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Abstract

We address the problem of blind source separation in the underdetermined mixture case. Two

statistical tests are proposed to reduce the number of empirical parameters involved in standard sparseness-

based underdetermined blind source separation (UBSS) methods. The first test performs multisource

selection of the suitable time-frequency points for source recovery and is full automatic. The second

one is dedicated to autosource selection for mixing matrix estimation and requires fixing two parameters

only, regardless of the instrumented SNRs. We experimentally show that the use of these tests incurs no

performance loss and even improves the performance of standard weak-sparseness UBSS approaches.

Index Terms

Underdetermined blind source separation, sparse signals, time-frequency domain, noise variance

estimation, weak sparseness, random distortion testing.

I. INTRODUCTION

Source separation is aimed at reconstructing multiple sources from multiple observations (mixtures)

captured by an array of sensors. In what follows, we assume these sensors to be linear, which is acceptable

in many applications. The problem is said to be blind when the observations are linearly mixed by the

transfer medium and no prior knowledge on the transfer medium or the sources is available. Blind source

separation (BSS) is an important research topic in a variety of fields, including radar processing [1],

medical imaging [2], communication [3], [4], speech and audio processing [5]. BSS problems can be

classified according to the nature of the mixing process (instantaneous, convolutive) and the ratio between

the number of sources and the number of sensors of the problem (underdetermined, overdetermined).
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If the sources are assumed to be statistically independent, solutions to the BSS problem are calculated

so as to optimize separation criteria based on higher order statistics [6], [7]. Otherwise, when the sources

have temporal coherency [8], are nonstationary [9], or possibly cyclostationary [10], the separation criteria

to optimize are based on second-order statistics.

Although BSS algorithms exist in great profusion, the underdetermined case (UBSS for underdeter-

mined blind source separation), where the number of sensors is smaller than the number of sources, is

less addressed than the overdetermined case, where the number of sensors is greater than or equal to the

number of sources. Therefore, the UBSS problem is still challenging.

In the UBSS case, one way to deal with the lack of information is to use an Expectation-Maximization-

based method [11] to obtain a maximum likelihood estimation of the mixing matrix and sources. However,

such an approach requires prior knowledge of the source distributions. In contrast, sparseness-based

methods solve the UBSS problem [12]–[20] without prior knowledge on the source distribution, by

exploiting the sparseness of the non-stationary sources in the time-frequency domain. Roughly speaking,

sparseness-based approaches [21] involve transforming the mixtures into an appropriate representation

domain. The transformed sources are then estimated thanks to their sparseness and, finally, the sources

are reconstructed by inverse transform. A source is said to be sparse in a given signal representation

domain if most of its coefficients, in this domain, are (almost) zero and only a few of them are big.

In the instantaneous mixture case, where each observation consists of a sum of sources with different

signal intensity in presence of noise, the sparseness-based methods introduced in [12]–[17], among others,

rely on parameters that are chosen empirically. The general question addressed in this paper is then to

what extent this empirical parameter choice can be by-passed thanks to statistical methods, specifically

designed to cope with sparse representations. This question is particularly relevant because a whole family

of sparseness-based UBSS algorithms relies on assumptions very similar to those employed in theoretical

frameworks dedicated to the detection and estimation of sparse signals. Our contribution to this question

is then the following.

The UBSS algorithms proposed in [12]–[17] estimate the unknown mixing matrix by assuming the

presence of only one single source at each time-frequency point. In practice, a selection of time-frequency

points that probably pertain to one single source is expected to improve performance of the mixing

matrix estimation. The mixing matrix estimate is then used to recover the source signals. Rejecting time-

frequency points of noise alone and, thus, selecting and processing the time-frequency points where

the possibly multiple sources are present only, should also improve the overall performance of the

methods. Our contribution is then to perform the selection processes mentioned in the foregoing, by
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considering them as statistical decision problems and reducing the number of empirical parameters for

better robustness. Sparseness hypotheses are then particularly suitable for detecting the time-frequency

points needed by the separation procedure, whereas such hypotheses are useless for selecting the time-

frequency points used by the mixing matrix estimation.

More specifically, Section II recalls the source recovery and mixing matrix estimation steps in classical

UBSS methods based on sparseness assumptions. By so proceeding, we highlight the empirical parameters

required by these steps. Then, Section III is the main core of the paper because it introduces the

statistical tests for the selection of the time-frequency points needed by source recovery and mixing

matrix estimation. For source recovery, the selection of the time-frequency points relies on a weak notion

of sparseness, exploited through an estimate-and-plug-in detector: We begin by estimating the noise

standard deviation via the d-Dimensional Amplitude Trimmed Estimator (DATE), recently introduced in

[22], especially designed for coping with noisy representations of weakly-sparse signals; then, the noise

standard deviation estimate is used instead of the unknown true value in the expression of a statistical test,

specifically designed for noisy representations of weakly-sparse signals as well. For the mixing matrix

estimation, the physics of the signal suggest introducing a novel strategy. Indeed, the problem is to select

time-frequency points whose energy is big enough in noise to consider that they pertain to one single

source. We thus introduce a tolerance above which the energy of these relevant points must be regardless

of noise. A statistical test involving this tolerance and based on Signal Norm Testing (SNT) recently

introduced in [23] is then used to select these points in presence of noise.

Summarizing, we thus extend significantly [24], by introducing three new features of importance.

First, we replace the Modified Complex Essential Supremum Estimate (MC-ESE) of the noise standard

deviation by the DATE, which is as accurate, relies on an even stronger theoretical background and has

a computational cost significantly lower. Second, the selection of the time-frequency points of interest

for source recovery is performed by using a thresholding test, as in [24], but the value of the detection

threshold is determined automatically on the basis of the results provided in [25] for the detection of

signals satisfying the weak-sparseness model in noise. Third, the mixing matrix estimation is carried out

by taking the physical nature of the signals into account.

