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Estimation of the onditional tail index using a smoothedloal Hill estimatorLaurent Gardes(1) & Gilles Stup�er(2)
(1) Université de Strasbourg & CNRS, IRMA, UMR 7501, 7 rue René Desartes,67084 Strasbourg Cedex, Frane

(2) Université d'Aix-Marseille, CERGAM, 15-19 allée Claude Forbin,13628 Aix-en-Provene Cedex 1, FraneAbstrat. For heavy-tailed distributions, the so-alled tail index is an important parameter that on-trols the behavior of the tail distribution and is thus of primary interest to estimate extreme quantiles.In this paper, the estimation of the tail index is onsidered in the presene of a �nite-dimensionalrandom ovariate. Uniform weak onsisteny and asymptoti normality of the proposed estimator areestablished and some illustrations on simulations are provided.AMS Subjet Classi�ations: 62G05, 62G20, 62G30, 62G32.Keywords: Heavy-tailed distribution, random ovariate, uniform onsisteny, pointwise asymp-toti normality.1 IntrodutionExtreme value analysis has attrated onsiderable attention in many �elds of appliation, suh ashydrology, biology and �nane, for instane. It fouses on the study of random variables havingsurvival funtion F of the form F (x) = x−1/γL(x), where γ > 0 shall be referred to as the tail indexand L is a slowly varying funtion at in�nity: namely, L satis�es, for all λ > 0, L(λx)/L(x) → 1 as xgoes to in�nity. Clearly, γ drives the tail behavior of F and its knowledge is neessary if, for instane,we are interested in the estimation of extreme quantiles. The estimation of the tail index is thus one ofthe entral topis in extreme value theory: this problem has been extensively studied in the literature.Reent overviews on univariate tail index estimation an be found in the monographs of Beirlant etal. [2℄ and de Haan and Ferreira [12℄. The most popular semi-parametri estimator was proposed byHill [15℄. Let kn ∈ {2, . . . , n} and Y1,n ≤ . . . ≤ Yn,n be the ordered statistis assoiated to the sample
Y1, . . . , Yn (note that, from now on, this way of denoting ordered statistis will be used in this paper).1



Hill's estimator is the statisti
H(kn) =

1

kn − 1

kn−1∑

i=1

log
Yn−i+1,n

Yn−kn+1,n
. (1)In pratie, it is often useful to link the variable of interest Y to a ovariate X . In this situation,the tail index depends on the observed value x of the ovariate X and shall be referred to, in thefollowing, as the onditional tail index. Its estimation has been addressed in the reent extreme valueliterature mostly in the ��xed design� ase, that is, when the ovariates are nonrandom. Smith [17℄ andDavison and Smith [8℄ onsidered a regression model while Hall and Tajvidi [13℄ used a semi-parametriapproah to estimate the onditional tail index. Fully non parametri methods have been onsideredusing splines (see Chavez-Demoulin and Davison [4℄), loal polynomials (see Davison and Ramesh [7℄),a moving window approah (see Gardes and Girard [9℄), or a nearest neighbor approah (see Gardesand Girard [10℄), among others.Despite the great interest in pratie, less attention has been paid to the random ovariate ase.One an ite the works of Wang and Tsai [18℄, based on a maximum likelihood approah, Daouiaet al. [5℄ who use a �xed number of non parametri onditional quantile estimators to estimate theonditional tail index, later generalized in Daouia et al. [6℄ to a regression ontext with responsedistributions belonging to the general max-domain of attration and Goegebeur et al. [11℄ who studya nonparametri regression estimator.The aim of this paper is to adapt Hill's estimator to the presene of a random ovariate. Note that theuniform weak onsisteny of the proposed estimator is established while, in most of the aforementionedstudies, the authors only onsidered pointwise onvergene.The rest of the paper is organised as follows. In Setion 2, we de�ne our onditional tail index estimator.The two main results (uniform weak onsisteny and asymptoti normality) are stated in Setion 3 anda simulation study is provided in Setion 4. The proofs are given in Setion 5 and in the Appendix.2 Estimation of the onditional tail indexLet (X1, Y1), . . . , (Xn, Yn) be n independent opies of a random pair (X,Y ) ∈ S × R where S is asubset of Rd, d ≥ 1, having nonempty interior. For all x ∈ S, we assume that the onditional survivalfuntion of Y given X = x is heavy-tailed with tail index γ(x) > 0. Equivalently (see Bingham etal. [3℄), we onsider the model:(M) X has a probability density funtion f on R

d with support S and for all x ∈ S, the onditionalsurvival funtion F (.|x) is ontinuous and dereasing. Moreover, the onditional quantile of Ygiven X = x is suh that
∀α ∈ (0, 1), q(α|x) := F

−1
(α|x) = α−γ(x)ℓ(α−1|x), (2)2



where F
−1

(.|x) is the inverse funtion of the onditional survival funtion and ℓ(.|x) is a slowlyvarying funtion at in�nity.For i = 1, . . . , n, denoting byX∗
i the ovariate assoiated with the ordered statisti Yn−i+1,n, a straight-forward adaptation to the random ovariate ase of Hill's estimator (1) is:

H(x, k, h) =
1

Mk(x, h)− 1

k−1∑

i=1

log
Yn−i+1,n

Yn−k+1,n
I{‖X∗

i − x‖ ∨ ‖X∗
k − x‖ ≤ h}, (3)if Mk(x, h) > 1 and H(x, k, h) = 0 otherwise. In (3), I{.} is the indiator funtion, ‖.‖ is a norm on

R
d, k = kn ∈ {2, . . . , n}, h = hn is a nonrandom positive sequene tending to 0 at in�nity and

Mi(x, h) =

i∑

j=1

I{‖X∗
j − x‖ ≤ h}, i = 1, . . . , n,is the number of ovariates among X∗

1 , . . . , X
∗
i whih lie in the ball B(x, h) with enter x and radius h.Clearly, the hoie of the number k in (3) is ruial sine, for most values of k, the statisti H(x, k, h)is equal to 0. The behavior of H(x, k, h) as a funtion of k is thus very errati. To overome thisdrawbak, we propose to estimate the onditional tail index by an average on k of the statistis de�nedin (3):

γ̂a(x, kx, h) =
1

kx − ⌊(1− a)kx⌋+ 1

n∑

l=2

H(x, l, h)I{⌊(1− a)kx⌋ ≤ Ml(x, h) ≤ kx}, a ∈ [0, 1), (4)where ⌊z⌋ = max{j ∈ N|z ≥ j} is the integer part of z and kx is a positive integer belonging to theinterval [2/(1− a), n]. Clearly for all a ∈ [0, 1), if Mn(x, h) > ⌊(1 − a)kx⌋, then γ̂a(x, kx, h) > 0. Theparameter a ontrols the number of statistis (3) taken into aount in the estimator (4). For instane,if a = 0 and if Mn(x, h) > kx, only one statisti having the form H(x, l, h) is used to ompute (4).We point out that in pratie, kx is restrited to the interval [2/(1 − a),Mn(x, h)], sine kx is thenumber of statistis Yn−i+1,n, whose assoiated ovariates X∗
i belong to the ball with enter x andradius h, whih are used to ompute γ̂a(x, kx, h): see also Setion 4.3 Main resultsIn this Setion, we state the two main results of the paper: the uniform weak onsisteny and pointwiseasymptoti normality of γ̂a(x, kx, h) on a ompat subset Ω of the interior of S. To this aim, weintrodue some assumptions. The following ondition spei�es the regularity of the onditional tailindex γ and of the probability density funtion f of the ovariates.(A1) The funtion γ is positive and ontinuous on S and the probability density funtion f is a positiveHölder ontinuous funtion on S with exponent βf ∈ (0, 1].Note that this ondition espeially implies that, on the ompat set Ω, the funtion γ and the probabilitydensity funtion f are bounded from below and above by �nite positive onstants:

0 < γ := inf
x∈Ω

γ(x) ≤ sup
x∈Ω

γ(x) =: γ < ∞ and 0 < f := inf
x∈Ω

f(x) ≤ sup
x∈Ω

f(x) =: f < ∞.3



The next assumption ontrols the largest osillation of the log-quantile funtion with respet to itsseond variable. For all u < v ∈ (0, 1), let
ω(u, v, x, h) = sup

