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Multiple criteria sorting aims at assigning alternatives evaluated on several criteria to predefined ordered categories. In this paper, we consider a well known multiple criteria sorting method, Electre Tri, which involves three types of preference parameters: (1) category limits defining the frontiers between consecutive categories, (2) weights and majority level specifying which coalitions form a majority, and (3) veto thresholds characterizing discordance effects. We propose an elicitation procedure to infer category limits from assignment examples provided by multiple decision makers. The procedure computes a set of category limits and vetoes common to all decision makers, with variable weights for each decision maker. Hence, the method helps reaching a consensus among decision makers on the category limits and veto thresholds, whereas finding a consensus on weights is left aside. The inference procedure is based on mixed integer linear programming and performs well even for datasets corresponding to real-world decision problems. We provide an illustrative example of the use of the method and analyze the performance of the proposed algorithms.

Introduction

In this paper, we are interested in decision problems formulated as multicriteria sorting problems, i.e., when a finite number of alternatives from a set A evaluated on a set of criteria {g j , j ∈ J} are to be assigned to one of k predefined ordered categories c 1 ≪ c 2 ≪ ... ≪ c h ≪ ... ≪ c k (c 1 being the worst category, and c k the The paper is structured as follows. Section 2 presents the sorting procedure used in this article and reviews related elicitation procedures. A decision aiding process illustrating the use of the proposed tools and their relation with existing ones is described in Section 3. The mathematical programs implementing the suggested tools are detailed in Sections 4 to 6. Section 7 examplifies the usage of the tools on an illustrative example. The algorithms performances are studied in Section 8, and conclusions and future perspectives are presented in Section 9.

Electre Tri and related elicitation issues

The inference procedures presented in this paper are based on a variant of the Electre Tri sorting method. It uses the pessimistic assignment rule, without indifference or preference thresholds attached to criteria. Only a binary discordance condition is considered, i.e. a veto forbids an outranking in any possible concordance situation, or not. These simplifications, as compared to the original Electre Tri procedure, permit to model the assignments of the procedure as mixed integer constraints and are in line with the axiomatized model of Electre Tri proposed by Bouyssou and Marchant [START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, I: The case of two categories[END_REF][START_REF] Bouyssou | An axiomatic approach to noncompensatory sorting methods in MCDM, II: more than two categories[END_REF].

Electre Tri method

We consider a finite set of alternatives A, a set of profiles B = {b 0 , . . . b k }, and a finite set of criteria {g j , j ∈ J}. A criterion g j , j ∈ J, is a function from A ∪ B to R where g j (a) denotes the performance of the alternative a on the criterion g j . The alternatives have to be sorted in k categories c 1 , . . . , c k , ordered by their desirability (c 1 is the worst category, and c k is the best one). Each category c h is defined by the performances of its lower profile b h-1 and its upper profile b h , with b h-1 , b h ∈ B. The performances are supposed to be such that a higher value denotes a better performance, and the performances on the profiles are supposed to be non-decreasing, i.e. ∀j ∈ J, 1 ≤ h ≤ k : g j (b h-1 ) ≤ g j (b h ).

To sort the alternatives, Electre Tri defines an outranking relation on the set of alternatives such that an alternative a outranks an alternative b if and only if a is considered at least as good as b. The pessimistic assignment rule assigns an alternative a to the highest possible category c h such that the alternative outranks the category's lower profile b h-1 . An alternative a outranks a profile b h-1 if and only if the coalition of criteria in favor of the assertion "a is at least as good as b h-1 " forms a majority and no criterion strongly opposes (has a veto against) that assertion. The coalition of criteria in favor of a b h-1 , ∀a ∈ A, 1 ≤ h ≤ k, forms a majority iff j∈J w j C j (a, b h-1 ) ≥ λ, where w j is the weight of criterion g j (with j∈J w j = 1), C j (a, b h-1 ) ∈ {0, 1}, and C j (a, b h-1 ) = 1 ⇔ g j (a) ≥ g j (b h-1 ), 0 otherwise. The result of the sum of the weights of the criteria in support of the outranking is compared to a majority threshold λ ∈ [0.5, 1] defined by the decision maker along with the weights. If the coalition is not a sufficient coalition, the alternative does not outrank the profile b h-1 and will therefore be assigned in a category below c h .

Even when the coalition is strong enough, some criterion may veto the outranking situation. This happens if g j (a) < v h-1 j , where veto threshold v h-1 j represents the performance below which alternative a is forbidden to outrank profile b h-1 , and thus is forbidden to be assigned to the category c h . To summarize, the alternative a outranks the profile b h-1 (and therefore is assigned to at least the category c h ) if and only if j∈J w j C j (a, b h-1 ) ≥ λ and ∀j ∈ J :

g j (a) ≥ v h-1 j .
In a case involving a single DM, the weights and majority thresholds (defining the sufficient coalitions) and the category limits (the profiles) may be given directly by her. However, this requires that the DM understands how these values will be used. It is moreover a difficult process to directly ask the DM for these parameters. The approach used here supposes that she provides assignment examples which are used to infer the preferential parameters.