In Section IV, we apply the statistical tests of Section III to several standard UBSS methods [15], [16],

[18], [26], [27] in the instantaneous mixture case. We thus show that our statistical algorithms reduce

the number of empirical parameters and improve the overall performance of the UBSS methods under

consideration. For instance, by using these statistical algorithms, the subspace-based method presented

in [15] can be significantly automatized so as to involve two parameters only. These two parameters are
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adjusted once for all possible SNRs, in contrast to standard UBSS methods.

In Section V, these results are discussed. In particular, the convolutive mixture case is addressed for

its importance in practice. Some perspectives of this work are then presented in the concluding Section

VI.

II. MAIN STEPS OF STANDARD UBSS METHODS

A. Principles

We consider the instantaneous mixing system:

x(t) = As(t) + n(t), (1)

where t ranges in some finite set of sampling times such that, for every t in this set of sampling times,

s(t) = [s1(t), s2(t), · · · , sN (t)]T is the vector of the N sources, x(t) = [x1(t), x2(t), · · · , xM (t)]T

is the M -dimensional mixture vector, A = [a1,a2, · · · ,aN ] is the complex M × N mixing matrix

and n(t) = [n1(t), n2(t), · · · , nM (t)]T is additive noise. It is assumed that (nk(t))1≤k≤M are random

Gaussian processes, mutually decorrelated and independent of the sources. In the sequel, we address the

underdetermined case where N > M . Without loss of generality, we assume that the column vectors of

A have all unit norm, i.e., ‖ai‖ = 1 for all i ∈ {1, 2, . . . , N}.

Time-frequency signal processing provides effective tools for analyzing nonstationary signals, whose

frequency contents vary in time. It involves representing signals in a two-dimensional space, that is,

the joint time-frequency domain, hence providing a distribution of the signal energy versus time and

frequency simultaneously. The sparseness of the time-frequency coefficients of the source signals is one

of the main keys to solve the UBSS problem.

One well-known time-frequency representation and most used in practice is the short-time discrete

Fourier transform (STFT). The mixing process can be modeled in the time-frequency domain via the

STFT as:

Sx(t, f) = ASs(t, f) + Sn(t, f) , (2)

where Sx(t, f), Ss(t, f) and Sn(t, f)) are the vectors of the STFT coefficients at time-frequency bin

(t, f) of the mixtures, the sources and noise, respectively.

Given x(t), our purpose is to recover s(t) or equivalently Ss(t, f). As formalized in [28], the UBSS

problem is generally decomposed in two separate subproblems. First, in the so called mixing matrix

estimation, the normalized columns (ai)1≤i≤N are estimated so as to obtain an estimate of A. Then,
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on the basis of this estimate, the second step called signal recovery, provides a solution to equation (2).

Figure 1 presents the flowchart of such a two-step approach.
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Fig. 1. Flowchart of standard two-step BSS algorithms.

We now detail the mixing matrix estimation and the source recovery based on sparseness assumptions.

B. Mixing matrix estimation

The UBSS methods based on sparse signal representations in the time-frequency domain share the

following main assumption:

Assumption 1 For each source, there exists a set of time-frequency points where this source exists alone.

The elements of this set can be assumed to be isolated time-frequency points as in DUET (Degenerate

Unmixing Estimation Technique) [26] and [15] or to form a time-frequency box as in TIFROM (TIme-

Frequency Ratio Of Mixtures) [16] and TIFCORR (TIme-Frequency CORRelation) [27]. Assumption 1 is
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often reasonable thanks to the sparseness of the time-frequency representation of the sources, especially

when this number of sources is moderate.

As mentioned above, the first step in UBSS methods is to estimate the mixing matrix A to achieve

source recovery. In most two-step source separation algorithms [12], [13], [15]–[18] an autosource

selection is performed. By autosource selection, it is meant the detection of regions where only one

source occurs. The methods for estimating A on the basis of assumption 1 can then be summarized as

follows.

Jourjine et al. [26] present the DUET method, which is restricted to two mixtures (M = 2). They

address the anechoic case, where source transmission attenuations and delays between sensors are taken

into account. The columns of the mixing matrix are estimated by finding picks in a 2D histogram of

amplitude-delay estimates.

In [16], the mixing matrix estimation of the TIFROM method is based on the complex ratios
Sxj

(t,f)

Sxk
(t,f) ,

where, given m ∈ {1, 2, . . . ,M}, Sxm
(t, f) stands for the mth coordinate of Sx(t, f). These ratios are

computed for each time-frequency point and for two arbitrarily chosen indices j and k in {1, 2, . . . ,M}.

A first limitation of this method is to assume non-null matrix coefficients. A second limitation is the use

of an empirical threshold to select the smallest empirical variances of these ratios.

In TIFCORR [27], the mixing matrix estimation is similar by selecting the empirical covariance

coefficients above a certain threshold chosen manually.

The subspace-based UBSS (SUBSS) method [15] relies on another type of mixing matrix estimation.

Let Ωk stand for the set of all the time-frequency points (t, f) where the kth source is present and Ω

stand for the union of all these sets Ωk for k = 1, 2, . . . , N . According to assumption 1, the sets Ωk are

non-empty and so is Ω. For (t, f) ∈ Ωk, (2) reduces to

Sx(t, f) = Ssk(t, f)ak + Sn(t, f). (3)

According to this result, the mixing matrix can be estimated as follows. First, all the spatial direction

vectors d(t, f) = Sx(t,f)
‖Sx(t,f)‖

, with (t, f) ∈ Ω, are clustered by using an unsupervised clustering algorithm

and taking into account that the number of sources is supposed to be known. Since (3) shows that

for all the time-frequency points (t, f) of Ωk, the STFT vectors Sx(t, f) have same spatial direction

ak, the column vectors of the mixing matrix A are then estimated as the centroids of the N classes

returned by the clustering algorithm. In [15], the authors propose the use of the k-means algorithm but

other techniques could be employed. The set Ω required for the clustering procedure is determined by

comparing the ratio ‖Sx(t, f)‖/max
ξ

‖Sx(t, ξ)‖ to a threshold height, whose value is chosen empirically.
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C. Source recovery

This section presents a number of techniques used in the source recovery stage of two-step UBSS

algorithms. In the underdetermined case, the system (2) has less equations than unknowns, and thus it

has (in general) infinitely many solutions. In order to recover the original sources, additional assumptions

are needed.