α∈[u,v]

sup
‖x′−x‖≤h

|log q(α|x) − log q(α|x′)| .We assume that(A2) There exists δ > 0 suh that
lim
n→∞

sup
x∈Ω

ω(n−(1+δ), 1− n−(1+δ), x, h) = 0.Now, in order to deal with the slowly varying funtion in (2), we assume that(A3) For all x ∈ S and t ≥ 1,
ℓ(t|x) = c(x) exp

(∫ t

1

∆(u|x)

u
du

)
,where c(x) > 0 and ∆(.|x) is an ultimately monotoni funtion onverging to 0 at in�nity.Note that (A3) implies in partiular that for all x ∈ S, ℓ(.|x) is a normalised slowly varying funtion(see Bingham et al. [3℄). We also introdue the notation

∆x(z) := sup
u∈[z−1,∞)

|∆(u|x)|.We an now state the uniform weak onsisteny of our estimator.Theorem 1. Under model (M), assume that (A1), (A2) and (A3) hold. If nhd/ logn → ∞,
inf
x∈Ω

min

{
kx

logn
,

nhd

kx log(nhd)

}
→ ∞, lim

t→0
sup
x∈Ω

∆x(t) = 0,and if there exists a �nite positive onstant K1 suh that
sup
x∈Ω

sup
‖x′−x‖≤h

|kx − kx′ | ≤ K1,then, if a ∈ (0, 1), it holds that, as n goes to in�nity,
sup
x∈Ω

|γ̂a(x, kx, h)− γ(x)|
P

−→ 0.It is straightforward that under ondition (A1), the number Mn(x, h) of ovariates lying in the ball
B(x, h) is suh that

1

n
Mn(x, h) =

1

n

n∑

i=1

I{‖Xi − x‖ ≤ h} = P(‖X − x‖ ≤ h)(1 + oP(1)) = Vhdf(x)(1 + oP(1)), (5)where V is the volume of the unit ball of Rd (see Lemma 3 for a uniform result). Thus, sine f isbounded from below and above by �nite positive onstants, ondition nhd/ logn → ∞ implies that forall x ∈ Ω, Mn(x, h) goes to in�nity in probability. Furthermore, ondition
inf
x∈Ω

min

{
kx

logn
,

nhd

kx log(nhd)

}
→ ∞4



implies that for all x ∈ Ω, ⌊(1 − a)kx⌋ = (1 − a)kx(1 + o(1)) → ∞ and that, with arbitrary largeprobability, we have kx < Mn(x, h) for n su�iently large. Hene, for n large enough, γ̂a(x, kx, h) > 0for all a ∈ [0, 1) and x ∈ Ω.We now wish to state the pointwise asymptoti normality of the estimator at a point x ∈ S. To thisaim, the following assumption is required:(A4) For all x ∈ S, the funtion |∆(.|x)| is regularly varying with index ρ(x) < 0 i.e., for all λ > 0,
lim
t→∞

|∆(λt|x)|

|∆(t|x)|
= λρ(x).Note that onditions (A3) and (A4) entail that

lim
t→∞

log ℓ(λt|x) − log ℓ(t|x)

∆(t|x)
=

λρ(x) − 1

ρ(x)
, (6)whih is the standard seond-order ondition lassially used to prove the asymptoti normality of tailindex estimators. The asymptoti normality of our estimator is obtained onditionally to the event

{Mn(x, h) = mx}. Note that for instane, under (A1) and from (5), a typial sequene (mx) in thisase is mx = Vf(x)nhd.Theorem 2. Under model (M), assume that (A1), (A3) and (A4) hold. If, as n goes to in�nity,
kx → ∞, kx/mx → 0, k1/2x ω(m−1−δ

x , 1−m−1−δ
x , x, h) → 0 and k

1/2
x ∆(mx/kx|x) → ξ(x) ∈ R, then for

a ∈ [0, 1) and onditionally to the event {Mn(x, h) = mx} one has
k1/2x

(
γ̂a(x, kx, h)− γ(x)−

∆(mx/kx|x)

1− ρ(x)
AB(a, x)

)
d

−→ N (0, γ2(x)AV(a)),where if a ∈ (0, 1),
AB(a, x) =

1− (1 − a)1−ρ(x)

a(1− ρ(x))
and AV(a) =

2(a+ (1− a) log(1 − a))

a2
,and if a = 0, AB(0, x) = 1 and AV(0) = 1.As expeted, the asymptoti bias is a dereasing funtion of a while the asymptoti variane is inreas-ing. For a = 0, we �nd bak the asymptoti bias and variane of Hill's estimator.4 Simulation studyTo assess the �nite-sample performane of the proposed onditional tail-index estimator, some simula-tion experiments were arried out using the following model: the onditional distribution funtion of

Y given X = x is given by
∀ y > 0, F (y|x) =

(
1 + y−ρ/γ(x)

)−1/ρ

,where X is uniformly distributed on S = [0, 1]. The negative seond-order parameter ρ is hosen tobe independent of x and its value is piked in the set {−1.2,−1,−0.8}. Reall that the smaller is |ρ|,5



the slower is the onvergene (6) and therefore, the more di�ult is the estimation. As far as theonditional tail-index γ is onerned, two situations are onsidered:
γ1(x) =

1

3
+

1

8
sin(2πx)and γ2(x) =

1

4

{
1 + exp(−60(x− 1/4)2)I{3x ∈ [0, 1]}+ exp(−5/12)I{3x ∈ (1, 2]}

+ (5− 6x) (exp(−5/12)I{3x ∈ (2, 5/2]} − I{3x ∈ (5/2, 3]})

}
.Note that γ1 is in�nitely di�erentiable and γ2 is ontinuous but not di�erentiable at x ∈ {1/3, 2/3, 5/6}.The aim of this simulation study is to estimate the onditional tail-index on a grid of points {x1, . . . , xM}of [0, 1]. A small preliminary pratial investigation leads to take a = 3/7 whih provides reasonableperformanes in a large range of situations. This leaves two parameters to be hosen: the bandwidth

h and the number of upper order statistis kx. Our seletion proedure for these parameters goes asfollows.1) We hoose a grid {h1, . . . , hP } of possible values of h. In what follows, we let γ̂i,j(k) :=

γ̂3/7(xi, k, hj). For eah i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and k ∈ {qi,j + 4, . . . ,Mn(xi, hj)− qi,j},where qi,j ∈ N \ {0}, we introdue the set Ei,j,k = {γ̂i,j(l), l ∈ {k − qi,j , . . . , k + qi,j}}. For two�xed indies i and j, our aim is to selet the number of upper order statistis ki,j in a region ofstability for γ̂i,j . To do that, we ompute the variane of the set Ei,j,k for every possible valueof k. We then reord the number Ki,j for whih this variane is minimal. More preisely,
Ki,j = argmin

k

1

2qi,j + 1

k+qi,j∑

l=k−qi,j

(
γ̂i,j(l)− γ̂i,j(k)

)2 with γ̂i,j(k) =
1

2qi,j + 1

k+qi,j∑

l=k−qi,j

γ̂i,j(l).Hene, for a given point xi and a given bandwidth hj , the seleted number of upper order statistis
ki,j is piked in the set {Ki,j − qi,j , . . . ,Ki,j + qi,j}. We propose to reord the value ki,j suhthat γ̂i,j(ki,j) is the median of the set Ei,j,Ki,j

. For the sake of simpliity, the estimate γ̂i,j(ki,j)will be denoted by γ̃i,j .2) We now want to selet a bandwidth that does not depend on x and whih is suh that theestimation arried out for bandwidths in its neighborhood does not show a large variane. Toahieve that, we let q′ be a positive integer suh that 2q′ + 1 < P and we ompute for eah
j ∈ {q′ + 1, . . . , P − q′} the stability riterion