The situation is even more complex when several DMs are involved. As is classical, it is assumed that the order of the categories, the criteria to use, the performances of the alternatives are consensual. There is no reason however to suppose that all DMs a priori agree on the importance of the criteria and the majority threshold to use or on the limits of the categories. Starting from assignment examples (not necessarily consensual) provided by each DM, this paper presents algorithms to support a group of DMs to reach a consensus concerning these preferential parameters.

Review of Electre Tri elicitation procedures

Previous works aiming to infer preferential parameters for the Electre Tri procedure on the basis of assignment examples exist, but they often involve a single DM. Mousseau and S lowiński [START_REF] Mousseau | Inferring an ELECTRE TRI model from assignment examples[END_REF] suggest to find the Electre Tri preference model parameters on the basis of assignment examples given by a decision maker, using non linear optimization. A linear program has been proposed in order to find the importance coefficients only, the other parameters being supposedly known [START_REF] Mousseau | Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results[END_REF]. In The and Mousseau [START_REF] The | Using assignment examples to infer category limits for the ELECTRE TRI method[END_REF], the parameters to be found by the model are the category limits, considering other parameters as fixed. This is done using a mixed integer formulation as well. In Dias et al. [START_REF] Dias | An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI[END_REF], the synergy between two approaches is discussed: the first approach suggests to infer the preference model parameters from assignment examples; the second one consists in computing robust assignments from a set of given constraints [START_REF] Dias | On computing ELECTRE's credibility indices under partial information[END_REF][START_REF] Dias | ELECTRE TRI for groups with imprecise information on parameter values[END_REF]. When the DM provides an inconsistent set of assignment examples (i.e. assignment examples that do not match Electre Tri), Mousseau et al. [START_REF] Mousseau | Resolving inconsistencies among constraints on the parameters of an MCDA model[END_REF] propose algorithms to compute which subset of assignment examples should be removed to restore consistency. This method has then been extended to relax assignments examples instead of removing them [START_REF] Mousseau | Dealing with inconsistent judgments in multiple criteria sorting models[END_REF].

While the above approaches target a unique DM, Damart et al. [START_REF] Damart | Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS[END_REF] propose a method involving a group of DMs. This is done by iteratively constructing both individual preference models and a collective preference model representing the group consensus using informations given by the DMs on some assignment examples.

A summary of the main features of elicitation procedures proposed in the literature is proposed in Table 1. For each article, the second column indicates the Article input output MS98 [START_REF] Mousseau | Inferring an ELECTRE TRI model from assignment examples[END_REF] i P, W (non-linear) MFN01 [START_REF] Mousseau | Using assignment examples to infer weights for ELECTRE TRI method: Some experimental results[END_REF] i, P W NM00 [START_REF] The | Using assignment examples to infer category limits for the ELECTRE TRI method[END_REF] i, W P DMFC02 [START_REF] Dias | An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI[END_REF] i robust model (P, W), robust assignments MDFGC03 [START_REF] Mousseau | Resolving inconsistencies among constraints on the parameters of an MCDA model[END_REF] i * examples to remove to restore consistency MDF06 [START_REF] Mousseau | Dealing with inconsistent judgments in multiple criteria sorting models[END_REF] i * examples to relax to restore consistency DDM07 [START_REF] Damart | Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS[END_REF] g, P progressive collective model (W) ICL (this article) g collective model (P) 3 Use of the proposed tools in a decision aiding process

The tools developed in this paper constitue only a part of the toolbox at an analyst's disposal to support a group of decision makers. Such toolbox includes other research results such as those summarized in Table 1. This section presents an example decision aiding process in order to illustrate where our algorithms apply and how they combine with these other tools. This process targets obtaining a consensual group sorting model. Our example process comprises two main parts. The first part deals with obtaining consensual group profiles, matching individual assignment examples when associated with individual weights and majority threshold. As a second part, starting from these profiles, consensual weights and majority threshold must be obtained in order to reach a group preference model.

The following steps may be followed to obtain consensual group profiles.

• Obtain individual assignment examples.

• Search for shared profiles with individual weights via the ICL program of this article.

• If no solution is found, possibly allow the search algorithm to return solutions including veto thresholds through the use of the ICLV program of this article. An other possibility is to use MDFGC03 (cf. Table 1) to suggest a change of assignment examples in order to remove inconsistencies, considering the group as an individual.

• When a solution is found, compute the remaining lattitude of each DM regarding the setting of the weights, i.e. to exclude a possibly too restrictive or too unfair solution, thanks to the CWR algorithm of this paper.

• Finally, ask the DMs if the choice of the profiles and the resulting constraints on their weights is satisfactory. If not, run the ICL or ICLV program again with supplementary constraints.

Once a solution has been found for consensual profiles, consensual weights and majority threshold must be obtained. Note that at this stage it is possible that the choice of profiles implies that no consensual weights may be found matching all assignment examples for all DMs. In this case, DDM07 could be applied (cf. Table 1). This method proposes to progressively build a consensual preference model representing a group of DMs preferences starting from consensual profiles values and assignment examples. This is done by progressively integrating some assignment examples into a "group" assignment examples set, possibly by asking some DMs to change their assignment examples when necessary. Describing the method in details is outside the scope of this paper and we refer the reader to the relevant article [START_REF] Damart | Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS[END_REF].