The DUET method [26] assumes the sources to be (approximately) W-disjoint orthogonal in the time-

frequency domain, that is, the supports of the STFTs of any two sources present in the observations are

disjoints. The source recovery is performed by partitioning the time-frequency plane using the mixing

parameter estimates. This procedure assigns a source to each time-frequency point, even if this point is

due to noise alone, which is detrimental to the method overall performance.

Although TIFROM and TIFCORR do not require the sources to be W-disjoint orthogonal for source

recovery, they however suffer from the same limitation as DUET in that they also assign time-frequency

points of noise alone to sources.

Bofill and Zibulevsky [18] use the ℓ1-norm minimization to recover the sources. In the noiseless case,

this can be accomplished by solving the convex optimization

min
Ss(t,f)

‖Ss(t, f)‖1 subject to Sx(t, f) = ASs(t, f), (4)

where ‖·‖1 is the ℓ1 norm. In presence of noise, the foregoing constraint must be modified so as to take

the noise standard deviation into account. In practice, this noise standard deviation is unknown and must

be estimated.

For the SUBSS approach in [15], the source recovery is based on the following assumptions:

Assumption 2 The number of active sources at any (t, f) is strictly less than the number M of sensors.

Assumption 3 Any M × M sub-matrix of the mixing matrix has full rank, that is , for all J ⊂
{1, 2, · · · , N} with cardinality less than M , (aj)j∈J are linearly independent.

The subspace approach then performs multisource selection, that is, the selection of time-frequency points

pertaining to a mixture and then, identifies the sources present at a multisource time-frequency points.

Thanks to assumption 2, the method then involves solving the resulting locally overdetermined linear

problem. By construction, the methods requires rejecting time-frequency points of noise alone. In [15],

the time-frequency points with energy below some empirically chosen threshold are rejected.
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III. STATISTICAL TESTS FOR SPARSENESS-BASED UBSS

This section is the main core of the paper since it is dedicated to a series of improvements brought to the

classical UBSS methods presented in Section II. These improvements concern the selection of the time-

frequency points of interest for source separation (multisource selection) and the selection of the time-

frequency points suitable for mixing matrix estimation (autosource selection). The crux of the approach

followed bellow is to consider the aforementioned selections of time-frequency points as statistical testing

problems of accepting or rejecting the presence of sources in noise. These two hypothesis testing problems

are different in that mixing matrix estimation requires selecting points where only one single source is

present, whereas this constraint is useless for denoising and source recovery.

The issue in these binary hypothesis testing problems is twofold. On the one hand, the observation

in each problem has unknown distribution because basically the possible source signal distributions are

themselves unknown. On the other hand, the noise standard deviation is unknown as well. Because of this

lack of prior knowledge, standard likelihood theory or extensions such as generalized likelihood ratios

or invariance-based approaches do not apply.

For source recovery, our solution is an estimate-and-plug-in detector. Based on a weak-sparseness

model for the signal sources in noise, it begins by estimating the noise standard deviation via the DATE

introduced in [22] . Then, the noise standard deviation estimate is used instead of the unknown true value

in the expression of a statistical test, also designed for noisy sparse signal representations.

For mixing matrix estimation, we exploit the physical nature of the signals to detect the time-frequency

points where one single source is present. For signals with high overlapping rate, SNT is appropriate

to select such time-frequency points. When the signals have low overlapping rate, we directly use the

time-frequency points provided by the source recovery procedure.

Figure 2 presents the flowchart of the proposed approach based on the DATE and SNT.

A. Weak-sparseness-based time-frequency detection for source recovery (multisource selection)

Recovering sources involves detecting the time-frequency points that pertain to signals. Therefore,

time-frequency points due to noise alone are useless to recover sources. Detecting the time-frequency

points appropriate for source recovery thus amounts to deciding whether any given time-frequency point

(t, f) pertains to some signal of interest or not. It is thus natural to state this problem as the binary

hypothesis testing, where the null hypothesis H0 is that Sx(t, f) ∼ Nc(0, σ
2) is complex Gaussian noise

and the alternative hypothesis H1 is that Sx(t, f) = Θ(t, f)+Sn(t, f) is a source mixture in independent
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Fig. 2. Flowchart of the proposed two-step BSS algorithms.

and additive complex Gaussian noise, where Sn(t, f) ∼ Nc(0, σ
2) and Θ(t, f) stands for the mixture of

signals possibly present at time-frequency point (t, f).

The issue is then the following. Although Sx(t, f) can reasonably be modeled as a random complex

variable, the distribution of Sx(t, f) can hardly be known and standard likelihood theory thus becomes

useless. This difficulty can however be overcome by resorting to a weak-sparseness model that can be

introduced as follows.