σ(j) =
1

M

M∑

i=1

σi(j),where, for i ∈ {1, . . . ,M},
σi(j) =


 1

2q′ + 1

j+q′∑

l=j−q′

(γ̃i,l − γ̃i,.(j))
2



1/2 with γ̃i,.(j) =

1

2q′ + 1

j+q′∑

l=j−q′

γ̃i,l.6



We next reord the integer J suh that σ(J) is the �rst loal minimum of the appliation j 7→ σ(j)whih is less than the average of the σ(j), see Figure 1. In other words, J = q′ + 1 if σ(.) isinreasing, J = P − q′ if σ(.) is dereasing and
J = min



j suh that σ(j) ≤ σ(j − 1) ∧ σ(j + 1) and σ(j) ≤

1

P − 2q′

P−q′∑

l=q′+1

σ(l)



 (7)otherwise, where for onveniene we extend σ by setting σ(q′) := σ(q′ + 1) and σ(P − q′) :=

σ(P − q′ + 1). The seleted bandwidth is then h∗ = hJ .To summarize, the bandwidth and the number of upper order statistis are seleted in order to satisfya stability riterion. The seleted bandwidth is independent of x and is given by h∗ = hJ where J isde�ned in (7). The seleted number of upper order statistis is given, for x = xi, by k∗xi
= ki,J .This estimation proedure is arried out on N = 100 independent samples of size n = 1000. Theonditional tail-index is estimated on a grid of M = 35 evenly spaed points in [0, 1]. Regarding theseletion proedure, P = 100 values of h ranging from 0.025 to 0.25 are tested. The parameter qi,j ishosen so that 2qi,j + 1 is approximately equal to 5% of Mn(xi, hj) and q′ is set to 3.To have an idea of how our estimator behaves ompared to other estimators in the onditional tail-indexestimation literature, it is ompared to:

• The estimator γ̃D(x) := γ̂H
n (x) of Daouia et al. [5℄:
γ̃D(x) =

∑9
j=1[log q̂n(αn/j|x)− log q̂n(αn|x)]

∑9
j=1 log jwhere q̂n(α|x) = inf{t ∈ R, F̂n(t|x) ≤ α} is the generalized inverse of the kernel estimator of theonditional survival funtion

F̂n(y|x) =

n∑

i=1

Kh(x−Xi)I{Yi > y}

n∑

i=1

Kh(x−Xi)

.Here Kh(x) = h−1K(x/h) where
K(x) =

15

16
(1 − x2)2I[−1, 1](x)is the bi-quadrati kernel funtion, h := hn is a positive sequene tending to 0 and αn = 0.3.This estimator is omputed using the data-driven proedure desribed in Daouia et al. [5℄.

• The estimator γ̃G(x) := γ̂
(2)
n (x, 0,K,K) of Goegebeur et al. [11℄: γ̃G(x) := T

(1,1)
n (x)/T

(1,0)
n (x)7



with
∀ s ≥ 1, ∀ t ≥ 0, T (s,t)

n (x) =

n∑

i=1

Ks
h(x−Xi)(log Yi − logωn,x)

t
+I{Yi > ωn,x}

n∑

i=1

Ks
h(x −Xi)I{Yi > ωn,x}

.Here Kh(u) = h−1K(u/h) where K is one again the bi-quadrati kernel funtion, h := hn isa positive sequene tending to 0 and for all x, (ωn,x) is a positive sequene tending to in�nity.Note that this estimator is a kernel version of the ase a = 0 of our estimator; to ompute γ̃, weshall use the data-driven method desribed in [11℄.
• The bias-orreted version γ̃G,BC(x) := γ̂

(2)
n (x, α

(2)
BC(ρ̂n(x;K,K, 0.5))) of γ̃G(x), also presented inGoegebeur et al. [11℄:

γ̃G,BC(x) =
γ̂
(2)
n (x, 0,K,K)

ρ̂n(x;K,K, 0.5)
+

[
1−

1

ρ̂n(x;K,K, 0.5)

]
γ̂(2)
n (x, 1,K,K)where

γ̂(2)
n (x, 1,K,K) =

T
(1,2)
n (x)

2T
(1,1)
n (x)and

ρ̂n(x;K,K, 0.5) =
3(Rn(x;K,K, 0.5)− 1)

Rn(x;K,K, 0.5)− 3provided 1 ≤ Rn(x;K,K, 0.5) < 3 with
Rn(x;K,K, 0.5) =

(
T (1,1)
n (x)

T
(1,0)
n (x)

)τ
−
(

T (1,2)
n (x)

2T
(1,0)
n (x)

)τ/2

(
T

(1,2)
n (x)

2T
(1,0)
n (x)

)τ/2
−
(

T
(1,3)
n (x)

6T
(1,0)
n (x)

)τ/3 .For this estimator, the data-driven method desribed in [11℄ is also used.For every estimator, we ompute the empirial MSEs, averaged over theM = 35 evenly spaed points in
[0, 1]. Numerial results are given in Table 1. This hart shows that our estimator yields performaneswhih are similar to the estimator γ̃D of Daouia et al. [5℄. Besides, it outperforms the estimator γ̃G ofGoegebeur et al. [11℄ in terms of MSEs by a 2:1 ratio in every ase, while being outperformed by thebias-orreted version γ̃G,BC of this estimator. This was expeted, sine the bias-orreted estimator
γ̃G,BC was shown to display far better performanes than the simple estimator γ̃G and that our methodwas not originally targeted at orreting any spei� bias that the Hill statistis H(x, l, h) used for itsomputation may possess.We display some results in Figures 2�4: the estimations orresponding to the median, 10% and 90%quantiles of the MSE are represented. Besides, we represent in Figure 5 boxplots of the bandwidthsand in Figure 6 boxplots of the ratios k∗x/Mn(x, h

∗) at x = 1/2 used to ompute our estimator. Itan be seen that the estimator γ̂a generally uses a small bandwidth, whih an be interpreted as anindiator of why our estimator generally mimis the shape of the funtion γ fairly well.8



5 ProofsFor the sake of simpliity, we introdue the notation kx,a := ⌊(1− a)kx⌋.5.1 Proof of the uniform weak onsistenyWe shall prove that for all ε > 0, the probability
pn := P

(
sup
x∈Ω

|γ̂a(x, kx, h)− γ(x)| > ε

)
,onverges to 0 as n goes to in�nity. The proof is based on [14, Lemma 1℄: the basi idea is thatinstead of showing the uniform onsisteny on the whole set Ω, one an show uniform onsisteny ona sequene of �su�iently large� subsets Ωn of Ω and deal with the osillation of the estimator.First note that, sine Ω is a ompat subset of Rd, for a �xed η > 1/βf and every n ∈ N \ {0}, thereexists a �nite subset Ωn of Ω with card(Ωn) = O(nc), c > 0 suh that for all x ∈ Ω, one an �nd

χ(x) ∈ Ωn satisfying ‖x− χ(x)‖ < n−η. The triangular inequality yields:
pn ≤ I

{
sup
x∈Ω

|γ(x)− γ(χ(x))| > ε/3

}
+ P

(
sup
ω∈Ωn

|γ̂a(ω, kω, h)− γ(ω)| > ε/3

)

+ P

(
sup
x∈Ω

∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)
∣∣ > ε/3

)
. (8)The proof of the uniform weak onsisteny of our estimator onsists in showing that the three terms inthe above inequality onverge to 0 as n goes to in�nity. This is arried out in Propositions 1, 2 and 3.Theorem 1 is thus a diret onsequene of these results. We start by fousing on the onvergene ofthe �rst term.Proposition 1. Under model (M) and (A1), for n large enough,

sup
x∈Ω

|γ(x)− γ(χ(x))| ≤ ε/3.Proof of Proposition 1 − Reall that for all x ∈ Ω, ‖x − χ(x)‖ < n−η → 0. Sine Ω is ompat,(A1) entails that the funtion γ is uniformly ontinuous, whih shows the result.We are now interested in the seond term, namely in the uniform onvergene of our estimator onthe �nite subsets Ωn of Ω. Some preliminary lemmas are required, whose proofs are postponed to theAppendix. The �rst one is a useful result of real analysis.Lemma 1. Let (a1, . . . , an) and (b1, . . . , bn) be two n−tuples of pairwise distint real numbers suhthat for all i ∈ {1, . . . , n}, ai ≤ bi. Let further a1,n ≤ . . . ≤ an,n and b1,n ≤ . . . ≤ bn,n be the assoiatedordered ntuples. Then for all i ∈ {1, . . . , n}, ai,n ≤ bi,n.Lemma 2 is a topologial result whih shall be needed in several proofs: it essentially implies that for
n large enough, the ball B(x, h) is ontained in S for all x ∈ Ω.Lemma 2. There exists β > 0 suh that for every x ∈ Ω, B(x, β) ⊂ S.9



