cristofol, P. Gaitan and M. Yamamoto [START_REF] Benabdallah | Inverse problem for a parabolic system with two components by measurements of one component[END_REF], Bukhgeim [START_REF] Bukhgeim | Introduction to the Theory of Inverse Problems[END_REF], Bukhgeim, Cheng, Isakov and Yamamoto [START_REF] Bukhgeim | Uniqueness in determining damping corfficients in hyperbolic equations[END_REF], Cristofol and Roques [START_REF] Cristofol | Biological invasions: deriving the regions at risk from partial measurements[END_REF], Cristofol and Soccorsi [START_REF] Cristofol | Stability estimate in an inverse problem for non-autonomous magnetic Schrödinger equations[END_REF], Imanuvilov and Yamamoto [START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF]- [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with single measurement[END_REF], Isakov [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF], Khaȋdarov [START_REF] Khaȋdarov | On stability estimates in multidimentional inverse problems for differential equation[END_REF], Klibanov [START_REF] Klibanov | Inverse problems in the "large" and Carleman bounds[END_REF], [START_REF] Klibanov | Inverse problems and Carleman estimates[END_REF], Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF], Klibanov and Yamamoto [START_REF] Klibanov | Lipschitz stability of an inverse problem for an accoustic equation[END_REF], Li and Yamamoto [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF]- [START_REF] Li | An inverse source problem for Maxwell's equations in anisotropic media[END_REF], Yamamoto [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF].

A Carleman estimate is an inequality for a solution to a partial differential equation with weighted L 2 -norm and is a strong tool also for proving the uniqueness in the Cauchy problem or the unique continuation for a partial differential equation with non-analytic coefficients. Moreover Carleman estimates have been applied essentially for estimating the energy (e.g., Kazemi and Klibanov [25]).

As a pioneering work concerning a Carleman estimate, we refer to Carleman's paper [START_REF] Carleman | Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendents[END_REF] which proved what is later called a Carleman estimate and applied it for proving the uniqueness in the Cauchy problem for a two-dimensional elliptic equation. Since [START_REF] Carleman | Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendents[END_REF], the theory of Carleman estimates has been studied extensively. We refer to a general theory by Hörmander [START_REF] Hörmander | Linear Partial Differential Operators[END_REF] in the case where the symbol of a partial differential equation is isotropic and functions under consideration have compact supports (that is, they and their derivatives of suitable orders vanish on the boundary of a domain). Later Carleman estimates for functions with compact supports have been obtained for partial differential operators with anisotropic symbols by Isakov [START_REF] Isakov | Inverse Problems for Partial Differential Equations[END_REF]. Carleman estimates for functions without compact supports, see Imanuvilov [START_REF] Imanuvilov | On Carleman estimates for hyperbolic equations[END_REF], Tataru [START_REF] Tataru | Carleman estimates and unique continuation for solutions to boundary value problems[END_REF]. As for a direct derivation of pointwise Carleman estimates for hyperbolic equations which are applicable to functions without compact supports, see Klibanov and Timonov [START_REF] Klibanov | Carleman Estimates for Coefficient Inverse Problems and Numerical Applications[END_REF], Lavrent'ev, Romanov and Shishat•skiȋ [START_REF] Lavrent'ev | skiȋ: Ill-posed Problems of Mathematics Physics and Analysis[END_REF].

The Carleman estimate for the non-stationary Maxwell's system was obtained for functions with compact supports, by Eller, Isakov, Nakamura and Tataru [START_REF] Eller | Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems[END_REF]. Li and Yamamoto [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF]- [START_REF] Li | An inverse source problem for Maxwell's equations in anisotropic media[END_REF], prove a Carleman estimate for two-dimensional Maxwell's equations in isomagnetic anisotropic media for functions with compact supports. Lemmas 2.1 and 2.2 are our Carleman estimate for the Maxwell's system whose solutions have not necessarily compact supports.

By the methodology by [START_REF] Bukhgeim | Global uniqueness of class of multidimentional inverse problems[END_REF] or [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with single measurement[END_REF] with such Carleman estimates, several uniqueness and stability results are available for the inverse problem for the Maxwell's system (1.1). That is, in [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF]- [START_REF] Li | An inverse source problem for Maxwell's equations in anisotropic media[END_REF] Li and Yamomoto established the uniqueness in determining three coefficients, using finite number of measurements.

Li and Yamamoto [START_REF] Li | An inverse source problem for Maxwell's equations in anisotropic media[END_REF], consider nonstationary Maxwell's equations in an anisotropic medium in the (x 1 , x 2 , x 3 )-space, where equations of the divergences of electric and magnetic flux densities are also unknown. Then they discuss an inverse problem of determining the x 3-independent components of the electric current density from observations on the plane x 3 = 0 over a time interval and prove conditional stability in the inverse problem provided the permittivity and the permeability are independent of x 3 .

In [START_REF] Nicaise | Internal and Boundary Observability Estimates for the Heterogeneous Maxwell's System[END_REF], S.Nicaise and C.Pignotti, consider the Heterogenous Maxwell's system defined in an open bounded domain. Under checkable conditions on the coefficients of the principal part they proved a Carleman type estimates where some weighted H 1 -norm of solution is dominated by the L 2 norm of the boundary traces ∂ ν U and U t , modulo an interior lower-order term. Once homogeneous boundary conditions are imposed the lower-order term can be absorbed by the standard unique continuation theorem. Unfortunately, to our knowledge, these results may not be applied directly to the linearized inverse problem associated to the original problem.

Our argument is based on a new Carleman estimate. In comparison with [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF] and [START_REF] Nicaise | Internal and Boundary Observability Estimates for the Heterogeneous Maxwell's System[END_REF], our Carleman estimate is advantageous in the following two points:

• We show a Carleman estimate which holds over the whole domain Q. We need not assume that the functions under consideration have compact supports and so ours is different from the Carleman estimates presented in [START_REF] Li | Carleman estimate for Maxwell's Equations in anisotropic media and the observability inequality[END_REF], and we can establish a Hölder estimate.