Note that it is also possible to search, as a single step, for shared profiles and consensual weights and majority thresholds respecting all assignment examples and other a priori constraints (the veto thresholds). This can be done using a simple modification of the ICL program, or of the ICLV program, which would use shared weights and majority thresholds instead of individual ones. If a consensual solution is found at this stage which satisfies all DMs, the problem is solved and there is no need to use the divide and conquer approach suggested here. However, it should be noted that it is possible that no consensual preference model exists able to reproduce all assignment examples, whereas finding consensual profiles with individual weights and majority thresholds is less constraining. Moreover, concentrating on first obtaining consensual profiles, then searching for the rest of the model parameters, simplifies the problem by dividing it into two easier problems. Finally, it should be remarked that no proposal for group decision aiding process using an Electre Tri model aiming at finding at the same time all the model parameters for the whole group on the basis of assignment examples has ever been published, to the best of our knowledge.

It should be noted that we consider the consensual elicitation of a sorting model in a perspective in which DMs are ready to discuss their assignment examples and possibly accept to revise their preferences during the construction of the common model. It is particularly relevant when the initial assignment examples of all DMs cannot be represented simultaneously in the sorting model.

Inferring category limits

Having a set of alternatives A * used as assignment examples, a set of criteria indices J, the evaluations of the alternatives g j (a), ∀a ∈ A * , j ∈ J, the number of categories k, a set of DMs L, assignment examples E l , the Infer Category Limits (ICL) program determines the performances of profiles g j (b h ), ∀j ∈ J, 1 ≤ h ≤ k -1 shared among the DMs, together with individual weights w l j and majority thresholds λ l , matching all assignment examples. For each DM l ∈ L, the set of examples E l is a set of pairs (a, h), a ∈ A * , 1 ≤ h ≤ k specifying that the alternative a is assigned to the category c h by l. Supplementary to the three main types of decision variables, namely profiles, weights, majority thresholds, the MIP also defines the following variables. The binary variables C j (a, b h ), ∀a ∈ A * , j ∈ J, 1 ≤ h ≤ k -1 represent the partial concordance indices such that C j (a, b h ) = 1 if and only if the performance of the alternative a on the criterion j is at least as good as the performance of the profile b h . The continuous variables σ j (a, b h ) represent the weighted partial concordance indices, they are such that

σ j (a, b h ) = w j if C j (a, b h ) = 1, σ j (a, b h ) = 0 otherwise.
Finally, a slack variable s ≥ 0 is used in the objective function.

Hereafter we present a mathematical program finding adequate profiles without using veto thresholds. The case where veto thresholds are allowed is considered in Section 5.

Constraints

To make sure the solution matches the assignment examples, we must ensure the following is satisfied:

∀l ∈ L : ∀(a, h) ∈ E l , h > 1 : j∈J:g j (a)≥g j (b h-1 ) w l j ≥ λ l , and (1) 
∀l ∈ L : ∀(a, h) ∈ E l , h < k : j∈J:g j (a)≥g j (b h ) w l j < λ l . (2) 
Equations (1) ensure that the example alternative is assigned to a category at least as good as c h , and (2) make sure that it is assigned to a category not better than c h . In order to ensure this, variables C j (a, b h ) and σ l j (a, b h ) are defined. Binary variables C j (a, b h ), indicating whether g j (a) ≥ g j (b h ) holds, are defined with the following constraints, ∀j ∈ J, a

∈ A * , 1 ≤ h ≤ k -1. 1 M (g j (a) -g j (b h )) < C j (a, b h ) ≤ 1 M (g j (a) -g j (b h )) + 1.
The constant M is an arbitrary big value ensuring that -1

< 1 M (g j (a) -g j (b h )) < 1. These constraints ensure that g j (a) ≥ g j (b h ) ⇒ C j (a, b h ) = 1, and that g j (a) < g j (b h ) ⇒ C j (a, b h ) = 0. Indeed, if g j (a) -g j (b h ) ≥ 0, 1 M (g j (a) -g j (b h )) + 1 ≥ 1, thus C j (a, b h ) ≤ 1 M (g j (a) -g j (b h )) + 1 is necessarily satisfied (independently of the value of C j (a, b h )), and 0 ≤ 1 M (g j (a) -g j (b h )) < 1, thus C j (a, b h ) is constrained to one. Similarily, if g j (a) -g j (b h ) < 0, -1 < 1 M (g j (a) -g j (b h )) < 0 thus 1 M (g j (a) -g j (b h )) < C j (a, b h ) is necessarily satisfied, and 0 < 1 M (g j (a) -g j (b h )) + 1 < 1 thus C j (a, b h ) is constrained to zero. ∀l ∈ L, j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 :            σ l j (a, b h ) ≤ w l j σ l j (a, b h ) ≥ 0 σ l j (a, b h ) ≤ C j (a, b h ) σ l j (a, b h ) ≥ C j (a, b h ) + w l j -1.
(3) 0