Lemma 3 below gives an asymptoti uniform estimation of the total number of ovariates Mn(ω, h)ontained in the balls with enter ω ∈ Ωn and radius h.Lemma 3. Under model (M), assume that (A1) holds together with nhd/ logn → ∞. Then, as ngoes to in�nity,
1

nhd
sup
ω∈Ωn

∣∣Mn(ω, h)− Vnhdf(ω)
∣∣ P
−→ 0.Given Mn(x, h) ≥ 1, for i = 1, . . . ,Mn(x, h), let Z

(x)
i be the response variable whose assoiatedovariate W

(x)
i belongs to the ball B(x, h). Let us also introdue the notations U (x)

i := F (Z
(x)
i |W

(x)
i )for i = 1, . . . ,Mn(x, h) and Vi = F (Yi|Xi) for i = 1, . . . , n. In the following, Ω̃ denotes a �nite subsetof Ω, m := (mω)ω∈Ω̃ is a list of positive integers and BΩ̃(m) is the Borel measurable set

BΩ̃(m) :=
⋂

ω∈Ω̃

{Mn(ω, h) = mω}.The distributions of U (x)
i and Vi are given in the following result.Lemma 4. Under model (M), the random variables V1, . . . , Vn are independent standard uniformrandom variables whih are independent from X1, . . . , Xn. Furthermore, for all ω ∈ Ω̃ and onditionallyto BΩ̃(m), the random variables U

(ω)
1 , . . . , U

(ω)
mω are independent standard uniform random variables.The next lemma provides a representation of our estimator in terms of independent standard expo-nential random variables, whih is the key argument to show Proposition 2.Lemma 5. Under model (M) and (A3), for all ω ∈ Ω̃ and onditionally to BΩ̃(m), there existindependent standard exponential random variables E(ω)

1 , . . . , E
(ω)
mω suh that for every sequene of real-valued funtions (an) de�ned on Ω suh that an(x) → a ∈ (0, 1) uniformly in x ∈ Ω, one has for nlarge enough, uniformly in ω ∈ Ω̃,

∣∣∣γ̂an(ω)(ω, kω, h)− γ(ω)E
(ω)

n

∣∣∣ ≤ 2ω(U
(ω)
1,mω

, U (ω)
mω,mω

, ω, h) + E
(ω)

n ∆ω(U
(ω)
kω ,mω

)

≤ 2ω(V1,n, Vn,n, ω, h) + E
(ω)

n ∆ω(U
(ω)
kω ,mω

)where
E

(ω)

n :=
1

kω − kω,an(ω) + 1

kω∑

l=kω,an(ω)

1

l − 1

l−1∑

i=1

E
(ω)
i .We are now in position to prove the uniform onsisteny of our estimator on the �nite subsets Ωn.Proposition 2. Under model (M), assume that (A1), (A2) and (A3) hold. If nhd/ logn → ∞,

inf
x∈Ω

min

{
kx

logn
,

nhd

kx log(nhd)

}
→ ∞ and lim

t→0
sup
x∈Ω

∆x(t) = 0,then, for every sequene of real-valued funtions (an) de�ned on Ω suh that an(x) → a ∈ (0, 1)uniformly in x ∈ Ω as n goes to in�nity,
sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)|
P

−→ 0.10



Note that to show the onvergene to zero of the seond term in (8), it is obviously su�ient to useProposition 2 with the onstant sequene an = a for all n ≥ 1. Proposition 2 also handles the asewhen (an) is an arbitrary sequene of real-valued funtions on Ω uniformly onverging to a, whih shallbe useful to establish Proposition 3.Proof of Proposition 2 − Let m = (mω)ω∈Ωn
be a list of positive integers suh that

∀ω ∈ Ωn,
mω

f(ω)nhd
∈

[
V

2
,
3V

2

]
, (9)and let Ln be the set of all possible lists satisfying (9). From Lemma 3, it is lear that P(An) → 1 as

n goes to in�nity, where
An :=

⋃

m∈Ln

BΩn
(m)is the disjoint union of the BΩn

(m) for m ∈ Ln. Let ε > 0. Remarking that
P

(
sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε

)
≤ P(AC

n ) +
∑

m∈Ln

P

(
sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε;BΩn
(m)

)

≤ P(AC
n ) + sup

m∈Ln

P

(
sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε

∣∣∣∣BΩn
(m)

)
,where AC

n is the omplement of An, it is su�ient to prove that as n goes to in�nity,
sup

m∈Ln

T (m) := sup
m∈Ln

P

(
sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε

∣∣∣∣BΩn
(m)

)
→ 0. (10)Let m ∈ Ln. Remarking that

T (m) ≤ P

(
sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)E
(ω)

n | >
ε

2

∣∣∣∣BΩn
(m)

)
+P

(
sup
ω∈Ωn

|γ(ω)(E
(ω)

n − 1)| >
ε

2

∣∣∣∣BΩn
(m)

)
,we have from Lemmas 4 and 5 that

T (m) ≤ P

(
sup
ω∈Ωn

ω(V1,n, Vn,n, ω, h) >
ε

8

)
+ P

(
sup
ω∈Ωn

E
(ω)

n ∆ω(U
(ω)
kω ,mω

) >
ε

4

∣∣∣∣BΩn
(m)

)

+ P

(
sup
ω∈Ωn

|γ(ω)(E
(ω)

n − 1)| >
ε

2

∣∣∣∣BΩn
(m)

)

≤ P

(
sup
ω∈Ωn

ω(V1,n, Vn,n, ω, h) >
ε

8

)
+ card(Ωn)

{
sup
ω∈Ωn

P

(
|γ(ω)(E

(ω)

n − 1)| >
ε

2

∣∣∣BΩn
(m)

)

+ sup
ω∈Ωn

P

(
E

(ω)

n ∆ω(U
(ω)
kω ,mω

) >
ε

4

∣∣∣BΩn
(m)

)}
=: T1(m) + card(Ωn)(T2(m) + T3(m)).First, let us onsider the term T1(m). Under ondition (A2), for n large enough and uniformly in m,

T1(m) ≤ P(V1,n < n−(1+δ)) + P(Vn,n > 1− n−(1+δ)) = 2(1− (1− n−(1+δ))n) → 0. (11)Regarding T2(m), it is easy to see that for n large enough
T2(m) ≤ sup

ω∈Ωn

kω∑

l=kω,an(ω)

P

(∣∣∣∣∣
1

l − 1

l−1∑

i=1

γ(ω)(E
(ω)
i − 1)

∣∣∣∣∣ >
ε

2

∣∣∣∣∣BΩn
(m)

)
.11



From Lemma 4, using a lassial Cherno� bound for independent standard random exponential vari-ables together with (A1), there exists a positive onstant Cε suh that, for n large enough,
T2(m) ≤ 2 sup

ω∈Ωn

kω∑

l=kω,an(ω)

exp (−Cε(l − 1)) ≤ 2 exp

(
−
Cε

2
inf

ω∈Ωn

(kω,an(ω) − 1)

)
.Finally, using the fat that card(Ωn) = O(nc), kx,an(x)/kx → 1 − a and kx/ log(n) → ∞ uniformly in

x ∈ Ω, one has, for n su�iently large, uniformly in m,
card(Ωn)T2(m) ≤ 2 exp

(
−
Cε

4
inf

ω∈Ωn

(kω,an(ω) − 1)

)
→ 0. (12)We now fous on T3(m). Let us de�ne

ε2n = sup
x∈Ω

kx log(nh
d)

nhd
.Clearly, εn → 0 as n goes to in�nity and

T3(m) ≤ sup
ω∈Ωn

P

(
U

(ω)
kω ,mω

> εn

∣∣∣BΩn
(m)

)
+ sup

ω∈Ωn

P

(
E

(ω)

n sup
x∈Ω

∆x(εn) >
ε

4

∣∣∣∣BΩn
(m)

)
.Using Lemma 4, we have:

P

(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
=

mω!