• We do not need a priori any unique continuation property and compactness/uniqueness argument to absorb the lower-order interior term. In our approach, we establish a Carleman estimates for H 1 -solutions of the hyperbolic equation with variable coefficients. This is essential to the proof of our main result, because here our problem is involved with a source term and we cannot use the standard compactness/ uniqueness argument as in [START_REF] Nicaise | Internal and Boundary Observability Estimates for the Heterogeneous Maxwell's System[END_REF].

Notations and statement of the main result

In this subsection we introduce some notations used throughout this text and state the main result of this article. Pick x 0 ∈ R 3 \Ω, set c(x) = µ(x)λ(x) for x ∈ Ω, c 0 = µ 0 λ 0 where µ 0 and λ 0 are the same as in (1.3), and assume that the following condition

3 2 |∇ log c(x)| |x -x 0 | ≤ 1 - ρ c 0 , x ∈ Ω, (1.6) 
holds true for some ρ ∈ (0, c 0 ). This purely technical condition was imposed by the method we use to solve the inverse problem under study, which is by means of the Carleman estimate stated in Lemma 2.2 for any weight function ψ 0 satisfying the two Assumptions (A1) and (A2). More precisely, in the particular case where

ψ 0 (x) := |x -x 0 | 2 , x ∈ Ω, (1.7) 
then (1.6) arises from the classical pseudo-convexity condition expressed by (2.5). The somehow nonnatural condition (1.6) is thus closely related to the peculiar expression (1.7) in the sense that another choice of ψ 0 fulfilling (A1) and (A2) may eventually lead to a completely different condition on c(x).

Next, for M 0 > 0 and two given functions µ ♯ , λ ♯ ∈ C 2 (ω), where ω = Ω∩O for some neighbourhood O of Γ in R 3 , we define the admissible set of unknown coefficients µ and λ as

Λ ω (M 0 ) = (µ, λ) obeying (1.3) and (1.6) ; (µ, λ) C 2 (Ω) ≤ M 0 and (µ, λ) = (µ ♯ , λ ♯ ) in ω . (1.8)
Further, the identification of (λ, µ) imposing, as will appear in the sequel, that (B, D) be observed twice, we consider two sets of initial data

(D k 0 , B k 0 ), k = 1, 2, D k 0 (x) = d k 1 (x), d k 2 (x), d k 3 (x) ⊤ , B k 0 (x) = b k 1 (x), b k 2 (x), b k 3 (x) ⊤ , (1.9) 
and define the 12 × 6 matrix

K(x) =        e 1 × B 1 0 e 2 × B 1 0 e 3 × B 1 0 0 0 0 0 0 0 e 1 × D 1 0 e 2 × D 1 0 e 3 × D 1 0 e 1 × B 2 0 e 2 × B 2 0 e 3 × B 2 0 0 0 0 0 0 0 e 1 × D 2 0 e 2 × D 2 0 e 3 × D 2 0        , x ∈ Ω. (1.10) 
We then write

(B k i (x, t), D k i (x, t)) the solution to (1.1) with initial data (B k 0 , D k 0 ), k = 1, 2, where (µ i , λ i ), i = 1, 2, is substituted for (µ, λ).
Finally, noting

H (Σ) = H 3 (-T, T ; L 2 (Γ)) ∩ H 2 (-T, T ; H 1 (Γ)) the Hilbert space equipped with the norm u 2 H (Σ) = u 2 H 3 (-T,T ;L 2 (Γ)) + u 2 H 2 (-T,T ;H 1 (Γ)) , u ∈ H (Σ)
, we now may state the main result of this paper as follows :

Theorem 1 Let T > c -1/2 0 max x∈Ω |x -x 0 | and pick (B k 0 , D k 0 ) ∈ (H 2 (Ω) 3 × H 2 (Ω) 3 ) ∩ V, k = 1, 2
, in such a way that there exists a 6 × 6 minor m(x) of the matrix K(x) defined in (1.10), obeying:

m(x) = 0, x ∈ Ω\ω. (1.11) Further, choose (µ i , λ i ) ∈ Λ ω (M 0 ), i = 1, 2, so that B k i , D k i C 3 (-T,T ;W 2,∞ (Ω)) ≤ M, k = 1, 2, (1.12) 
for some M > 0. Then there are two constants C > 0 and κ ∈ (0, 1), depending on Ω, ω, T , M and M 0 , such that we have:

µ 1 -µ 2 H 2 (Ω) + λ 1 -λ 2 H 2 (Ω) ≤ C 2 k=1 B k 1 -B k 2 τ H (Σ) + D k 1 -D k 2 ν H (Σ) κ .
Notice that the condition (1.11), which is independent of the choice of the unknown coefficients µ and λ, actually relates on the initial functions in (1.2). Moreover this condition is stable with respect to perturbations in

C 2 . Namely, if (B k 0 , D k 0 ) obeys (1.11) then this is the case for ( Bk 0 , Dk 0 ) as well, pro- vided max k=1,2 (B k 0 , D k 0 ) -( Bk 0 , Dk 0 ) C(Ω)
is sufficiently small. Furthermore there are actual choices [START_REF] Carleman | Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendents[END_REF]. This can be seen by taking

of (B k 0 , D k 0 ), k = 1, 2, satisfying (1.
B 1 0 (x) = e 1 , D 1 0 (x) = e 3 , B 2 0 (x) = e 2 , D 2 0 (x) = e 2 , x ∈ Ω \ ω
and selecting the 6 × 6 minor formed by rows 2, 3, 4, 9, 10 and 12.

Theorem 1 asserts Hölder stability in determining the principal part within the class defined by (1.8), under the assumption (1.12). Notice from (1.5) that such a condition is automatically fulfilled for λ, µ ∈ C 7 (Ω) by chosing the initial data

(B k 0 , D k 0 ), k = 1, 2, in Dom(A 7 0 ) (which is a dense in H).
The proof of Theorem 1 is based on a Carleman estimate stated in Lemma 2.2 under the conditions (1.3) and (1.6). Notice that (1.6), which is essential to our argument, is much stronger than the usual uniform ellipticity condition.

The remainder of the paper is organized as follows: a Carleman estimate for the Maxwell system (1.1) is established in Section 2, while Section 3 contains the proof of Theorem 1.

Carleman estimate for Maxwell's system

As already mentioned, this section is devoted to the derivation of a global Carleman estimate for the Maxwell system (1.1).