Figure 3-(a) displays the spectrogram obtained by STFT of a mixture of audio signals. This spectrogram

exhibits many time-frequency components with small or even null amplitudes. When this mixture is

corrupted by additive and independent noise as in Figure 3-(b), small components are masked and only

big ones are still visible. We must also note that the proportion of these big components remains seemingly

less than or equal to one half. In other words, it is reasonable to assume that 1) the signal components

are either present or absent in the time-frequency domain with a probability of presence less than or



10 SUBMITTED TO EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, MAY 2012

equal to one half and 2) when present, the signal components are relatively big in that their amplitude

is above some minimum value. These two assumptions specify the weak sparseness model by bounding

our lack of prior knowledge on the signal distribution. The weak-sparseness model slightly differs from

the “strong” sparsity model encountered in compressive sensing, where it is assumed that the non-null

significant signal components are very few. In the weak sparseness model, we do not restrict our attention

to very small proportions of big time-frequency components.
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Fig. 3. (a) Noiseless audio signal mixture in the time-frequency domain. Many time-frequency coefficients are close to 0. (b)

Noisy audio signal mixture in the time-frequency domain. The time-frequency coefficients with small amplitudes are masked by

noise. Only big time-frequency coefficients remain visible. They are not really affected by noise as long as the signal to noise

ratio is large enough. The proportion of these significant coefficients is less than one half.

To take the weak-sparseness model into account in our binary hypothesis problem statement, we assume

that 1) the probability of occurrence of hypothesis H1 is less than or equal to one half and 2) there exists

some positive real value α such that |Θ(t, f)| > α. The value α can be regarded as the minimum signal

amplitude. We thus write that 



H0 : Sx(t, f) ∼ Nc(0, σ
2)

H1 : Sx(t, f) = Θ(t, f) + Sn(t, f),

(5)

with Sn(t, f) ∼ Nc(0, σ
2), |Θ(t, f)| > α and P(H1) 6 1/2. Furthermore, we do not assume that the

probability distribution of Θ(t, f) is known. In what follows, we prefer summarizing this testing problem

by introducing a Bernoulli distributed random variable ε(t, f), valued in {0, 1}, independent of Θ(t, f) and

Sn(t, f), but defined on the same probability space, so as to write that Sx(t, f) = ε(t, f)Θ(t, f)+Sn(t, f).
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We thus have P(H1) = P[ε(t, f) = 1]. Given any test T , that is, any measurable map of CM into

{0, 1}, we then say that T accepts (resp. rejects) the null hypothesis H0 if T (Sx(t, f)) = 0 (resp.

T (Sx(t, f)) = 1). In other words, T is said to return the expected value of the true hypothesis. The error

probability of T is then defined as the probability Pe{T } = P[T (Sx(t, f)) 6= ε(t, f)].

According to [25, Theorem VII.1], the decision should then be performed by using the thresholding

test with threshold height λD(α, σ) = (σ/
√
2)ξ(α

√
2/σ) where, for any positive ρ, ξ(ρ) = I−1

0 (eρ
2/2)/ρ

and I0 is the zeroth order modified Bessel function of the first kind. By thresholding test with threshold

height h ∈ [0,∞), we mean the test Th such that

Th(u) =





1 if |u| > h

0 if |u| < h.

(6)

The reasons for which this test is recommended are the following ones. Let LMPE be the Minimum-

Probability-of-Error (MPE) test, that is, the likelihood ratio test that guarantees the least possible

probability of error among all possible tests and that could be computed if the probability distribution of

Θ(t, f) and the prior probability of presence P(H1) were known. Two facts follow from [25, Theorem

VII.1]. First, the error probability of TλD(α,σ) is above the error probability of the Minimum-Probability-

of-Error (MPE) test and less than or equal to the error probability of an explicit function V (α
√
2/σ),

whose expression is useless in the sequel. Second, V (α
√
2/σ) is a sharp upper-bound since it is attained

by the error probabilities of tests LMPE and TλD(α,σ) in the least favorable case where P[ε = 1] = 1/2 and

Θ(t, f) = αeiΦ(t,f) with Φ(t, f) uniformly distributed in [0, 2π) and i is the imaginary unit (i2 = −1).

To carry out this test, we must choose an appropriate value for α and perform an estimate of σ.

The value of α is fixed by following the same reasoning as in [29] and considering that the minimum

amplitude of the signal to detect is the noise maximum value. More specifically, given m random variables

X1, X2, . . . , Xm that are independent and identically distributed with Xk
iid
∼ N (0, σ2) for 1 6 k 6 m, it

is known [30, Eqs. (9.2.1), (9.2.2), Section 9.2, p. 187] [31, p. 454] [32, Section 2.4.4, p. 91] that

lim
m→+∞

P

[
λu − σ ln lnm

lnm
6 max {|Xk|, 1 6 k 6 m} 6 λu

]
= 1,

where λu = σ
√
2 lnm is often called the universal threshold [33]. The maximum amplitude of (Xk)16k6m

has thus a strong probability of being close to λu when m is large and the universal threshold can be

regarded as the noise maximum amplitude of m noise samples. In our case, we have M sensors so that

each observation Sx(t, f) is an M -dimensional complex vector. Let L stand for the number of time-

frequency points (t, f) obtained for each sensor. We thus have M ×L time-frequency points (t, f) and,
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therefore, 2ML random variables — the real and imaginary parts of Sn(t, f) — that are N (0, σ2/2). The

maximum amplitude of these 2ML Gaussian independent and identically distributed random variables

with standard deviation σ/
√
2 will then be considered as the minimum signal amplitude so that we

set α = σ
√

log(2ML). The threshold height used to detect the relevant time-frequency points is then

λD(σ) = σξ(
√

log(2ML)), which is henceforth called the detection threshold.

As far as the estimation of the noise standard deviation is concerned, usual solutions based on standard

robust estimators such as the MAD (Median Absolute Deviation) [34] , the trimmed or the winsorized

estimators [35] do not apply. Indeed, by considering the spectrogram of Figure 3-(b), it can easily be

guessed that such standard estimators would fail because the proportion of significant noisy time-frequency

points pertaining to the signals is large. Therefore, the noisy time-frequency points are not very few and

cannot play the role of outliers with respect to the main core data distribution. In a recent paper [22], a

new noise standard deviation estimator called the DATE has been proposed. This estimator relies on the

weak-sparseness model presented before. An exhaustive presentation of the theoretical background on

which this estimator is based is beyond the scope of the present paper and the reader is asked to refer to

[22] for an heuristic presentation and a complete mathematical description of the DATE. In the context

addressed in the present paper, this algorithm applies as follows.