(kω − 1)!(mω − kω)!

∫ 1

εn

xkω−1(1 − x)mω−kωdx

≤ mkω
ω (1− εn)

mω−kω .Remarking that log(1− εn) < −εn/2 for n large enough, one has, for all m and ω,
P

(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
≤ exp

(
−mωεn

(
mω − kω
2mω

−
kω logmω

mωεn

))
.Furthermore, under (A1), sine m satis�es (9), we have:

kω
mω

≤
2

fV

ε2n
log(nhd)

and log(mω) ≤ log

(
3fV

2
nhd

)
≤

3

2
log(nhd),for all m and ω. Thus, for n su�iently large, uniformly in m and ω,

P

(
U

(ω)
kω ,mω

> εn

∣∣∣BΩn
(m)

)
≤ exp

(
−
1

4
inf

ω∈Ωn

mωεn

)
≤ exp

(
−
fV

8
nhdεn

)
.Furthermore, sine logn/(nhdεn) → 0 and card(Ωn) = O(nc), it is straightforward that for n su�-iently large, uniformly in m,

card(Ωn) sup
ω∈Ωn

P

(
U

(ω)
kω ,mω

> εn

∣∣∣BΩn
(m)

)
≤ exp

(
−
fV

16
nhdεn

)
. (13)Next, sine εn → 0 and that, by assumption, for n large enough,

sup
x∈Ω

∆x(εn) ≤
ε

8
,one has, under (A1):

sup
ω∈Ωn

P

(
E

(ω)

n sup
x∈Ω

∆x(εn) >
ε

4

∣∣∣∣BΩn
(m)

)
≤ sup

ω∈Ωn

P

(
sup
x∈Ω

∆x(εn)|E
(ω)

n − 1| >
ε

8

∣∣∣∣BΩn
(m)

)

≤ sup
ω∈Ωn

P

(
γ(ω)|E

(ω)

n − 1| > γ
∣∣∣BΩn

(m)
)
.12



The right hand-side of the above inequality is similar to T2(m) and thus (12) and (13) lead to
card(Ωn)T3(m) ≤ exp

(
−
fV

16
nhdεn

)
+ 2 exp

(
−
C′

ε

4
inf

ω∈Ωn

(kω,an(ω) − 1)

)
→ 0, (14)for n large enough, uniformly in m, where C′

ε is a positive onstant. We then easily obtain (10)using (11), (12) and (14) and the proof is omplete.The osillation of the funtion x 7→ γ̂a(x, kx, h) is studied in Proposition 3. The proof of this resultrequires to ontrol the random variable
Ch(x, r) =

n∑

i=1

I{h− r ≤ ‖Xi − x‖ ≤ h+ r},whih is the total number of ovariates in the annulus with enter x, inner radius h−r and outer radius
h + r. Lemma 6 below essentially states that this number is asymptotially bounded with arbitrarilylarge probability.Lemma 6. Under model (M), assume that (A1) holds together with nhd → ∞. Then, for everyarbitrary integer K2 > c/(ηβf − 1), P(An,K2) → 0 as n goes to in�nity, where

An,K2 =

{
sup
ω∈Ωn

Ch(ω, n
−η) ≥ K2

}
.We an now state and prove Proposition 3: the osillation of the funtion x 7→ γ̂a(x, kx, h) onvergesuniformly to 0 in probability.Proposition 3. Under model (M), assume that (A1), (A2) and (A3) hold. If nhd/ logn → ∞,

inf
x∈Ω

min

{
kx

logn
,

nhd

kx log(nhd)

}
→ ∞, lim

t→0
sup
x∈Ω

∆x(t) = 0,and if there exists a �nite positive onstant K1 suh that
sup
x∈Ω

sup
‖x′−x‖≤h

|kx − kx′ | ≤ K1,then, as n goes to in�nity, if a ∈ (0, 1),
sup
x∈Ω

∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)
∣∣ P
−→ 0.Proof of Proposition 3 − From Lemma 6, it is enough to show that for all ε > 0 and for a �xedinteger K2 > c/(ηβf − 1),

P

(
sup
x∈Ω

∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)
∣∣ > ε

∣∣∣∣A
C
n,K2

)
→ 0.For (k, l) ∈ {2, . . . , n}2 and i ∈ {1, . . . , n− 1}, let

ri,l(x, k, h) =
I{‖X∗

i − x‖ ≤ h;Ml(x, h) ≥ k}

Ml(x, h)− 1
,if Ml(x, h) > 1 and 0 elsewhere, and, for a ∈ (0, 1) and ka = ⌊(1− a)k⌋,

sl,a(x, k, h) =
I{‖X∗

l − x‖ ≤ h;Ml(x, h) ≤ k}

k − ka + 1
.13



Clearly
γ̂a(x, kx, h) =

n∑

l=2

l−1∑

i=1

log
Yn−i+1,n

Yn−l+1,n
ri,l(x, kx,a, h)sl,a(x, kx, h),and thus ∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)

∣∣ ≤ Sn,1(x) + Sn,2(x), where
Sn,1(x) :=

n∑

l=2

l−1∑

i=1

log
Yn−i+1,n

Yn−l+1,n
|ri,l(x, kx,a, h)− ri,l(χ(x), kχ(x),a, h)|sl,a(x, kx, h),and Sn,2(x) :=

n∑

l=2

l−1∑

i=1

log
Yn−i+1,n

Yn−l+1,n
|sl,a(x, kx, h)− sl,a(χ(x), kχ(x), h)|ri,l(χ(x), kχ(x),a, h).The idea of the rest of the proof is quite simple. We will show that on the event AC

n,K2
, there exist twosequenes of real-valued funtions (a−n ) and (a+n ) on Ω uniformly tending to a, four sequenes (α−

1,n),
(α+

1,n), (α−
2,n) and (α+

2,n) tending to 1 and a positive onstant K3 suh that, for all x ∈ Ω

Sn,1(x) ≤ 2
(
α+
1,nγ̂a+

n (χ(x))

(
χ(x), kχ(x) +K3, h

+
)
− α−

1,nγ̂a−

n (χ(x))

(
χ(x), kχ(x) −K3, h

−
) )

, (15)and
Sn,2(x) ≤ 2

(
α+
2,nγ̂a+

n (χ(x))

(
χ(x), kχ(x) +K3, h

+
)
− α−

2,nγ̂a−

n (χ(x))

(
χ(x), kχ(x) −K3, h

−
) ) (16)where h± := h ± n−η. Sine infx∈Ω kx → ∞, h± = h(1 + o(1)) and the funtion γ is bounded frombelow and above by positive onstants, a diret use of Proposition 2 shall then lead to

sup
x∈Ω

Sn,1(x)
P

−→ 0 and sup
x∈Ω

Sn,2(x)
P

−→ 0,whih will then onlude the proof of Proposition 3. To obtain (15) and (16), the following straightfor-ward results will be useful. For all (x, x′) ∈ Ω2 suh that ‖x− x′‖ ≤ n−η and for all i ∈ {1, . . . , n− 1},
|I{‖X∗