The settings

Let us consider the following second order hyperbolic operator

P u = ∂ 2 t u(x, t) -div (c(x)∇u) + R 1 (x, t; ∂)u, x ∈ Ω, t ∈ R, (2.1) 
where R 1 is a first order partial operator with

L ∞ (Ω × R) coefficients, and c ∈ C 2 (Ω) obeys c(x) ≥ c 0 , x ∈ Ω, (2.2) 
for some positive constant c 0 . Putting

a(x, ξ) = c(x) |ξ| 2 , x ∈ Ω, ξ ∈ R 3 , (2.3) 
and recalling the definition of the Poisson bracket of two given symbols p and q,

{p, q} (x, ξ) = ∂p ∂ξ • ∂q ∂x - ∂p ∂x • ∂q ∂ξ = n i=1 ∂p ∂ξ i ∂q ∂x i - ∂p ∂x i ∂q ∂ξ i ,
we introduce two assumptions. Assumption (A1). There exists

ψ 0 ∈ C 2 (Ω; R * + ) satisfying {a, {a, ψ 0 }} (x, ξ) > 0, x ∈ Ω, ξ ∈ R 3 \ {0} , (2.4) 
where a is given by (2.3).

Since Ω is compact and a(x, ξ) is a homogenous function with respect to ξ, it is clear that (2.4) yields the existence of some constant ̺ > 0 such that we have:

1 4 {a, {a, ψ 0 }} (x, ξ) ≥ 2̺c(x)| ξ | 2 , x ∈ Ω, ξ ∈ R 3 \ {0} . (2.5)
Assumption (A2). The function ψ 0 (x) has no critical points on Ω:

min x∈Ω |∇ψ 0 (x)| 2 > 0.
Further, ̺ being the same as in (2.5), fix δ > 0 and β ∈ (0, ̺), in such a way that, upon eventually enlarging T , we have:

βT 2 > max x∈Ω ψ 0 (x) + δ. (2.6)
Hence, picking β 0 > 0 and setting

ψ(x, t) = ψ 0 (x) -βt 2 + β 0 , x ∈ Ω, t ∈ [-T, T ], (2.7) 
so that min

x∈Ω ψ(x, 0) ≥ β 0 ,
we check out from (2.6) that ψ(x, ±T ) ≤ β 0 -δ, x ∈ Ω.

(2.8)

Notice from (2.7) and (2.8) that

max x∈Ω ψ(x, t) ≤ β 0 - δ 2 , |t| ∈ (T -2ǫ, T ], (2.9) 
for some constant ǫ ∈ (0, T /2).

In view of (2.7) we may now recall the following global Carleman estimate for second order scalar hyperbolic equations, with weight function ϕ : Ω × R -→ R defined as

ϕ(x, t) = e γψ(x,t) , x ∈ Ω, t ∈ [-T, T ], (2.10) 
for some fixed γ > 0.

Theorem 2 Assume (A1)-(A2). Then there exist two constants C 0 > 0 and s 0 > 0 such that for every s ≥ s 0 the following Carleman estimate

C 0 Q e 2sϕ s |∇v| 2 + |∂ t v| 2 + s 2 |v| 2 dxdt ≤ Q e 2sϕ |P v(x, t)| 2 dxdt + Σ se 2sϕ |∇v| 2 + |∂ t v| 2 + s 2 |v| 2 dσdt, (2.11) 
holds true whenever v ∈ H 1 (Q) verifies ∂ j t v(±T, •) = 0 for j = 0, 1, and the right hand side of (2.11) is finite. Here P is defined by (2.1)-(2.2) and dσ denotes the volume form of Γ.

For the proof see Bellassoued and Yamamoto [START_REF] Bellassoued | Carleman estimates with second large parameter for second order hyperbolic operators in a Riemannian manifolds[END_REF], where this result is obtained from a direct computation based on integration by parts.

It is worth mentioning that there are actual examples of functions ψ 0 fulfilling (A1)-(A2), provided the conductivity function c defined in (2.1) verifies (1.6) for some x 0 ∈ R 3 \Ω and ̺ ∈ (0, c 0 ), where c 0 is the constant defined in (2.2). Indeed, by putting ψ 0 (x) = |x -x 0 | 2 and recalling (2.3), we get through an elementary computation that

1 4 {a, {a, ψ 0 }} (x, ξ) = 2c 2 (x) 1 - ∇ c • (x -x 0 ) 2c | ξ | 2 + 2c(∇c • ξ)(ξ • (x -x 0 )), so (1.6) immediately yields 1 4 {a, {a, ψ 0 }} (x, ξ) ≥ 2̺ c| ξ | 2 .
This entails (A1) by (2.2). Moreover (A2) is evidently true as well since ∇ψ 0 (x) = 0 for every x ∈ Ω.

Decoupling of the system of equations

Consider now the following Maxwell system

U ′ -curl (µ 1 V) = f , in Q, V ′ + curl (λ 1 U) = g, in Q, div U = div V = 0, in Q, U × ν = 0, V • ν = 0, on Σ, (2.12) 
where the source terms f , g ∈ H 1 (Q; R 3 ) satisfy the boundary condition f (x, t) = g(x, t) = 0, (x, t) ∈ ω × (-T, T ).

(2.13)

For further reference we recall from (2.9) that

max x∈Ω ϕ(x, t) ≤ d 0 := e γ(β 0 -δ/2) , |t| ∈ [T -2ǫ, T ), min x∈Ω ϕ(x, 0) ≥ d 1 := e γβ 0 , (2.14) 
and then state the main result of §2.2:

Lemma 2.1 Assume (A1)-(A2) and let h = (f , g) ∈ H 1 (Q; R 3 ) 2 obey (2.13
). Then we may find two constants C 1 > 0 and s 1 > 0, for which the Carleman estimate

C 1 Q e 2sϕ s |∇ x,t W| 2 + s 2 |W| 2 dxdt ≤ Q e 2sϕ |∇ x,t h| 2 + |h| 2 dxdt + s 3 e 2d 0 s W 2 H 1 (Q) + Σ se 2sϕ |∇W| 2 + W ′ 2 + s 2 |W| 2 dσdt, (2.15)
is true for any W = (U, V) solution to the Maxwell system (2.12), whenever s ≥ s 1 .