With the notation used so far, each Sx(t, f) is an M -dimensional complex vector. Let Sxj
(t, f),

j = 1, 2, . . . ,M , be the components of Sx(t, f). For any given j = 1, 2, . . . ,M , we assume that the

L time-frequency components Sxj
(t, f) for the jth sensor are independent and that each time-frequency

component obeys the binary hypothesis model of (5) with α = σ
√

log(2ML). According to [22] and

setting κ =
√
2Γ (3/2) where Γ is the standard Gamma function, there exists a specific convergence

criterion, for which we have: ∑

(t,f)

|Sxj
(t, f)|1(|Sxj

(t, f)| 6 λD(σ))

∑

(t,f)

1(|Sxj
(t, f)| 6 λD(σ))

≈ κσ (7)

when the number L of time-frequency bins (t, f) is large enough. In the previous equation, 1(|Sxj
(t, f)| 6

λD(σ)) stands for the indicator function of event |Sxj
(t, f)| 6 λD(σ), The specific convergence criterion

involved in (7) is specified in [22] and is not given here because of its intricateness. It also turns out

that the noise standard deviation σ is the unique solution of (9) with respect to the convergence criterion

involved. Therefore, the DATE basically performs an estimate of the noise standard deviation by solving

(7) with regard to this convergence criterion. The several steps involved in the computation are then the

following ones.
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The DATE:

Given j ∈ {1, 2, . . . ,M}, let Y j
(1), Y

j
(2), . . . , Y

j
(L) be the L values |Sxj

(t, f)| sorted by ascending order.

1) [Search interval]:

a) Choose some positive real value Q less than or equal 1− L
4(L/2−1)2 .

b) Set h = 1/
√

4L(1−Q)

c) Compute min = L/2 − hL. According to Bienaymé-Chebyshev’s inequality and since the

probabilities of presence of the signals are assumed to be less than or equal to one half, the

probability that the number of observations due to noise alone is above kmin is larger than or

equal to Q. In the experimental results presented below, Q was set to 0.95 for the computation

of kmin.

2) [Existence]:

IF there exists a smallest integer k in {kmin, . . . , L} such that

|Y j
(k)| 6

(
µj(k)/κ

)
ξ
(√

log(2ML)
)
< |Y j

(k+1)| (8)

with

µj(k) =





1
k

k∑

r=1

|Y j
(r)| if k 6= 0

0 if k = 0,

(9)

set k∗ = k.

ELSE, set k∗ = kmin.

3) [Value]: The estimate σ∗
j of the noise standard deviation on the jth sensor is then

σ̂j = µj(k
∗)/κ, (10)

The final estimate σ̂ of the noise standard deviation is then obtained by averaging the values σ̂j so

that σ̂ = (1/M)
∑M

j=1 σ̂j .

B. Signal source detection for mixing matrix estimation (autosource selection)

In this section, we propose a test for selecting the time-frequency points where one signal source is

probably present alone. To perform this selection, we make the distinction between signals with either

low or high overlapping rate in the time-frequency domain. Chirp signals (resp. audio signals) are typical

examples of signals with low (resp. high) overlapping rate. It is worth noticing that the estimation

procedures proposed below for each class have reasonable computational costs.
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1) The case of signals with low overlapping rate: Since the sources have low overlapping rate, we

suppose that the observations detected by the thresholding test of Section III-A mostly pertain to one

signal source. In other words, we neglect the effect on the matrix estimation performance of the few points

where sources may overlap, inasmuch as the impact of such time-frequency points is further reduced by

the averaging effect inherent to any mixing matrix estimation method.

2) The case of signals with high overlapping rate: When signals overlap significantly in the time-

frequency domain, the time-frequency detection of Section III-A is now inappropriate. Indeed, the

statistical procedure of Section III-A is aimed at detecting time-frequency points where signal sources

are present, whatever the number of these sources, whereas it is now required to discriminate points

where one single source is present from points where multiple sources occur. We assume that in case of

different sources present at time-frequency point (t, f), they are uncorrelated and incoherently combined.

The resulting energy at (t, f) is thus supposed to be smaller than the energy attained at the time-frequency

points where one single source is present only.

Our purpose is thus to detect the time-frequency points where the signal energy is big enough in

presence of noise. Basically, this problem amounts to deciding whether |ASs(t, f)| is above some value

τ or not. The value τ2 thus represents the minimum energy level above which we consider that the signal

energy is big enough to assume that one single source is actually present at (t, f). For any λ ∈ (0,∞),

it follows from [23, Lemma 4, statement (iii)] that

P

[
|Sx(t, f)| > λ

∣∣∣ |ASs(t, f)| < τ
]
6 1−Fχ2

2M (τ2/σ2)

(
λ2/σ2

)
, (11)

where Fχ2

d(δ)
(·) stands for the cumulative distribution function of the non-centered chi-2 distribution with

d degrees of freedom and non-centrality parameter δ. The degree of freedom in (11) is 2M since each

Sx(t, f) is an M -dimensional complex random vector and, thus, a 2M -dimensional real random vector.

Given some level γ ∈ (0, 1), it then suffices to choose

λ = λ(τ, γ) = σ
√

F−1
χ2

2M (τ2/σ2)(1− γ). (12)

to guarantee a “false alarm probability” P

[
|Sx(t, f)| > λ

∣∣∣ |ASs(t, f)| < τ
]

less than or equal to γ.