w j 1 0 1 C j (a, b h ) σ l j (a, b h ) σ l j (a, b h ) = C j (a, b h ) σ l j (a, b h ) = C j (a, b h ) + w j -1 • ( ✻ ❄ ✲ ✻ ❡ ❡ Figure 1: constraining σ l j (a, b h ) to the appropriate value
Constraints (3) are used to define the variables σ l j (a, b h ) representing the sum of the support for saying that a is at least as good as b h , i.e. the value σ l j (a, b h ) = w l j C j (a, b h ), while avoiding using a non-linear expression [START_REF] Meyer | Disaggregation of bipolarvalued outranking relations[END_REF]. The dotted parallelogram in Fig. 1 represents the possible values for σ l j (a, b h ) depending on the value of C j (a, b h ) as defined by the constraints above. As C j (a, b h ) can only take values zero or one, the figure shows that σ l j (a, b h ) is constrained to the appropriate value, namely zero or w j .

At this point, referring to Equations ( 1) and ( 2), we have that j∈J σ l j (a, b h ) = j∈J:g j (a)≥g j (b h ) w l j . To ensure satisfaction of the assignment examples, suffices thus to add the following constraints.

∀l ∈ L, ∀(a, h) ∈ E l , h > 1 : j∈J σ l j (a, b h-1 ) ≥ λ l , (4) 
∀l ∈ L, ∀(a, h) ∈ E l , h < k : j∈J σ l j (a, b h ) < λ l . (5) 
Finally, the constraints j∈J w j = 1, ∀l ∈ L, are added, and the following constraints are used to ensure a correct ordering of the profiles defining the categories,

∀j ∈ J, 2 ≤ h ≤ k -1 : g j (b h-1 ) ≤ g j (b h ).

Objective function

In order to maximize the separation between the sum of support and the majority thresholds, a slack variable s is introduced in Constraints ( 4) and ( 5) to be maximized as an objective function (see Program 1).

Having a set of alternatives A * , a set of criteria indices J, the evaluations of the alternatives g j (a), ∀a ∈ A * , j ∈ J, the number of categories k, a set of DMs L, assignment examples E l , determine the performances of the profiles g j (b h ), ∀j ∈ J, 1 ≤ h ≤ k -1, together with individual weights w l j and majority thresholds λ l , maximizing s subject to the constraints provided in Program 1. Strict inequalities have been transformed to large inequalities using a constant value ε defined as an arbitrary small positive value. The constant M is an arbitrary big value. The Max s s.t.

                                                           ∀l ∈ L : j∈J w l j = 1. ∀j ∈ J, 2 ≤ h ≤ k -1 : g j (b h-1 ) ≤ g j (b h ). ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : 1 M ((g j (a) -g j (b h )) + ε) ≤ C j (a, b h ). ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : C j (a, b h ) ≤ 1 M (g j (a) -g j (b h )) + 1. ∀l ∈ L, j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 :            σ l j (a, b h ) ≤ w l j σ l j (a, b h ) ≥ 0 σ l j (a, b h ) ≤ C j (a, b h ) σ l j (a, b h ) ≥ C j (a, b h ) + w l j -1.                                          (E) ∀l ∈ L, ∀(a, h) ∈ E l , h < k : j∈J σ l j (a, b h ) + s ≤ λ l -ε. ∀l ∈ L, ∀(a, h) ∈ E l , h > 1 : j∈J σ l j (a, b h-1 ) ≥ λ l + s. Program 1: ICL variables C j (a, b h ), ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1
, are binaries and the other ones are real.

Inferring category limits with vetoes

Suppose now that the DMs are ready to accept veto thresholds in the individual preference models, i.e. when searching for common profiles, it is deemed acceptable to use shared veto thresholds to satisfy the individual assignment examples. This can enable to find common profiles in situations where it would not be possible to satisfy all examples without vetoes. This is the aim of the Infer Category Limits with Vetoes (ICLV) program. This ICLV program can be seen as a generalization of the previous one, except for the change in the objective function, as it tries to find solutions having zero vetoes. However, we chose to present the programs in an increasing order of complexity. For simplicity, we also consider that the DMs share the vetoes. The same approach would be applicable for searching individual vetoes, with an objective function that could e.g. minimize the number of individual vetoes used or minimize the number of DMs using some vetoes. Sharing the vetoes also reduces the number of binary variables and reduces the risk that the resulting preference model would overfit the provided data.

The mathematical program is based on the previous one, with a few additions and changes. The veto situations are modeled as follows: a veto threshold v b h j (a variable in our problem) is associated with each criterion j ∈ J and profile index 1 ≤ h ≤ k -1. We also need binary variables V j (a, b h ), ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1, equal to one iff there is a veto situation between a and b h . When for any criterion and profile the evaluation g j (a) is lower than the corresponding v b h j veto threshold, the alternative may not outrank the profile.