Proof . The first step of the proof involves bringing (2.12) into two independent systems of decoupled equations. Namely, by differentiating the first line in (2.12) with respect to t, and then substituting gcurl (λ 1 U) for V ′ in the obtained equality, we obtain that

U ′′ + curl (µ 1 curl (λ 1 U)) = f ′ + curl (µ 1 g), in Q. This entails U ′′ + curl (µ 1 λ 1 curl U) + curl (µ 1 ∇λ 1 × U) = f ′ + curl (µ 1 g
), and hence

U ′′ + µ 1 λ 1 curl (curl U) + ∇(µ 1 λ 1 ) × curl U + curl (µ 1 ∇λ 1 × U) = f ′ + curl (µ 1 g), in Q.
From this, the well-known identity curl curl U = -∆ U+∇div U and the third line of (2.12) then follows that

U ′′ -µ 1 λ 1 ∆(U) + R 1 U = f ′ + curl (µ 1 g), in Q, (2.16) 
where

R 1 = R 1 (x, ∂
) is some first order operator with bounded coefficients in Ω.

Arguing in a similar way, we find that

V ′′ -µ 1 λ 1 ∆(V) + S 1 V = g ′ -curl (λ 1 f ), in Q, (2.17) 
for another first order operator S 1 = S 1 (x, ∂) with bounded coefficients in Ω. Therefore, putting (2.12) and (2.16)-(2.17) together, we end up getting that any solution W = (U, V) to the Maxwell system (2.12) verifies

U ′′ -µ 1 λ 1 ∆(U) + R 1 U = G 1 , in Q U × ν = 0, curl (λ 1 U) • ν = 0, on Σ, and V ′′ -µ 1 λ 1 ∆(V) + S 1 V = G 2 , in Q V • ν = 0, curl (µ 1 V) × ν = 0, on Σ, (2.18) where G 1 = f ′ + curl (µ 1 g) and G 2 = g ′ -curl (λ 1 f ).
Further, consider a cut-off function η ∈ C ∞ (R; [0, 1]) fulfilling

η(t) = 1 if |t| < T -2ǫ, 0 if |t| ≥ T -ǫ, (2.19) 
where ǫ is the same as in (2.9), and set

U ♯ = ηU, V ♯ = ηV, K 1 = ηG 1 + 2η ′ U ′ + η ′′ U, K 2 = ηG 2 + 2η ′ V ′ + η ′′ V,
in such a way that we have

U ′′ ♯ -µ 1 λ 1 ∆(U ♯ ) + R 1 U ♯ = K 1 , in Q U ♯ × ν = 0, curl (λ 1 U ♯ ) • ν = 0, on Σ and V ′′ ♯ -µ 1 λ 1 ∆(V ♯ ) + S 1 V ♯ = K 2 , in Q V ♯ • ν = 0, curl (µ 1 V ♯ ) × ν = 0, on Σ,
directly from (2.18). Then, each of the two above systems being a principally scalar hyperbolic system, it follows from the two identities

U ♯ (•, ±T ) = U ′ ♯ (•, ±T ) = 0, V ♯ (•, ±T ) = V ′ ♯ (•, ±T ) = 0, (2.20) 
and Theorem 2, that W ♯ = (U ♯ , V ♯ ) obeys the Carleman estimate

C 0 Q e 2sϕ s |∇ x,t W ♯ | 2 + s 2 |W ♯ | 2 dxdt ≤ j=1,2 Q e 2sϕ |K j (x, t)| 2 dxdt + Σ se 2sϕ |∇W ♯ | 2 + W ′ ♯ 2 + s 2 |W ♯ | 2 dσdt, (2.21) 
for all s ≥ s 0 . Here we have used Theorem 2 for the diagonal system U ′′ ♯ -µ 1 λ 1 ∆(U ♯ ) and that we can absorb the non-decoupled first term R 1 U ♯ . Moreover, as η ′ and η ′′ both vanish in (-T + 2ǫ, T -2ǫ) by (2.14), there is a constant C > 0 such that

j=1,2 Q e 2sϕ |K j (x, t)| 2 dxdt ≤ C Q e 2sϕ |h| 2 + |∇ x,t h| 2 dxdt + e 2d 0 s W 2 H 1 (Q) ,
according to (2.20)-(2.21) and since

Q e 2sϕ s |∇ x,t W| 2 + s 2 |W| 2 dxdt ≤ C Q e 2sϕ s |∇ x,t W ♯ | 2 + s 2 |W ♯ | 2 dxdt+s 3 e 2d 0 s W 2 H 1 (Q)
we obtain the result.

Reduction of the boundary terms

The method used to derive a global Carleman estimate for the solution to (1.1) is to replace the local boundary problem (1.1) in Ω × (-T, T ) by an equivalent one stated on the half space R 3 + × (-T, T ). This is possible since the boundary Γ can be represented as the zero level set of some C ∞ function in R 3 . Namely, Γ being a C ∞ surface, there exist θ ∈ C ∞ (R 3 ) and some neighbourhood V of Γ in R 3 such that Γ = {x ∈ V, θ(x) = 0}. We choose V so small that V ⊂ O, where O is defined in §1.2, write y = (y 1 , y 2 , y 3 ) = (y ′ , y 3 ) the system of normal geodesic coordinates where y ′ = (y 1 , y 2 ) are orthogonal coordinates in Γ and y 3 = θ(x) is the normal coordinate, and call x = Φ(y), where Φ ′ (y) > 0 for all y ∈ V := Φ -1 (V), the corresponding coordinates mapping. As

Γ := Φ -1 (Γ) = y ∈ V; y 3 = 0 ⊂ R 2 ,
we may assume that V = Φ -1 (V) is a cylinder of the form Γ × (-r, r) with r > 0. Further, the Euclidean metric in R 3 inducing the Riemannian metric with diagonal tensor g, g(y) = t Φ ′ (y)Φ ′ (y) = Diag(g 1 , g 2 , g 3 ), y ∈ V, we use the notations of [START_REF] Matthias | A Carleman inequality for the stationary anisotropic Maxwell system[END_REF] and note 1