Therefore, for a given time-frequency point (t, f), the decision is that |ASs(t, f)| < τ if |Sx(t, f)| <
λ(τ, γ) and that |ASs(t, f)| > τ if |Sx(t, f)| > λ(τ, γ). For mixing matrix estimation, we then keep the

time-frequency points (t, f) such that |Sx(t, f)| > λ(τ, γ), which are considered as to time-frequency

points pertaining to one single source. In practice, since the actual value of σ is unknown, we replace

this true value by its estimate σ̂ provided by the DATE.



SUBMITTED TO EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, MAY 2012 15

Although the two parameters γ and τ must be fixed, there is no need to choose them for each signal

to noise ratio. Parameter τ , which is independent of the noise level, can be fixed via a small noiseless

database. Similarly, level γ can be determined via a few preliminary test on a small representative

database.

IV. SIMULATION RESULTS

In most of the following simulations, the mixing matrix is chosen according to [14, Eq. (38)] so as to

model N sources arriving at the sensor array at different angles θ1, θ2, . . . , θM . The entries of matrix A

are therefore aj,k = eiπ(j−1) sin(θk) for j ∈ {1, · · · ,M} and k ∈ {1, · · · , N}. In the sequel, we proceed

by choosing four sources (N = 4), three sensors (M = 3), θ1 = 15 ◦, θ2 = 30 ◦, θ3 = 45 ◦ and θ4 = 75 ◦.

Unless specified otherwise, the source signals are speech signals randomly chosen in the TI-digits

database [36] . This large speech database collected in a quiet environment is commonly used in speech

processing. In this paper, the chosen speech signals were downsampled to 8 kHz. All signals involve 8192

samples. In Figure 4, the left four subplots (a)-(d) show the time-domain representations of the original

source signals and the right four subplots (e)-(h) represent their corresponding spectrograms. Figure 5

displays a spectrogram of a mixture of these speech signals when the mixing matrix A is applied to

them at SNR = 10dB. The spectrograms of the other mixtures are not presented because the differences

between any two of them are not visually noticeable since the mixing matrix A involves no null entry.

The two parameters required for the mixing matrix estimation are then fixed to τ = 4 and γ = 10−3.

The source separation performance is measured by the normalized mean square error (NMSE):

NMSE = min
i,j

{
10 log10

(
1−

( 〈ŝi, sj〉
‖ŝi‖ · ‖sj‖

)2
)}

. (13)

Throughout this section, NMSEs are calculated over 100 Monte-Carlo runs.

A. SUBSS method

The modified SUBSS algorithm is obtained by using both the DATE and SNT for source recovery and

mixing matrix estimation by SNT, respectively, as explained in Section III. It is used to separate the four

source signals from the noisy mixed signals observed by the three sensors.

The waveforms of the recovered source signals by the modified SUBSS algorithm are represented in

Figure 6. The left four subplots (a)-(d) show the time-domain representations of the recovered source

signals in the noiseless case (input SNR = 45dB), and the right four subplots (e)-(h) represent time-domain

representations of the recovered source signals with input SNR = 10dB.
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Fig. 4. (a)-(d) show the waveforms of the original source signals in the time domain, (e)-(h) display the spectrograms of these

source signals in the time-frequency domain.

In Figure 7, the performance of the modified SUBSS algorithm, with and without denoising, is

compared to that obtained by the originally SUBSS algorithm of [15]. The denoising mentioned above

is described in appendix A as a standard linear estimation.

The modified SUBSS algorithm outperforms the original SUBSS algorithm [15], which relies on

thresholds that are manually chosen for each input SNR. Moreover, modified SUBSS without denoising

yields performance measurements that do not significantly depart from those attained by the original

subspace-based UBSS algorithm. In addition, Figure 7 displays the NMSEs obtained by using the MAD

estimator instead of the DATE in the modified SUBSS algorithm without denoising. The use of the MAD

instead of the DATE induces a significant performance loss, which illustrates the relevance of the DATE

and the weak-sparseness model. In Figures 8 and 9, we present the NMSEs obtained by the modified
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Fig. 5. Speech mixture spectrogram when mixing matrix A is applied to the four sources of Figure 4 (SNR = 10dB).

SUBSS and the original SUBSS when the number of sources increases and for SNR = 10dB and SNR

= 20dB. In both figures, the NMSEs degrade, because an increase of the source interference invalidates

assumption 1.

We now consider the case of complex chirp signals. These ones were generated by slightly modifying

the MATLAB routine MakeSignal.m of the WAVELAB toolbox, so as to obtain complex chirp signals. The 4

chirp signals we use as sources are s1(t) =
√

t(1− t)ei
πT

2
t2 , s2(t) =

√
t(1− t)e−iπT

4
t2 , s3(t) = e−iπTt2

and s4(t) = ei
2

3
πTt, where t ∈ [0, 1] and T = 8192 is the number of samples for each signal. Two of

these chirp signals are LFM ones and one is a pure sine. Figure 10 then displays the spectrograms of

the four chirp signals under consideration, whereas Figure 11 presents the spectrogram of a mixture of

these sources when matrix A is applied and SNR= 10dB. The spectrograms of the other mixtures are

not displayed for the same reasons as those given previously for the speech signal mixtures.

The experimental procedure for assessing the modified SUBSS in comparison to the original SUBSS

method is then the same as above. As specified in Section III-B1, the thresholds used for the mixing matrix

estimation are the detection ones. Therefore, no additional parameter is needed. The results obtained in

Figure 12 show the relevance of this choice for the thresholds, explained by the fact that chirp signals

present very few overlapping time-frequency components.
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Fig. 6. Simulation results: (a)-(d) show the waveforms of the source signals recovered by modified SUBSS with input

SNR=45dB, (e)-(h) show the waveforms of the source signals recovered by modified SUBSS with input SNR=10dB

B. Other methods

As described in Sections III-A and III-B, The DATE and SNT can be used to perform multisource

and autosource selections, respectively. Said otherwise, the statistical tests of the aforementioned sections

make it possible to obtain the time-frequency points where noisy mixtures are present and the set of

time-frequency points where only one single source exists. In this subsection, we comment the results

we obtain by so proceeding with respect to the several UBSS methods addressed in Section II and other

than SUBSS.