i − x‖ ≤ h} − I{‖X∗
i − x′‖ ≤ h}| ≤ I{h− ≤ ‖X∗

i − x′‖ ≤ h+}. (17)Furthermore, from the inequalities
|Ml(x, h)−Ml(x

′, h)| ≤ Ch(x
′, n−η) and |Ml(x

′, h)−Ml(x
′, h±)| ≤ Ch(x

′, n−η),the triangular inequality yields, for all l ∈ {2, . . . , n}, on AC
n,K2

,
∣∣Ml(x, h)−Ml(x

′, h±)
∣∣ ≤ 2Ch(x

′, n−η) ≤ 2K2. (18)Espeially, if Ml(x, h) > 1 and on AC
n,K2

,
Ml(x

′, h+)− 1

Ml(x, h)− 1
≤ 1 +

2K2

Ml(x, h)− 1
and Ml(x

′, h−)− 1

Ml(x, h)− 1
≥ 1−

2K2

Ml(x, h)− 1
. (19)Let us �rst fous on the term Sn,1(x). It is easy to see that

D
(r)
i,l (x, a, h) := |ri,l(x, kx,a, h)− ri,l(χ(x), kχ(x),a, h)| ≤ T

(r)
n,1(x) + T

(r)
n,2(x) + T

(r)
n,3(x),14



where
T

(r)
n,1(x) =

|I{‖X∗
i − x‖ ≤ h} − I{‖X∗

i − χ(x)‖ ≤ h}|I{Ml(χ(x), h) ≥ kχ(x),a}

Ml(x, h)− 1
,if Ml(χ(x), h) ≥ kχ(x),a and 0 otherwise,

T
(r)
n,2(x) =

|I{Ml(x, h) ≥ kx,a} − I{Ml(χ(x), h) ≥ kχ(x),a}|I{‖X
∗
i − x‖ ≤ h}

Ml(x, h)− 1
,if Ml(x, h) ≥ kx,a or Ml(χ(x), h) ≥ kχ(x),a and 0 otherwise and

T
(r)
n,3(x) =

|Ml(χ(x), h)−Ml(x, h)|I{‖X∗
i − χ(x)‖ ≤ h}I{Ml(χ(x), h) ≥ kχ(x),a}

(Ml(x, h)− 1)(Ml(χ(x), h) − 1)
,if Ml(χ(x), h) ≥ kχ(x),a and 0 otherwise. Note that for n large enough, sine infx∈Ω kx,a → ∞and (18) holds, if Ml(χ(x), h) ≥ kχ(x),a then Ml(x, h) > 1 and thus the terms T (r)

n,i (x), i = 1, 2, 3 areasymptotially well de�ned. We now study separately these three terms. For u ∈ R, let us introduethe quantities
ξ+(u) = sup

x∈Ω

(
1 +

2K2

kx,a − u− 1

)
, ξ−(u) = inf

x∈Ω

(
1−

2K2

kx,a − u− 1

)
,

ζ+(u) = sup
x∈Ω

kχ(x) − kχ(x),a + 1 + u

kx − kx,a + 1
and ζ−(u) = inf

x∈Ω

kχ(x) − kχ(x),a + 1− u

kx − kx,a + 1
.Clearly, for all u ∈ R, ξ±(u) and ζ±(u) onverge to one as n goes to in�nity. From (17), (18) and (19),sine for all l ∈ {2, . . . , n}, i ∈ {1, . . . , n− 1} and x ∈ Ω, ri,l(x, ., h) is a dereasing funtion, one has

T
(r)
n,1(x) ≤

Ml(χ(x), h
+)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a, h

+)−
Ml(χ(x), h

−)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a, h

−)

≤ ξ+(2K2)ri,l(χ(x), kχ(x),a +K4, h
+)− ξ−(2K2)ri,l(χ(x), kχ(x),a −K4, h

−), (20)where K4 = (a− 1)K1 − 2K2 − 1. Similarly, sine |kx,a − kχ(x),a| ≤ (1− a)K1 + 1 uniformly in x ∈ Ω,noting that
|I{Ml(x, h) ≥ kx,a} − I{Ml(χ(x), h) ≥ kχ(x),a}| ≤ I{kχ(x),a +K4 ≤ Ml(χ(x), h) < kχ(x),a −K4}yields

T
(r)
n,2(x) ≤

Ml(χ(x), h
+)− 1

Ml(x, h) − 1
ri,l(χ(x), kχ(x),a +K4, h

+)−
Ml(χ(x), h

−)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a −K4, h

−)

≤ ξ+(2K2 −K4)ri,l(χ(x), kχ(x),a +K4, h
+)− ξ−(2K2 +K4)ri,l(χ(x), kχ(x),a −K4, h

−). (21)Clearly
T

(r)
n,3(x) ≤

K2ξ
+(2K2)

kχ(x),a − 1
ri,l(χ(x), kχ(x),a +K4, h

+), (22)and K2ξ
+(2K2)/(kχ(x),a − 1) → 0 uniformly in x ∈ Ω. Furthermore, using one again (17), (18)and (19), letting K3 = K1 + 2K2 and K5 = K3 −K4, one has

ζ−(K5)sl,a−

n (χ(x))(χ(x), kχ(x)−K3, h
−) ≤ sl,a(x, kx, h) ≤ ζ+(K5)sl,a+

n (χ(x))(χ(x), kχ(x)+K3, h
+), (23)15



where the sequenes of funtions (a+n ) and (a−n ) are given by
∀x ∈ Ω, a±n (x) = 1−

kx,a ±K4

kx ±K3
.Colleting (20) to (23) it is easy to onstrut two sequenes (α−

1,n) and (α+
1,n) tending to 1 suh that

D
(r)
i,l (x, a, h)sl,a(x, kx, h) ≤ 2

(
α+
1,nri,l(χ(x), kχ(x),a +K4, h

+)sl,a+
n (χ(x))(χ(x), kχ(x) +K3, h

+)

− α−
1,nri,l(χ(x), kχ(x),a −K4, h

−)sl,a−

n (χ(x))(χ(x), kχ(x) −K3, h
−)
)
,whih onludes the proof of (15). We now turn to Sn,2(x). We �rst start from the deomposition

D
(s)
l,a (x, kx, h) := |sl,a(x, kx, h)− sl,a(χ(x), kχ(x), h)| ≤ T

(s)
n,1(x) + T

(s)
n,2(x) + T

(s)
n,3(x),where

T
(s)
n,1(x) =

|I{Ml(x, h) ≤ kx} − I{Ml(χ(x), h) ≤ kχ(x)}|I{‖X
∗
l − χ(x)‖ ≤ h}

kχ(x) − kχ(x),a + 1
,

T
(s)
n,2(x) =

|I{‖X∗
l − x‖ ≤ h} − I{‖X∗

l − χ(x)‖ ≤ h}|I{Ml(x, h) ≤ kx}

kχ(x) − kχ(x),a + 1
,and

T
(s)
n,3(x) =

∣∣∣∣
1

kx − kx,a + 1
−

1

kχ(x) − kχ(x),a + 1

∣∣∣∣ I{‖X
∗
l − x‖ ≤ h}I{Ml(x, h) ≤ kx}.A onjoint use of (17), (18) and (19) leads to

T
(s)
n,1(x) ≤

I{‖X∗
l − χ(x)‖ ≤ h+}I{Ml(χ(x), h

+) ≤ kχ(x) +K3}

kχ(x) − kχ(x),a + 1

−
I{‖X∗

l − χ(x)‖ ≤ h−}I{Ml(χ(x), h
−) ≤ kχ(x) −K3}

kχ(x) − kχ(x),a + 1

≤
ζ+(K5)

ζ−(0)
sl,a+

n (χ(x))(χ(x), kχ(x) +K3, h
+)−

ζ−(K5)

ζ+(0)
sl,a−

n (χ(x))(χ(x), kχ(x) −K3, h
−). (24)Similarly,

T
(s)
n,2(x) ≤

I{h− ≤ ‖X∗
l − χ(x)‖ ≤ h+}

kχ(x) − kχ(x),a + 1
I{Ml(x, h) ≤ kx}

≤
ζ+(K5)

ζ−(0)
sl,a+

n (χ(x))(χ(x), kχ(x) +K3, h
+)−

ζ−(K5)

ζ+(0)
sl,a−

n (χ(x))(χ(x), kχ(x) −K3, h
−). (25)Next, (23) yields

T
(s)
n,3(x) ≤

[
(ζ+(0)− 1) ∨ (1− ζ−(0))

] kx − kx,a + 1

kχ(x) − kχ(x),a + 1
sl,a(x, kx, h)