√ g 1 ∂ ∂y 1 , 1 √ g 2 ∂ ∂y 2 , 1 √ g 3 ∂
∂y 3 the orthonormal basis associated by g to the differential basis of vector fields ∂ ∂y 1 , ∂ ∂y 2 , ∂ ∂y 3 . For any vector field X(x) expressed with respect to the Euclidian basis

∂ ∂x 1 , ∂ ∂x 2 , ∂ ∂x 3 as X(x) = 3 i=1 α i (x) ∂ ∂x i ,
we have an alternative representation X(y) with respect to the new basis vectors 1

√ g 1 ∂ ∂y 1 , 1 √ g 2 ∂ ∂y 2 , 1 √ g 3 ∂ ∂y 3 , given by X(y) = 3 i=1 α i (y) 1 √ g i ∂ ∂y i , α(y) = t Ψ(y)α(Φ(y)), Ψ(y) = Φ ′ (y)g -1/2 (y), y ∈ V. (2.22)
The divergence (resp. curl) operator of any vector field X(y) = 3 i=1 α i (y) 1 √ g i ∂ ∂y i with respect to the local coordinates (y 1 , y 2 , y 3 ) is denoted by div g X (resp. curl g X), and can be brought into the form

div g X = 1 √ det g 3 j=1 1 √ g j ∂ ∂y j det g α j (y) = 3 j=1 1 √ g j ∂ α j ∂y j + A(y) • X(y), (2.23) 
where A(y) is some three dimensional vector (resp.

curl g X = 1 2 3 i,j=1 1 √ g j ∂ α i ∂y j - 1 √ g i ∂ α j ∂y i 1 √ g j ∂ ∂y j × 1 √ g i ∂ ∂y i + M (y) X(y), (2.24) 
where M (y) is some matrix function), whereas the outward normal vector field to Γ at y ∈ Γ is given by

ν(y) = - 1 √ g 3 ∂ ∂y 3 . (2.25)
In light of (2.22)-(2.25), we find out by performing the change of variable x = Φ(y) in (2.12), the space variable x being restricted to be in

Ω ∩ V ⊂ ω ∩ V, that U ′ -curl g ( µ 1 V) = 0, in V × (-T, T ), V ′ + curl g ( λ 1 U) = 0, in V × (-T, T ), div g U = div g V = 0, in V × (-T, T ), U × ν = 0, V • ν = 0, on Γ × (-T, T ), (2.26) 
where we have set

µ 1 (y) = t Ψ(y)µ 1 (Φ(y))Ψ(y), λ 1 (y) = t Ψ(y)λ 1 (Φ(y))Ψ(y), y ∈ V ⊂ Φ -1 (ω).
Here we used the identity h(Φ(y), t) = (f (Φ(y), t), g(Φ(y), t)) = 0 for t ∈ (-T, T ) and y ∈ V, arising from (2.13). Further, noting U = ( u 1 , u 2 , u 3 ) and V = ( v 1 , v 2 , v 3 ), the last equation in (2.26) reads u 1 = u 2 = v 3 = 0 on Γ, so we find that

U τ = 0, V ν = 0, on Γ, (2.27) 
where U τ (resp. V ν ) denotes the tangential (resp. normal) component of U (resp. V). From this, (2.23) and the third line in (2.26) then follows that

1 √ g 3 ∂ u 3 ∂y 3 = - 1 √ g 1 ∂ u 1 ∂y 1 + 1 √ g 2 ∂ u 2 ∂y 2 -A(y) • U = -A(y) • U, whence ∇ u 3 = 1 √ g 1 ∂ u 3 ∂y 1 e 1 + 1 √ g 2 ∂ u 3 ∂y 2 e 2 -A(y) • U e 3 , on Γ. (2.28) Further, as ∇ u 1 = 1 √ g 3 ∂ u 1 ∂y 3 e 3 and ∇ u 2 = 1 √ g 3 ∂ u 2
∂y 3 e 3 on Γ, according to (2.27), (2.28) then yields

∇ U 2 = 3 j=1 |∇ u j | 2 ≤ C ∂ u 1 ∂y 3 2 + ∂ u 2 ∂y 3 2 + ∂ u 3 ∂y 1 2 + ∂ u 3 ∂y 2 2 + U ν 2 , on Γ, (2.29)
where, for the sake of notational simplicity, we shall use the generic constant C > 0 in the remaining of §2.3. On the other hand, since 

curl g U× ν = 1 √ g 3 ∂ u 1 ∂y 3 - 1 √ g 1 ∂ u 3 ∂y 1 1 √ g 1 g 3 ∂ ∂y 1 - 1 √ g 2 ∂ u 3 ∂y 2 - 1 √ g 3 ∂ u 2 ∂y 3 1 √ g 2 g 3 ∂ ∂y 2 +M (y) U ν , ( 
+ ∂ u 2 ∂y 3 2 ≤ C curl g U 2 + U ν 2 + ∂ u 3 ∂y 1 2 + ∂ u 3 ∂y 2 2
, on Γ.

In view of (2.29), this entails

∇ U 2 ≤ C curl g U 2 + ∂ u 3 ∂y 1 2 + ∂ u 3 ∂y 2 2 + U ν 2 ≤ C curl g U 2 + ∇ τ U ν 2 + U ν 2 , on Γ.
As a consequence we have

∇ U 2 ≤ C curl g ( λ1 U) 2 + ∇ τ U ν 2 + U ν 2 , whence ∇ U 2 ≤ C V ′ 2 + ∇ τ U ν 2 + U ν 2 , on Γ, (2.31) 
by the second line of (2.26).