In the underdetermined case, TIFROM achieves partial source separation only. Therefore, to better

assess the contribution of our statistical tests to TIFROM, we consider the determined case where four

source signals from four speakers are mixed. The mixing matrix is now 4×4 with independent Gaussian
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Fig. 7. Comparison between SUBSS, modified SUBSS with and without denoising, modified SUBSS with MAD estimate

instead of DATE and without denoising: NMSE versus SNR.

entries. In Figure 13, we present the NMSEs obtained by the TIFROM, SNT-TIFROM and Modified

SNT-TIFROM. Specifically, SNT-TIFROM uses SNT to select times frequency points where a source

exists alone. SNT-TIFROM, as TIFROM, performs no multisource selection for source recovery. In

contrast, the modified SNT-TIFROM performs multisource selection and forces to zero the unselected

time-frequency points. These results show that SNT makes it possible to actually select the autosource

time-frequency points, with no performance loss and without resorting to the empirical threshold required

by the original TIFROM. The performance yielded by the modified SNT-TIFROM further emphasizes

that the detection threshold adjusted with the DATE selects appropriate multisource time-frequency points

for source recovery. The gain for low SNRs is explained by the fact that this selection can be regarded

as a non-linear denoising. The gain brought by this denoising effect decays when the SNR increases.

Another contribution of our statistical approach to sparseness-based methods is the estimation of the

noise standard deviation. Indeed, some methods need an estimate or the true value of the noise standard

deviation. For instance, Bofill and Zibulevsky, in [18], use the ℓ1-norm minimization to recover the

sources. In the noisy case, they propose to solve the optimization problem:

min
Ss(t,f)

1

2σ2
‖Sx(t, f)−ASs(t, f)‖22 + ‖Ss(t, f)‖1 .
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Fig. 8. Comparison between SUBSS and modified SUBSS without denoising when input SNR = 10dB: NMSE versus number

of sources.

Because of the weakly sparseness of the sources in noise, we hereafter prefer following [37] dedicated

to stable recovery of not exactly sparse signals. We therefore solve the optimization problem

min
Ss(t,f)

‖Ss(t, f)‖1 subject to ‖Sx(t, f)−ASs(t, f)‖2 ≤ σ2(M + 2
√
2M). (14)

This approach can then be improved in two ways. First, by solving this optimization problem on only

the time-frequency points selected by the multisource procedure propounded in Section III-A. Second, by

replacing the unknown true value of the noise standard deviation by its estimate provided by the DATE.

In this respect, Figure 14 displays the performance measurements obtained by the original method based

on the ℓ1-criterion of Eq. (4) (L1 Minimization) in comparison to the modified ℓ1-criterion of Eq. (14)

applied to the outcome of the the multisource selection when the noise standard deviation is estimated by

the DATE (Modified L1 minimization). As expected, the gain brought by multisource selection and Eq.

(14), both adjusted by the noise standard deviation estimate provided by the DATE, is significant. It is also

worth noticing that the DATE estimation error does not impact significantly the separation performance

in comparison to the case where the noise standard deviation is perfectly known. This can also be seen in

Figure 14, where the performance measurements are given when the multisoure selection and ℓ1-criterion

of Eq. (14) are both adjusted with the actual value of the noise standard deviation (Oracle Modified L1
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Fig. 9. Comparison between SUBSS and modified SUBSS without denoising when input SNR = 20dB: NMSE versus number

of sources.

Minimization). In contrast, there is significant performance loss when the multisource selection and Eq.

(4) are calculated by using the MAD instead of the DATE (MAD Modified L1 Minimization). The reason

still relates to the fact that the DATE is more robust to weak-sparseness than the MAD.

The multisource selection based on the detection threshold adjusted by the estimate provided by the

DATE can be further exploited by the DUET reconstruction, as illustrated in Figure 15. In this simulation,

the input signals are the chirp signals considered above, so that the W-disjoint orthogonality assumption is

satisfied. Moreover, the mixing matrix A is now assumed to be known. On the one hand, we perform the

DUET source recovery by considering the whole time-frequency plane. On the other hand, we consider

the modified DUET, that is, the DUET source recovery applied to the selected multisource time-frequency

points only. The results are similar to those obtained above by TIFROM and its modified versions. Here,

the gain brought by the multisource selection, which acts as a denoising, is bigger on a wider SNR range

because the time-frequency representation of chirp signals is sparser than that of audio signals.

V. DISCUSSION

A. Assessment

The algorithms we propose are very general. They are not dedicated to a given sparseness-based BSS
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Fig. 10. Spectra of 4 chirp signals used as sources.

method. They are simple to apply without any adjustment. From the results of Section IV, our procedures

can therefore be used to improve, simplify or bring robustness to the standard sparseness-based BSS

methods considered in the paper.

More specifically, the weak-sparseness-based time-frequency detection procedure of Section III-A can

be used as an automatized pre-processing for multisource selection. For example, the time-frequency

detection in [15] requires one threshold value for each instrumented SNR. The detection procedure of

Section III-A then makes it possible to avoid this empirical parameter choice, which brings robustness

and significant simplification. Used as a pre-processing for TIFROM [16], which basically involves no

selection of time-frequency points, the multisource selection we propound can improve the separation

performance.