Additional constraints

Constraints are used to keep the vetoes lower than the corresponding profile:

∀j ∈ J, 1 ≤ h ≤ k -1, v b h j ≤ g j (b h ).
The veto thresholds also have to be correctly ordered:

∀j ∈ J, 2 ≤ h ≤ k -1, v b h-1 j ≤ v b h j . Binary variables V j (a, b h ) are defined so that V j (a, b h ) equals one iff g j (a) < v b h j , ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : v b h j -g j (a) M ≤ V j (a, b h ) ≤ v b h j -g j (a) -ε M + 1.
Constraints ( 4), ( 5) must be redefined to take the vetoes into account when matching assignment examples.

∀l ∈ L, ∀(a, h) ∈ E l , h < k : j∈J σ l j (a, b h ) < λ l + j∈J V j (a, b h ), (6) 
∀l ∈ L, ∀(a, h) ∈ E l , h > 1 : j∈J σ l j (a, b h-1 ) ≥ λ l + j∈J V j (a, b h-1 ), (7) 
where j∈J V j (a, b h ) accounts for the existence of a veto situation between a and b h . Indeed in constraint [START_REF] Cailloux | Parameterize a territorial risk evaluation scale using multiple experts knowledge through risk assessment examples[END_REF], the term j∈J V j (a, b h ) guarantees that a does not outrank b h when a veto intervenes, whatever the coalition of criteria in favor of such outranking. A similar reasoning holds for constraint [START_REF] Damart | Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS[END_REF].

To minimize the number of vetoes used, a binary variable V j is defined for each criterion. The variable equals one iff a veto is used for this criterion:

∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : V j ≥ V j (a, b h ).

Objective function

In most situations it is reasonable to find a solution involving the least possible number of vetoes: allowing too many veto thresholds to be used may lead to an over-fitting of the model with ad-hoc veto thresholds. The objective function should then be to minimize the sum of the V j variables:

Min j∈J V j .
An alternative could be e.g. to minimize the number of situations where a veto is used.

Program 2 presents a synthesis of the ICLV program.

Min j∈J V j s.t.                                                set (E) of constraints from Program 1 ∀l ∈ L, ∀(a, h) ∈ E l , h < k : j∈J σ l j (a, b h ) ≤ λ l + j∈J V j (a, b h ) -ε. ∀l ∈ L, ∀(a, h) ∈ E l , h > 1 : j∈J σ l j (a, b h-1 ) ≥ λ l + j∈J V j (a, b h-1 ). ∀j ∈ J, 1 ≤ h ≤ k -1 : v b h j ≤ g j (b h ). ∀j ∈ J, 2 ≤ h ≤ k -1 : v b h-1 j ≤ v b h j . ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : V j (a, b h ) ≥ v b h j -g j (a) M . ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : V j (a, b h ) ≤ v b h j -g j (a) -ε M + 1. ∀j ∈ J, a ∈ A * , 1 ≤ h ≤ k -1 : V j ≥ V j (a, b h ).
Program 2: ICLV

Computing weights restriction

For each DM, fixing the common profiles induces constraints on her weights. Indeed, once the profiles are inferred by ICL (or ICLV), her assignment examples express a set W l of constraints on the weights w l and majority threshold λ.

W l = {(w j , j ∈ J, λ)} | ∀(a, h) ∈ E l : a b h-1 ∧ ¬a b h }.
It is possible to define, on the basis of W l , an importance relation ✄ l on J as follows, ∀j 1 , j 2 ∈ J:

j 1 ✄ l j 2 ⇔ w j 1 > w j 2 , ∀(w j , j ∈ J, λ) ∈ W l .
This relation ✄ l expresses, for a given DM l, the comparisons of criteria weights which hold for all weight vectors compatible with her assignment examples, considering the common profiles. It results from its definition that ✄ l is a partial order. The incompleteness of this relation should be understood in the following way: pairs of criteria (j 1 , j 2 ) that are not in this relation correspond to criteria such that there exists (w j , j ∈ J, λ) ∈ W l with w j 1 > w j 2 and (w ′ j , j ∈ J, λ ′ ) ∈ W l with w ′ j 2 > w ′ j 1 . In such a case, W l does not specify how w j 1 and w j 2 compare.

The Compute Weights Restriction (CWR) program aims at computing ✄ l for each DM l ∈ L. In order to compute the relation ✄ l , we search, for each j 1 , j 2 ∈ J, for a feasible solution to a linear program matching all assignment examples of DM l and with a supplementary constraint w l j 1 ≤ w l j 2 . This is a linear program involving no binary variables because at this stage the profiles values are known. If that linear program has no feasible solution, criterion j 1 is more important than criterion j 2 , ∀(w j , j ∈ J, λ) ∈ W l , thus j 1 ✄ l j 2 . On the contrary, if the linear program has a feasible solution, j 1 ✄ l j 2 does not hold.

Once the common profiles have been computed using ICL or ICLV programs, it is necessary that each DM accepts the weight restrictions induced by the choice of the common profiles. The relation ✄ l is presented to each DM l for validation. Although the validation of ✄ l by the DM l does not guarantee the acceptance of W l , we consider that, if ✄ l is validated by the DM, she accepts the constraints on weights W l imposed by the choice of the profiles. Indeed, it would be illusory to ask the DM to validate W l per se.