Similarly, as div g V = 0 in V from the third line of (2.26), we get from (2.23) that

1 √ g 3 ∂ v 3 ∂y 3 = - 1 √ g 1 ∂ v 1 ∂y 1 + 1 √ g 2 ∂ v 2 ∂y 2 -A(y) • V, on Γ.
This, combined with (2.27), yields

|∇ v 3 | 2 ≤ C ∂ v 1 ∂y 1 2 + ∂ v 2 ∂y 2 2 + V τ 2 ,
and consequently

∇ V 2 = 3 j=1 |∇ v j | 2 ≤ C ∇ τ V τ 2 + V τ 2 + ∂ v 1 ∂y 3 2 + ∂ v 2 ∂y 3 2 , on Γ. (2.32) 
Furthermore, in light of (2.27) and (2.30) where V (resp. v j , j = 1, 2, 3) is substituted for U (resp.

u j , j = 1, 2, 3), we see that ∂ v 1 ∂y 3 2 + ∂ v 2 ∂y 3 2
is upper bounded, up to some multiplicative constant, by

curl g V 2 + V τ 2
, and hence by curl g (

µ 1 V) 2 + V τ 2
, on Γ. From this and the first line of (2.26) then follows that

∂ v 1 ∂y 3 2 + ∂ v 2 ∂y 3 2 ≤ C U ′ 2 + V τ 2
, on Γ, so, we end up getting with the aid of (2.32):

∇ V 2 ≤ C U ′ 2 + ∇ τ V τ 2 + V τ 2 on Γ. (2.33) 
Finally, putting (2.15), (2.31) and (2.33) together, we may state the main result of §2.3: Lemma 2.2 Assume (A1)-(A2) and put h = (f , g). Then there are two constants C 2 > 0 and s 2 > 0 such that the following Carleman estimate

C 2 s Q e 2sϕ s 2 |W| 2 + |∇ x,t W| 2 dxdt ≤ Q e 2sϕ |h| 2 + |∇ x,t h| 2 dxdt + B s,ϕ (W) + s 3 e 2d 0 s W 2 H 1 (Q) ,
where

B s,ϕ (W) = Σ se 2sϕ |∇ τ V τ | 2 + |∇ τ U ν | 2 + U ′ ν 2 + V ′ τ 2 + s 2 (|U ν | 2 + |V τ | 2 ) dσdt, (2.34) 
holds true for every solution W = (U, V) to (2.12), provided s ≥ s 2 .

Inverse problem

This section contains the proof of Theorem 1, which is divided into five steps. Firstly, the unknown parameters λ and µ are brought to the source term of the linearized system associated to (1.1), governing the variation induced on the solution to (1.1) by perturbating the permittivity by λ and the permeability by µ. The second step follows the idea of Bukhgeim and Klibanov presented in [START_REF] Bukhgeim | Global uniqueness of class of multidimentional inverse problems[END_REF], which is to differentiate the linearized system with respect to t in order to move the unknown coefficients in the initial condition. The next step is to bound the energy of this system at time t = 0 with the aid of the Carleman inequality of Theorem 2. The fourth step involves relating λ and µ to the above mentioned estimate through the Carleman inequality for stationary (div, curl)-systems, stated in Lemma 3.1. This is rather technical and lengthy so we proceed in a succession of the two Lemmas 3.3 and 3.4. The last step, detailed in §3.3, is to derive the desired result from the estimates established in Lemmas 3.3-3.4.

In the remaining of this text, x 0 is a fixed point in R 3 \Ω, we choose as in (1.7) ψ 0 (x) := |x-x 0 | 2 for every x ∈ Ω, and ϕ 0 (x) := ϕ(x, 0), where ϕ denotes the function defined by (2.7) and (2.10). Moreover, for the sake of notational simplicity, we shall use the generic constant C > 0 in the various estimates of §3.2-3.3.

Linearized inverse problem

Given (µ i , λ i ) ∈ Λ ω (M 0 ), i = 1, 2, and (B k 0 , D k 0 ) ∈ H 2 (Ω) 3 × H 2 (Ω) 3 , k = 1, 2, we consider the solution (B k i , D k i ) to the system (1.1) where (λ i , µ i ) is substituted for (λ, µ), with initial condition (1.2) where (B 0 , D 0 ) = (B k 0 , D k 0 ). Hence, putting µ = µ 1 -µ 2 , λ = λ 1 -λ 2 ,
and setting

f k = curl (µB k 2 ), g k = -curl (λD k 2 ), (3.1) 
we find by a straightforward computation that

U k = D k 1 -D k 2 and V k = B k 1 -B k 2 satisfy the system U ′ k -curl (µ 1 V k ) = f k , in Q, V ′ k + curl (λ 1 U k ) = g k , in Q, div U k = div V k = 0, in Q, U k × ν = 0, V k • ν = 0, on Σ, (3.2) 
with the initial data

U k (x, 0) = 0, V k (x, 0) = 0. (3.3) 
Further, by using the following notations

X k,j (x, t) = ∂ j t X k (x, t) for X = U, V, f , g and j ∈ N * , (3.4) 
it turns out by differentiating (3.2) j-times with respect to t that

U ′ k,j -curl (µ 1 V k,j ) = f k,j , in Q, V ′ k,j + curl (λ 1 U k,j ) = g k,j , in Q, div U k,j = div V k,j = 0, in Q, U k,j × ν = 0, V k,j • ν = 0, on Σ, (3.5) 
and, due to (3.1)-(3.2), that U k,1 and V k,1 satisfy the initial condition:

U k,1 (x, 0) = curl (µB k 0 ), V k,1 (x, 0) = -curl (λD k 0 ). (3.6) 
As will appear in §3.2-3.3, the main benefit of dealing with (3.1)- (3.6) in the analysis of the inverse problem of determining λ and µ, is the presence of these two unknown coefficients in the initial condition (3.6).

Preliminary estimates

Let j and k be in {1, 2}. As W k,j = (U k,j , V k,j ) is solution to (3.5), we notice from Lemma 2.2 that

C 2 s Q e 2sϕ s 2 |W k,j | 2 + |∇ x,t W k,j | 2 dxdt ≤ Q e 2sϕ |h k,j | 2 + |∇ x,t h k,j | 2 dxdt + B s,ϕ (W k,j ) + s 3 e 2d 0 s W k,j 2 
H 1 (Q) := Z k,j (s), (3.7) 
for every s ≥ s 2 , where h k,j = (f k,j , g k,j ) and B s,ϕ is given by (2.34).

Moreover by the assumption (1.11) we can derive that

2 k=1 B k 0 (x) 2 ≥ c * , and 
2 k=1 D k 0 (x) 2 ≥ c * , x ∈ Ω\ω (3.8)
for some positive constant c * . Indeed, if B 1 0 (x) = 0 or B 2 0 (x) = 0 for all x ∈ Ω\ω then 2 k=1 B k 0 (x) 2 > 0 in the compact set Ω\ω. Now if there exist x 1 ∈ Ω\ω such that B 1 0 (x 1 ) = 0 then by (1.11) we have B 2 0 (x) = 0 for any x ∈ Ω\ω. Further we recall from [START_REF] Matthias | A Carleman inequality for the stationary anisotropic Maxwell system[END_REF] the following Carleman estimate for stationary (div, curl)-systems: for every s ≥ s 3 and u ∈ H 1 0 (Ω).