For mixing matrix estimation, our approach described in Section III-B relies on no weak-sparseness
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Fig. 11. Chirp signal mixture spectrogram when mixing matrix A is applied to the chirp signals of Figure 10 (SNR= 10dB).
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Fig. 12. Comparison of performance between SUBSS and modified SUBSS without denoising for chirp signals: NMSE versus

SNR.
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Fig. 13. Comparison of performance between TIFROM, SNT-TIFROM and Modified TIFROM: NMSE versus SNR.

assumption and involves two parameters only, that is, the tolerance and the false-alarm probability.

These parameters are valid over the signal-to-noise ratio (SNR) range, in contrast to [15] for instance.

Furthermore, the assumptions made by TIFROM can be relaxed by using the autosource selection of

Section III-B. It is also worth noticing that the two parameters we need for mixing matrix estimation

have a physical meaning, which is not the case for some standard sparseness-based BSS methods.

B. Convolutive mixture case

There exists a great variety of possible strategies for dealing with the convolutive mixture case, which is

more realistic than the instantaneous one. In the convolutive mixture case, exhibiting a well-established

family of methods such as that considered above in the instantaneous mixture one is hardly feasible.

However, despite this variety, the statistical framework proposed in this paper can be expected to be

used in the convolutive mixture case, at least, for methods based on time-frequency representations for

which, separating time-frequency points of noise alone from those of noisy signals can be helpful. For

instance, this detection procedure for multisource selection can be used straightforwardly to detect the

time-frequency points required by the convolutive SUBSS presented in [38]. The modified convolutive

SUBSS thus obtained discards the empirical threshold required in [38] for multisource selection. This



SUBMITTED TO EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, MAY 2012 25

0 5 10 15 20 25 30 35
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

SNR (dB)

N
M

S
E

 (
d

B
)

 

 

L1 Minimization

Modified L1 Minimization

MAD Modified L1 Minimization

Oracle Modified L1 Minimization

Fig. 14. Comparison of performance (NMSE versus SNR) between the original Bofill and Zibulevsky’s method based on

the ℓ1-criterion of Eq. (4) (L1 Minimization), the modified ℓ1-criterion of Eq. (14) after multisource selection when: the noise

standard deviation is known (Oracle Modified L1 Minimization) or estimated via either the DATE (Modified L1 Minimization)

or the MAD (MAD Modified L1 Minimization).

entails no significant performance loss, as illustrated by Figure 16. Studying the added-value brought by

SNT in the convolutive mixture case requires further analysis that could be achieved in some forthcoming

work.

VI. CONCLUSION AND PERSPECTIVES

The algorithms presented in this paper contribute to blind source separation in the underdetermined

mixture case, by avoiding empirical choices of parameters present for the so-called family of weak-

sparseness based methods. Our first algorithm aimed at selecting the suitable time-frequency points for

source recovery is full automatic. The second, dedicated to mixing matrix estimation, requires fixing two

parameters only, regardless of the instrumented SNRs.

The question is now to what extent the statistical tests used above in the instantaneous mixture case can

possibly be exploited in the convolutive mixture case, especially in complement to the results discussed

in Section V-B. It can also be wondered whether these tests can be extended so as to deal with colored

noise. Work on this topic is under progress.
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Fig. 15. Comparison of performance between DUET reconstruction and Modified DUET reconstruction on chirp signals

The theoretical and experimental results of this paper pinpoint that the subfunctions of the source

separation methods considered above, completed with the statistical tests we have proposed, can be

regarded as elementary components that can be interchanged and associated to provide new algorithms

for source separation in different applicative contexts. This opens new practical prospects. For instance,

it would be desirable to construct a toolbox involving all these elementary components for further

developments and studies. Such a toolbox would also make it possible to carry out exhaustive experimental

assessments on large databases of signals via the BSSEval toolbox, downloadable from [39].

APPENDIX A

DENOISING-BASED SOURCE RECOVERY

The SUBSS method presented in [15] estimates the index set of the sources present at a given time-

frequency point (t, f). Let us denote by J this set of indexes. Then, equation (2) reduces to:

Sx(t, f) = AJSsJ
(t, f) + Sn(t, f) (15)

and the STFT coefficients of these active sources can be recovered using:

SsJ
(t, f) ≈ A

#
J Sx(t, f), (16)
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Fig. 16. Comparison of performance between standard convolutive SUBSS and modified convolutive SUBSS: the signals used

are same audio one as those considered in Simulation Section. Each mixture is a sum of filtered source signal where each filter

is randomly chosen RIF with order 4.

where A
#
J = (AH

J AJ)
−1AH

J is the Moore-Penrose pseudoinverse of AJ .

We propose to use the noise standard deviation estimate provided by the DATE to jointly denoise and

separate the sources on the basis of the time-frequency points selected by the statistical test of Section

III-A. So, instead of performing the source separation as specified by Eq. (16), the source separation is

now carried out by computing

ŜsJ
(t, f) = RsJ

A
H
J (AJRsJ

A
H
J + σ̂2

IM )−1Sx(t, f) (17)

where σ̂ is the noise standard estimate returned by the DATE and RsJ
= E[SsJ

(t, f)SH
sJ
(t, f)].

The derivation of the optimal linear estimator of (17) is standard. It involves minimizing the risk

E

[
‖SsJ

(t, f)−DSx(t, f)‖2
]

when D ranges over the space of the card(J) ×M matrices and under

the assumption that the sources are spatially decorrelated. In practice, matrix RsJ
is unknown and must

be estimated. We then proceeded as follows. On the one hand, we have Rx = ARsA
H +σ2IM . On the

other hand, Rx can be estimated by R̂x = 1
#t

∑

t

Sx(t, f)Sx(t, f)
H , where #t stands for the number

of time windows on which the STFT is calculated. Since estimates of A and σ are known, we derive

from the expressions of Rx and R̂x an estimate R̂s of Rs. An estimate of RsJ
follows by picking the
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appropriate columns in R̂s.
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