If for a pair of criteria j 1 , j 2 such that j 1 ✄ l j 2 , the DM considers that criterion j 2 is more important than j 1 , it is necessary to reconsider the choice of the profiles and recompute new profiles using ICL or ICLV programs including a new constraint: w l j 2 > w l j 1 .

Illustrative example

Let us illustrate the method on the following hypothetical scenario. (Another illustrative example in a risk setting context can be found in [START_REF] Cailloux | Parameterize a territorial risk evaluation scale using multiple experts knowledge through risk assessment examples[END_REF].) A government board has the responsibility to choose which research project to finance among a list of research proposals. This board wants to establish a systematic procedure to be able to assign research proposals into three categories: those projects that are considered very good and should be funded (category Good ); projects that are good and should be funded if supplementary budget can be found (category Average); projects that are of low quality and should not be funded (category Bad ). The four members of the board agree to use the following six criteria.

sq The project's scientific quality, evaluated on a 5-point ordinal scale.

wq The proposal's writing quality, evaluated on a 5-point ordinal scale.

ad The proposal's adequacy with respect to the government priorities, evaluated on a 3-point ordinal scale.

te The experience of the researcher teams submitting the project, evaluated on a 5-point ordinal scale.

ic Whether the proposal includes international collaboration, a binary assessment.

ps The researchers' publication score evaluated by an aggregate measure of the total quality of publications of the researchers involved in the proposal (evaluated on a [0,100] scale).

We suppose that each DM provides 30 assignment examples. A partial list of these assignment examples is provided in Table 2 and Table 3 2. Table 3 shows for each DM a possible set of weights matching their assignment examples with the common profiles and the veto threshold.

The shared profiles together with the veto threshold provide the group of DMs with a shared understanding of the scales of the criteria on which the alternatives are evaluated. The profiles values divide the evaluation scale for each criterion into a partition of three intervals. For example, on criterion sq, the shared preference model is such that an alternative having a value in [0, 3[ on that criterion will be considered by that criterion as being not worth more than the worst category. A value in [3, 5[ will permit that alternative to be considered to be worth category Average, but not more, and only the value 5 makes the alternative worth category Good from the point of view of that criterion.

The veto threshold on criterion sq induces an other partition of the evaluation scale of that criterion. It divides the space of the values on this criterion between those alternatives having a value in [0, 2[ and those having at least 2. Alternatives having a value of 0 or 1 as a scientific quality are forbidden, because of that veto, to access the best category.

Such interpretations of the profiles and veto threshold is important for DMs to understand whether the set of profiles and veto threshold adequately represent the Profile sq wq ad te ic ps b frontier between categories. Before presenting the computed set of profiles and veto threshold, it is informative to compute, for each DM, the constraints on the weights imposed by the choice of the common profiles and veto. These restrictions as found by the CWR program are provided in Fig. 4.
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It may be seen that a consensus on the weights cannot be readily found using these profiles as DM 3 has criterion ps necessarily more important than criterion sq while the others implicitely compare these two criteria in the reverse way. Imposing that all DMs compare ps and sq in the same way in terms of importance in ICLV leads to an infeasible program, i.e. there does not exist shared profiles and vetoes satisfying all assignment examples with individual weights with the additional constraint concerning ps and sq.

At this point, the profiles and veto are accepted by all DMs as adequate. Accepting these profiles and veto, the DMs are aware that they disagree on the winning coalitions, in particular on the relative importance of ps and sq as show in Fig. 4.

Having accepted the shared profiles and veto implies that DMs accept the partitions of the scales of criteria induced by the profiles and the veto as a meaningful representation of category limits. In order to obtain a common preference model, a common set of weights and majority threshold values should be reached. As has been seen already, no set of weight and majority threshold satisfy all DMs assignment examples. It is thus necessary for the DMs to discuss about some of the assignment examples they disagree on. This may lead DMs to change their assignments. The method proposed by Damart et al. [START_REF] Damart | Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS[END_REF] may be used to iteratively build consensual weights among the group of DMs. We describe here the beginning of this process. First, for each DM, considering its 30 assignment examples and the chosen profiles and veto, it is possible to compute the possible assignments of the remaining 60 collective assignments: suffices to search, for each alternative a and category C h , if Figure 4: The restrictions on the weights imposed by the choice of the common profiles, for each DM. An arrow from a criterion j to a criterion j ′ states that the choice of these profiles implies a strictly greater weight for j than for j ′ for this DM. Computing these robust assignments show that consensus do exist for some alternatives from the example set, while other alternatives show disagreements. For example, it appears that Prj 1 may consensually be placed into category Average: this statement does not conflict with any of the four DMs examples. However, Prj 90 may not be consensually placed into any category. Three of the four DMs would assign Prj 90 to category Good while DM 3 assigns it to category Average. The group of DMs may discuss on their different opinions about Prj 90, and it may happen that DM 3 changes his mind and agrees with the group to assign Prj 90 to category Good. The process sugested by Damart et al. [START_REF] Damart | Supporting groups in sorting decisions: Methodology and use of a multi-criteria aggregation/disaggregation DSS[END_REF] consists of enlarging step by step the set of example assignments that the DMs agree on, possibly by suggesting some DMs to change their minds, until a satisfactory group preference model with shared profiles and coalitions is reached. Assuming DM 3 is ready to change his opinion about Prj 90 and Prj 69, and DM 4 changes his opinion about Prj 98, a common preference model may be reached, which is displayed in Table 4.