Prior to the proof of Lemma 3.3, we establish the following technical result, needed in the derivation of (3.10)- (3.11). Lemma 3.2 There exists a constant s * > 0 depending only on T such that we have [START_REF] He | Some explicit formulas for crack identification in conductors using boundary measurements of dc fields[END_REF]) for some fixed ǫ ∈ (0, T /2). Then, the following identity

Ω |z(x, 0)| 2 dx ≤ 2 s Q |z(x, t)| 2 dxdt + s -1 Q |z ′ (x, t)| 2 dxdt , for all s ≥ s * and z ∈ H 1 (-T, T ; L 2 (Ω)). Proof . Let η ∈ C ∞ ([-T, T ]; [0, 1]) fulfills (2.
Ω |z(x, 0)| 2 dx = 0 -T d dt Ω η 2 (t)|z(x, t)| 2 dx dt = 2ℜ 0 -T Ω η 2 (t)z(x, t)z ′ (x, t)dxdt + 2 0 -T Ω η(t)η ′ (t)|z(x, t)| 2 dxdt,
holds true for every z ∈ H 1 (-T, T ; L 2 (Ω)). Applying Young's inequality, this entails

Ω |z(x, 0)| 2 dx ≤ (s + 2 η ′ ∞ ) Q |z(x, t)| 2 dxdt + s -1 Q |z ′ (x, t)| 2 dxdt,
for each s > 0, so the result follows by taking s * = 2 η ′ ∞ .

Having said that, we are now in position to prove the: Lemma 3.3 There exist two constants C 4 > 0 and s 4 > 0 such that the following estimates

s 2 C 4 s Ω e 2sϕ 0 |µ| 2 + |λ| 2 dx - Ω e 2sϕ 0 |∇µ| 2 + |∇λ| 2 dx ≤ 2 k=1 Z k,1 (s), (3.10) 
and

C 4 s Ω e 2sϕ 0 |∇µ| 2 + |∇λ| 2 dx - |α|=2 Ω e 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 dx ≤ 2 j,k=1
Z k,j (s), (3.11) hold true for k = 1, 2, and s ≥ s 4 .

Proof . By applying Lemma 3.2 for z = e sϕ U k,1 , we get that

Cs 2 Ω e 2sϕ 0 |U k,1 (x, 0)| 2 dx ≤ s Q e 2sϕ s 2 U k,1 (x, t) 2 + |U k,2 (x, t)| 2 dxdt,
provided s is large enough. In light of (3.6)-(3.7), this entails

Cs 2 Ω e 2sϕ 0 curl (µB k 0 ) 2 dx ≤ Z k,1 (s). (3.12) 
Further, taking into account that µB k 0 ∈ H 1 0 (Ω) 3 since µ vanishes in ω and div B k 0 = 0, we have

Cs 3 Ω e 2sϕ 0 µB k 0 2 dx -s 2 Ω e 2sϕ 0 |∇µ| 2 dx ≤ s 2 Ω e 2sϕ 0 curl (µB k 0 ) 2 dx,
by (3.9), whence

Cs 3 Ω e 2sϕ 0 µB k 0 2 dx -s 2 Ω e 2sϕ 0 |∇µ| 2 dx ≤ Z k,1 (s), (3.13) 
from (3.12). Similarly, by arguing as above with z = e sϕ V k,1 instead of e sϕ U k,1 , we find some constant C > 0 for which Cs 3 Ω e 2sϕ 0 λD k 0 2 dx -s 2 Ω e 2sϕ 0 |∇λ| 2 dx can be made smaller than the right hand side of (3.13) by taking s sufficiently large. This, (3.8) and (3.13) entails (3.10).

We turn now to showing (3.11). To do that we apply Lemma 3.

2 with z = e sϕ ∂ i U k,1 , i = 1, 2, 3, getting C Ω e 2sϕ 0 |∂ i U k,1 (x, 0)| 2 dx ≤ s Q e 2sϕ |∇U k,1 (x, t)| 2 + s -2 |∇U k,2 (x, t)| 2 dxdt,
for s large enough. This yields

C Ω e 2sϕ 0 ∂ i curl (µB k 0 ) 2 dx ≤ 2 j=1 Z k,j (s), (3.14) 
by (3.6)-(3.7). Further, bearing in mind that div B k 0 = 0 and using that

(∂ i µ)B k 0 ∈ H 1 0 (Ω) 3 ,

we obtain

Cs

Ω e 2sϕ 0 (∂ i µ)B k 0 2 dx - |α|=2 Ω e 2sϕ 0 |∂ α µ| 2 dx ≤ Ω e 2sϕ 0 curl ((∂ i µ)B k 0 ) 2 dx, (3.15) 
by (3.9). Moreover, as curl

((∂ i µ)B k 0 ) = ∂ i curl (µB k 0 ) -µcurl (∂ i B k 0 ) -∇µ × ∂ i B k 0 and µ ∈ H 1 0 ( 
Ω), we have by applying the Poincare inequality

C Ω e 2sϕ 0 curl ((∂ i µ)B k 0 ) 2 dx ≤ Ω e 2sϕ 0 ∂ i curl (µB k 0 ) 2 dx + Ω e 2sϕ 0 |∇µ| 2 dx, (3.16) 
hence

Cs Ω e 2sϕ 0 (∂ i µ)B k 0 2 dx - 1≤|α|≤2 Ω e 2sϕ 0 |∂ α µ| 2 dx ≤ Ω e 2sϕ 0 ∂ i curl (µB k 0 ) 2 dx, (3.17) 
by substituting the right hand side of (3.16) for Ω e 2sϕ 0 curl ((∂ i µ)B k 0 ) 2 dx in (3.15). Putting (3.14) and (3.17) together, and summing up the obtained inequality over i = 1, 2, 3, we end up getting that

Cs Ω e 2sϕ 0 |∇µ| 2 dx - 1≤|α|≤2 Ω e 2sϕ 0 |∂ α µ| 2 dx ≤ 2 j,k=1 Z k,j (s). (3.18) 
Here we used again (3.8). Finally, by arguing as before with z

= e sϕ ∂ i V k,1 , i = 1, 2, 3, instead of ∂ i U k,1
, we get that (3.18) remains true with µ replaced by λ. This completes the proof of (3.11).