Scalability of the algorithms

The proposed algorithms have been implemented on top of the Java J-MCDA libraries [START_REF] Cailloux | ELECTRE and PROMETHEE MCDA methods as reusable software components[END_REF][START_REF] Cailloux | J-MCDA: free/libre java libraries for MCDA[END_REF] and use the JLP library [START_REF] Cailloux | JLP: a Java interface to integer linear programming solvers[END_REF] In order to assess the performance and scalability of the proposed mathematical programs, the ICL and CWR programs have been run on a series of test problems. So as to get consistent results and observe the behaviour of the programs according to the problem size, about 2000 problems have been generated of various sizes chosen in the following ranges: number of criteria between three and ten, number of DMs between one and four, number of categories between two and five (implying that one to four category limits have to be found). The number of examples given by each DM vary between 1 and 700. Each criterion has an integer scale between 0 and 99.

Once the problem size is fixed, we generate category limits which we suppose all DMs share. The category limits performances divide evenly the space of possible parameters into the categories, e.g. with four categories the profiles will have a performance on every criterion of 25 for the worst profile, 50 for the middle one, and 75 for the best one. Each DM is also assigned a random set of weights. We also generate random alternatives, i.e. alternatives having their performances on each criterion set randomly with an uniform distribution. The assignment examples are obtained by computing, for each DM, the assignment of the alternatives into the defined categories. Then the ICL and CWR programs are used with the resulting data. Note that by construction, there exists a set of shared profiles satisfying assignment examples of all DMs.

We observe the proportion of ICL programs that are solved within a time limit of 90 minutes (a duration compatible with an off-line use of the program) and a disk space usage limit of 3 GB (representing the size of the tree structure used by the solver). The proportion of problems that can be solved within these limits obviously depends on the size of the problem. Reported in Table 5 is the proportion of problems solved using the ICL program, according to the number of binary variables involved.

Recall that the number of binary variables in the ICL problem corresponds to the product of the number of criteria, the number of profiles to be found, and the Table 6: The proportion of problems solved within the given resource limits (less than 90 minutes of computation, max 3 GB disk space usage) according to the number of binary variables and criteria contained in those problems. The number of instances indicates the number of problems generated, i.e. that we tried to solve. number of alternatives in the assignment examples set. Data sets involving a MIP formulation with less than 400 binary variables to solve ICL are all solved within 90 minutes. Such data sets correspond to relatively small problems, e.g. with 3 categories (2 profiles), 5 criteria and 40 assignment examples (10 examples for each DM if 4 DMs are involved). Moreover, a large majority of instances are solved within 90 minutes when the number of binary variables does not exceed 1200. It is likely that most practical sized problems will contain a number of binary variables below 1200, this number corresponding to a problem containing 6 criteria, 3 categories, 100 alternatives in the examples set. Furthermore, we observed that the ability to solve the problem also depends on the problem structure, and in particular on the number of criteria, for a given number of binary variables. Indeed, all problems with no more than 5 criteria have been solved in our experiment, even those containing the biggest number of binary variables (in the range [2000,2199]). On the opposite, when the number of criteria is between 8 and 10, less than 50% of the instances involving 1200 binary variables can be solved within 90 minutes. Table 6 shows the proportion of problems solved according to the number of criteria.

The CWR program performances were also assessed by running it for each test where profiles have been found. The time to compute all the weights restrictions has been calculated. At most a few minutes are needed in the most difficult cases to compute all the restrictions, and in most cases even only a few seconds. This is so because, although CWR involves solving a lot of linear programs, these LPs are solved almost instantaneously.

These data show that the ICL program is able to solve most problems having a reasonable size within 90 minutes (using less than 3 GB of disk space). As the approach we propose is typically used in an off-line mode where the analyst analyses the preferences indicated by the DMs in the interval between two meetings with them, a bound of 90 minutes might be considered a reasonable time to solve such complex problems. Bigger problems (involving about 10 criteria) might solve if given more time or space, although this has not yet been investigated. A probably better approach to solve very big problems would consist in developing appropriate resolution methods taking into account the structure of the problem. This is an interesting area to explore for further applicability of these algorithms.

Conclusions and perspectives

This paper deals with group preference elicitation. We aim at eliciting an Electre Tri sorting model for a group of DMs on the basis of assignment examples provided by the various DMs. More precisely, we propose algorithms to elicit Electre Tri category limits shared by all DMs from their assignment examples. The proposed algorithms consider the case with or without vetoes. We infer a part of the sorting model only (category limits, but with variable weights): such partial inference provides a better control of the inference process, in particular when multiple DMs provide assignment examples. We illustrate the use of these algorithms on a practical example. Numerical tests of these algorithms show that a majority of instances with a size corresponding to real-world problems can be solved in a reasonable time.