Finally, we establish the: Lemma 3.4 There are two constants C 5 > 0 and s 5 > 0 such that we have

C 5 |α|=2 Ω e 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 dx - Ω e 2sϕ 0 |∇µ| 2 + |∇λ| 2 dx ≤ 2 j,k=1 Z k,j (s),
for all s ≥ s 5 .

Proof . In light of the two following basic identities U k,1 (x, 0) = µcurl B k 0 + ∇µ × B k 0 and V k,1 (x, 0) = -µcurl D k 0 -∇λ × D k 0 , k = 1, 2, arising from (3.6), we have Here we took advantage of the fact that both µ and λ belong to H 1 0 (Ω) in order to get rid of the integral Ω e 2sϕ 0 |µ| 2 + |λ| 2 dx by applying the Poincaré inequality. Evidently the result now follows from (3.20) and Lemma 2.2. B s,ϕ (W k,j ) + s 3 e 2d 0 s W k,j

K(x) ∇µ ∇λ = A(x) µ λ -        U 1,1 (x, 0) -V 1,1 (x, 0) U 2,1 (x, 0) -V 2,1 (x, 0)        , with A(x) =        curl B 1 0 0 0 curl D 1 0 curl B 2 0 0 0 curl D 2 0        , hence K(x) ∇∂ i µ ∇∂ i λ = ∂ i A µ λ + A ∂ i µ ∂ i λ -∂ i K ∇µ ∇λ -        ∂ i U 1,1 (x, 0) -∂ i V 1,1 (x, 0) ∂ i U 2,1 (x, 0) -∂ i V 2,

Completion of the proof of the main result

H 1 (Q) , 2 
for s sufficiently large. Furthermore, bearing in mind that x 0 ∈ R 3 \ Ω, we notice from (2.7) and (2. where M is the same as in (1.12), and 

B(W) = Σ |∇ τ V τ | 2 + |∇ τ U ν | 2 + U ′ ν 2 + V ′

Lemma 3 . 1

 31 There exist two positive constants s 3 and C 3 depending only on ψ 0 and Ω, such that we have C 3 s Ω e 2sϕ 0 |u| 2 dx ≤ Ω e 2sϕ 0 |curl u| 2 + |div u| 2 dx, (3.9)

1 (,|∂ α µ| 2 + 2 k=1|∂ α µ| 2 + 2 Qe

 12222 for every i = 1, 2, 3. From this and (1.11) then follows that|α|=2 |∂ α λ| 2 ≤ C   |∇U k,1 (x, 0)| 2 + |∇V k,1 (x, 0)| 2 + |α|≤1 |∂ α λ| 2 multiplying (3.[START_REF] He | Some explicit formulas for crack identification in conductors using boundary measurements of dc fields[END_REF]) by e sϕ 0 , integrating over Ω, and upper bounding Ω e 2sϕ 0 |∇W k,1 (x, 0)| 2 dx, with the aid of Lemma 3.2, we find out thatC |α|=2 Ω e 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 dx -Ω e 2sϕ 0 |∇µ| 2 + |∇λ| 2 dx ≤ s k=1,2 Q e 2sϕ |∇W k,1 (x, t)| 2 dxdt + s -2sϕ |∇W k,2 (x, t)| 2 dxdt . (3.20) 

2 C 3 Ωe 2 H 1 (

 2321 In light of(3.11) and Lemma 3.4 we may find C > 0 such thatC |α|≤2 Ω e 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 dx ≤ 2 j,k=1 Z k,j (s),(3.21)upon taking s sufficiently large. Moreover, due to (3.1), we haveQ e 2sϕ |h k,j | 2 + |∇h k,j | 2 dxdt ≤ (B k 2 , D k 2 ) (-T,T ;W 2,∞ (Ω))   |α|≤2 Q e 2sϕ |∂ α µ| 2 + |∂ α λ| 2 dxdt   ,for every (j, k) ∈ {1, 2} 2 , from where we get|α|≤2 C 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 dx -Q e 2sϕ |∂ α µ| 2 + |∂ α λ| 2 dxdt ≤ 2 j,k=1 B s,ϕ (W k,j ) + s 3 e 2d 0 s W k,j Q) ,(3.22) by combining (3.7) and (3.21). Further, by recalling (2.7) and (2.10) we see for each α ∈ {1, 2, 3} 2 with |α| = 2, thatQ e 2sϕ |∂ α µ| 2 + |∂ α λ| 2 dxdt = Ω e 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 G s (x)dx,(3.23)whereG s (x) := T -T e -2s(ϕ 0 (x)-ϕ(x,t)) dt ≤ T -T e -2s(1-σ(t)) dt := g(s), σ(t) := e -γβt 2 . (3.24) As lim s→+∞ g(s) = 0 by Lebesgue's Theorem, we thus obtain from (3.22)-(3.24) that C |α|≤2 Ω e 2sϕ 0 |∂ α µ| 2 + |∂ α λ| 2 dx ≤ 2 j,k=1

  10) thatϕ 0 (x) ≥ min x∈Ω e γ(|x-x 0 | 2 +β 0 ) ≥ d 1 > d 0 , x ∈ Ω,(3.26)where d 0 is defined in(2.14). From this and (3.25) then follows thatC |α|≤2 Ω |∂ α µ| 2 + |∂ α λ| 2 dx ≤ e Cs 2 j,k=1 B(W k,j ) + s 3 e -2(d 1 -d 0 )s M,(3.27)

τ 2 +|∂ α µ| 2 +,

 22 (|U ν | 2 + |V τ | 2 ) dσdt, W = (U, V).(3.28) In view of (3.26), (3.27)-(3.28) then yields |α|≤2 Ω |∂ α λ| 2 dx ≤ Cfor some κ ∈ (0, 1), proving Theorem 1.
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