This work opens new research challenges and issues. Instances involving more than eight criteria remain difficult to solve. Specific resolution algorithms should be investigated to be able to solve all large instances. Our algorithm should be adapted in order to select a set of profiles which minimizes the restriction on the weights imposed to the DMs. When the assignment examples provided by the DMs are not compatible with an Electre Tri model using shared profiles, an interesting issue amounts at identifying ways to modify the assignment examples in order to find common profiles [START_REF] Mousseau | Dealing with inconsistent judgments in multiple criteria sorting models[END_REF][START_REF] Mousseau | Resolving inconsistencies among constraints on the parameters of an MCDA model[END_REF]. In such case, it would also be interesting to identify subsets of DMs who are closer to a consensus. Another interesting extension to the proposed algorithms involve considering confidence levels attached to the assignment examples provided by the DMs. From a practical point of view an important question deals with the choice of the alternatives involved in the assignment examples: how to choose alternatives that will lead to informative assignment examples? Our algorithms provide one single solution defining the profiles. It would be interesting to compute all sets of category limits compatible with the assignment examples (rather than one solution) using a robust disaggregation approach [START_REF] Dias | An aggregation/disaggregation approach to obtain robust conclusions with ELECTRE TRI[END_REF].

Finally, an implementation of the tools described here should be made available in the Decision Deck framework as open source software. That would permit to test the suggested approach on real cases, which would certainly raise further new ideas and suggestions for improvements.
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 4 Final profiles, veto, weights and majority threshold.there exists a preference model with the shared parameters values which satisfies the 30 assignment examples of that DM and assigns a to C h .

Table 1

 1 

	: inference procedures for Electre Tri
	expected input of the main tool proposed in the article, the last one shows its output.
	i designates assignment examples from a single DM, i * designates possibly incon-
	sistent assignment examples from a single DM, g is a group of DMs' assignment
	examples, P is a set of profiles evaluations, W is a set of weights. The computations
	are based on linear (or mixed integer and linear) programming, except for the first
	one.

  lists the performances of the corresponding projects.Using the assignment examples, the ICL program is used to find profiles shared by the DMs which match their individual assignment examples. However, with these assignment examples no solutions can be found: when using no vetoes, there is no common set of profiles that satisfies the examples of the four DMs. As a second try,

	DM 1		DM 2		DM 3	DM 4
	Prj 1 → Average Prj 31 → Good Prj 61 → Bad	Prj 91 → Bad
	Prj 2 → Good	Prj 32 → Bad	Prj 62 → Good Prj 92 → Bad
	Prj 3 → Good	Prj 33 → Bad	Prj 63 → Bad	Prj 93 → Bad
	Figure 2: Some assignment examples given by the DMs
			sq wq ad te ic ps
		Prj 1	1	5	1 5 0 72
		Prj 2	5	4	1 5 1 6
		Prj 3	5	4	3 5 1 50
		Prj 31 4	5	3 5 0 98
		Prj 32 5	3	1 1 1 65
		Prj 33 3	1	2 1 0 53
		Prj 61 2	3	2 2 0 62
		Prj 62 5	5	1 4 1 67
		Prj 63 5	2	2 1 1 9
		Prj 91 3	1	1 1 0 89
		Prj 92 1	1	2 1 0 12
		Prj 93 1	3	3 2 0 40

Table 2 :

 2 Inferred profiles and veto.

	DM	sq wq ad te	ic ps	λ
	DM 1	0 0.2 0.2 0.4	0 0.2 0.5
	DM 2	0 0.2 0.2 0.4	0 0.2 0.5
	DM 3	0 0.2 0.2 0.3 0.3	0 0.6
	DM 4 0.2 0.2 0.2 0.4	0	0 0.5

Table 3 :

 3 A set of weights and majority thresholds, as found by the ICLV program, matching assignment examples of each DM when used together with the inferred profiles and veto.

Table 5 :

 5 to define the mathematical programs, The proportion of problems solved within the given resource limits (less than 90 minutes of computation, max 3 GB disk space usage) according to the number of binary variables contained in those problems. The number of instances indicates the number of problems generated, i.e. that we tried to solve. which are then solved using the Ilog CPLEX library version 12.2. The Java wrapper makes a future integration into the Decision Deck project[START_REF]The Decision Deck project[END_REF] easy and involves no performance impact as the mathematical programs are solved in pure C thanks to the Ilog concert technology. The tests have been run on an Intel Core2 Duo E8400 3 GHz PC with 2 GB RAM running a GNU/Linux Debian Lenny system.

	Number of binary variables Number of instances Solved
	[0, 399]	477	100%
	[400, 799]	441	87%
	[800, 1199]	362	80%
	[1200, 1599]	290	78%
	[1600, 1999]	268	75%
	[2000, 2199]	121	69%