≤
[
(ζ+(0)− 1) ∨ (1− ζ−(0))

] ζ+(K5)

ζ−(0)
sl,a+

n (χ(x))(χ(x), kχ(x) +K3, h
+). (26)Remarking that

ξ−(0)ri,l(χ(x), kχ(x),a −K4, h
−) ≤ ri,l(χ(x), kχ(x),a, h) ≤ ξ+(0)ri,l(χ(x), kχ(x),a +K4, h

+), (27)and olleting (24) to (27), one an �nd sequenes (α−
2,n) and (α+

2,n) tending to 1 suh that
D

(s)
l,a (x, kx, h)ri,l(χ(x), kχ(x),a, h) ≤ 2

(
α+
2,nri,l(χ(x), kχ(x),a +K4, h

+)sl,a+
n (χ(x))(χ(x), kχ(x) +K3, h

+)

− α−
2,nri,l(χ(x), kχ(x),a −K4, h

−)sl,a−

n (χ(x))(χ(x), kχ(x) −K3, h
−)
)
,whih entails (16) and thus onludes the proof. 16



5.2 Proof of the asymptoti normalityThe following lemma provides a representation of the estimator γ̂a(x, kx, h).Lemma 7. Under model (M), assume that (A1), (A3) and (A4) hold, mx → ∞, kx/mx → 0,
k
1/2
x ω(m−1−δ

x , 1 − m−1−δ
x , x, h) → 0 and k

1/2
x ∆(mx/kx|x) → ξ(x) ∈ R as n goes to in�nity. Under

{Mn(x, h) = mx}, there exist independent standard exponential variables Ẽ
(x)
1 , . . . , Ẽ

(x)
kx

suh that forall a ∈ [0, 1),
γ̂a(x, kx, h) = γ(x) +

∆(mx/kx|x)

1− ρ(x)
AB(a, x) + Sn(x) + oP(k

−1/2
x ),where

Sn(x) =
1

kx − kx,a + 1

kx∑

l=kx,a

1

l − 1

l−1∑

i=1

(
γ(x) + ∆(mx/kx|x)

(
i

kx

)−ρ(x)
)
(Ẽ

(x)
i − 1).In view of the previous lemma, to obtain the asymptoti normality of our estimator, we shall showthat k

1/2
x Sn(x)

d
−→ N (0, γ2(x)AV(a)). Sine k

1/2
x ∆(mx/kx|x) → ξ(x) ∈ R, we get ∆(mx/kx|x) → 0as n goes to in�nity. Therefore

Sn(x) =
γ(x)(1 + o(1))

kx − kx,a + 1

kx−1∑

i=1




kx−1∑

l=(kx,a−1)∨i

1

l


 (Ẽ

(x)
i − 1),whih makes it enough to prove that for all a ∈ [0, 1),

Wn,a(x) :=
k
1/2
x

(AV(a))1/2(kx − kx,a + 1)

kx−1∑

i=1




kx−1∑

l=(kx,a−1)∨i

1

l


 (Ẽ

(x)
i − 1)

d
−→ N (0, 1). (28)Let us �rst show that Var(Wn,a(x)) → 1 as n goes to in�nity. In the simple ase a = 0,

Var(Wn,0(x)) =
kx

AV(0)

kx−1∑

i=1

1

(kx − 1)2
→ 1,sine AV(0) = 1. Now, if a ∈ (0, 1),

Var(Wn,a(x)) =
kx

AV(a)

(
σn,a(x)

kx − kx,a + 1

)2

,where
σ2
n,a(x) :=

kx−1∑

i=1




kx−1∑

l=(kx,a−1)∨i

1

l




2

=

kx−1∑

i=1

kx−1∑

l, l′=(kx,a−1)∨i

1

ll′
=

kx−1∑

l, l′=kx,a−1

l ∧ l′

ll′
,by hanging the order of summation. Hene, by breaking the seond sum into two parts,

σ2
n,a(x) =

kx−1∑

l=kx,a−1

l − kx,a + 2

l
+

kx−1∑

l=kx,a−1

kx−1∑

l′=l+1

1

l′
=

kx−1∑

l=kx,a−1

2(l− kx,a) + 3

l
,where the last equality was obtained by hanging the order of summation in the seond term. Somestraightforward omputations lead to

σ2
n,a(x) = 2kx


kx − kx,a + 1

kx
−

kx,a − 3/2

kx

kx−1∑

l=kx,a−1

1

l


 .17



Reall that for every nonnegative monotoni and ontinuous funtion ϕ de�ned on (0, 1), we have forall N,N ′ ∈ N \ {0} with N ′ ≤ N ,
∣∣∣∣∣
1

N

N∑

i=N ′

ϕ

(
i

N

)
−

∫ 1

N ′/N

ϕ(t)dt

∣∣∣∣∣ ≤
1

N

(
ϕ

(
N ′

N

)
∨ ϕ(1)

)
. (29)Applying (29) with ϕ(t) = 1/t, sine kx → ∞ and kx,a/kx → 1− a, one has

σ2
n,a(x) = 2kx(a+ (1− a) log(1 − a))(1 + o(1)),and thus Var(Wn,a(x)) = 1 + o(1). It now only remains to show that for a ∈ [0, 1),

Tn,a(x) :=
k
3/2
x

(kx − kx,a + 1)3

kx−1∑

i=1




kx−1∑

l=(kx,a−1)∨i

1

l




3

→ 0,and onvergene (28) will be obtained by using Lyapounov's entral limit theorem. First, if a = 0,
Tn,0(x) = k3/2x

kx−1∑

i=1

1

(kx − 1)3
= k−1/2

x (1 + o(1)) = o(1).Finally, if a ∈ (0, 1), sine from (29) with ϕ(t) = 1/t

kx−1∑

l=(kx,a−1)∨i

1

l
≤

kx−1∑

l=kx,a−1

1

l
= − log(1 − a)(1 + o(1)),we have

Tn,a(x) ≤
k
3/2
x (kx − 1)[− log(1− a)]3

(kx − kx,a + 1)3
(1 + o(1)) = k−1/2

x

[
− log(1− a)

a

]3
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j ∈ {1, . . . , i−1} and aj ≤ bj for all j ∈ {i+1, . . . , n}, the two (n−1)−tuples (a1, . . . , ai−1, ai+1, . . . , an)19



and (b2, . . . , bn) satisfy the assumptions of Lemma 1. In onlusion, removing a1,n and b1 from the two
n−tuples (a1, . . . , an) and (b1, . . . , bn) leads to (n− 1)−tuples satisfying the assumptions of Lemma 1.Remarking that a1,n ≤ b1, the onlusion of the proof is straightforward by indution on n.Proof of Lemma 2. Let U denote the interior of S and ∂S = S \U be the (topologial) boundary of
S. Note that ∂S is a losed set sine it is the intersetion of two losed sets in R

d; sine Ω is a ompatset and ∂S is a losed set with Ω ∩ ∂S = ∅, it holds that
∃β > 0, d(Ω, ∂S) := inf

x∈Ω
inf
s∈∂S

‖x− s‖ = 2β > 0. (30)We shall now prove the result. Pik x ∈ Ω. If one ould �nd y ∈ B(x, β) ∩ SC , then the real number
t0 = inf{t ∈ [0, 1] | zt := (1− t)x+ ty /∈ S}would belong to (0, 1) sine x ∈ U and y ∈ SC whih are both open sets. Therefore, beause forevery t ∈ (0, t0), zt ∈ S and there exists a noninreasing sequene (tk) onverging to t0 suh that

(ztk) ⊂ SC ⊂ UC whih is a losed set, one has
zt0 = lim

t↑t0
zt ∈ S and zt0 = lim

k→∞
ztk ∈ UC .Hene zt0 ∈ ∂S, but ‖x− zt0‖ = t0‖x− y‖ < β, whih ontradits (30): Lemma 2 is proven.Proof of Lemma 3 − We start with the following onsequene of the triangular inequality:

∣∣Mn(ω, h)− Vnhdf(ω)
∣∣ ≤

∣∣nP (‖X − ω‖ ≤ h)− Vnhdf(ω)
∣∣+ |Mn(ω, h)− nP (‖X − ω‖ ≤ h)|

=: T1,n(ω) + T2,n(ω).Note that Lemma 2 implies that one an take n large enough suh that B(ω, h) ⊂ S for every ω ∈ Ωn.Then, under (A1):
1

nhd
sup
ω∈Ωn

T1,n(ω) ≤ sup
ω∈Ωn

∫

B

|f(ω + hu)− f(ω)|du = O(hβf ) → 0.It thus remains to prove that, for all ε > 0,
lim
n→∞

P

(
1

nhd
sup
ω∈Ωn

T2,n(ω) > ε

)
= 0.Remark that

{
1

nhd
sup
ω∈Ωn

T2,n(ω) > ε

}
=
⋃

ω∈Ωn

{
1

n

∣∣∣∣∣

n∑

i=1

I{‖Xi − ω‖ ≤ h} − P(‖Xi − ω‖ ≤ h)

∣∣∣∣∣ > εhd

}
. (31)Sine the Xi, 1 ≤ i ≤ n, are independent and identially distributed, Bernstein's inequality (seeHoe�ding [16℄) yields, for all ω ∈ Ωn,

P

(
1

n

∣∣∣∣∣

n∑

i=1

I{‖Xi − ω‖ ≤ h} − P(‖Xi − ω‖ ≤ h)

∣∣∣∣∣ > εhd

)
≤ 2 exp

(
−

τn(ω)λn(ω)

2(1 + λn(ω)/3)

)
. (32)20



where we have de�ned
τn(ω) := εnhd and λn(ω) :=

εhd

P(‖Xi − ω‖ ≤ h)P(‖Xi − ω‖ > h)
,Sine (A1) holds, there exists a positive onstant κf suh that, for all ω ∈ Ωn,

P(‖Xi − ω‖ ≤ h)P(‖Xi − ω‖ > h) ≤ P (‖X − ω‖ ≤ h) ≤ Vhd
(
f(ω) + κfh

βf
)
.Hene, for n large enough, under (A1),

sup
ω∈Ωn

1

λn(ω)
≤

2Vf

ε
< ∞. (33)Realling that card(Ωn) = O(nc), (31), (32) and (33) imply that there exists a positive onstant κεsuh that

P

(
1

nhd
sup
ω∈Ωn

T2,n(ω) > ε

)
= O(nc exp(−κεnh

d)) → 0,sine nhd/ logn → ∞.Proof of Lemma 4− Sine the random pairs (Xi, Yi), 1 ≤ i ≤ n, are independent, it is straightforwardto show that V1, . . . , Vn are also independent. Furthermore, if t ∈ (0, 1), one has for all i = 1, . . . , n:
P(Vi ≤ t) =

∫

Ω

P(F (Y |s) ≤ t|X = s)f(s)ds = t,sine
P(F (Y |s) ≤ t|X = s) =

∫ ∞

0

I{F (y|s) ≤ t}ϕ(y|s)dy = t,where ϕ(.|x) is the onditional probability density funtion of Y given X = x. Let now A be anarbitrary Borel subset of Ω. For all i = 1, . . . , n,
P(Vi ≤ t;Xi ∈ A) =

∫

A

∫ ∞

0

I{F (y|s) ≤ t}ϕ(y|s)dyf(s)ds = tP(Xi ∈ A) = P(Vi ≤ t)P(Xi ∈ A),whih onludes the �rst part of the proof. Furthermore, if (t1, . . . , tmω
) ∈ (0, 1)mω , we have

P
(
{U

(ω)
i ≤ ti, i = 1, . . . ,mω};BΩ̃(m)

)
=

(
n

mω

)
P
(
{Vi ≤ ti;Xi ∈ B(ω, h), i = 1, . . . ,mω};BΩ̃(m)

)
.Using the �rst part of the proof and the fat that the event BΩ̃(m) belongs to the σ−algebra generatedby X1, . . . , Xn, one has

P
(
{U

(ω)
i ≤ ti, i = 1, . . . ,mω};BΩ̃(m)

)
= t1 . . . tmω

(
n

mω

)
P
(
{Xi ∈ B(ω, h), i = 1, . . . ,mω};BΩ̃(m)

)
.Remarking that

P(BΩ̃(m)) =

(
n

mω

)
P
(
{Xi ∈ B(ω, h), i = 1, . . . ,mω};BΩ̃(m)

)onludes the proof. 21



Proof of Lemma 5 − Note that, onditionally to BΩ̃(m), for n large enough, uniformly in ω ∈ Ω̃,
γ̂an(ω)(ω, kω, h) =

1

kω − kω,an(ω) + 1

kω∑

l=kω,an(ω)

1

l− 1

l−1∑

i=1

log

(
Z

(ω)
mω−i+1,mω

Z
(ω)
mω−l+1,mω

)
.In this ase, one has, for all i = 1, . . . ,mω,

logZ
(ω)
i = log q(U

(ω)
i |W

(ω)
i ) ≤ log q(U

(ω)
i |ω) + ω(U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h).Lemma 1 now gives
logZ

(ω)
mω−i+1,mω

≤ log q(U
(ω)
i,mω

|ω) + ω(U
(ω)
1,mω

, U (ω)
mω,mω

, ω, h).A similar idea yields
log q(U

(ω)
i,mω

|ω)− ω(U
(ω)
1,mω

, U (ω)
mω,mω

, ω, h) ≤ logZ
(ω)
mω−i+1,mω

,and therefore ∣∣∣logZ(ω)
mω−i+1,mω

− log q(U
(ω)
i,mω

|ω)
∣∣∣ ≤ ω(U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h).This yields
∣∣∣∣∣log

(
Z

(ω)
mω−i+1,mω

Z
(ω)
mω−l+1,mω

)
− log

(
q(U

(ω)
i,mω

|ω)

q(U
(ω)
l,mω

|ω)

)∣∣∣∣∣ ≤
∣∣∣logZ(ω)

mω−i+1,mω
− log q(U

(ω)
i,mω

|ω)
∣∣∣

+
∣∣∣logZ(ω)

mω−l+1,mω
− log q(U

(ω)
l,mω

|ω)
∣∣∣

≤ 2ω
(
U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h
)
,whih in turn implies

∣∣∣∣∣∣
γ̂an(ω)(ω, kω, h)−

1

kω − kω,an(ω) + 1

kω∑

l=kω,an(ω)

1

l − 1

l−1∑

i=1

i log

(
q(U

(ω)
i,mω

|ω)

q(U
(ω)
i+1,mω

|ω)

)∣∣∣∣∣∣
≤ 2ω

(
U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h
)
.(34)Note that to obtain (34), we have used the straightforward identity

l−1∑

i=1

log

(
q(U

(ω)
i,mω

|ω)

q(U
(ω)
l,mω

|ω)

)
=

l−1∑

i=1

i log

(
q(U

(ω)
i,mω

|ω)

q(U
(ω)
i+1,mω

|ω)

)
.For all i ∈ {1, . . . ,mω}, let now F

(ω)
i := − logU

(ω)
i . From Lemma 4, onditionally to BΩ̃(m),

F
(ω)
1 , . . . , F

(ω)
mω are independent standard exponential random variables. Condition (A3) then yields,for all i ∈ {1, . . . , kω − 1},
i log

(
q(U

(ω)
i,mω

|ω)

q(U
(ω)
i+1,mω

|ω)

)
= γ(ω)i(F

(ω)
mω−i+1,mω

− F
(ω)
mω−i,mω

) + i

∫ (U
(ω)
i

)−1

(U
(ω)
i+1)

−1

∆(u|ω)

u
du.Rényi's representation shows that

{
E

(ω)
i := i(F

(ω)
mω−i+1,mω

− F
(ω)
mω−i,mω

), i = 1, . . . , kω − 1
}are independent standard exponential random variables. Moreover, for all i ∈ {1, . . . , kω − 1},

∣∣∣∣∣i log
(

q(U
(ω)
i,mω

|ω)

q(U
(ω)
i+1,mω

|ω)

)
− γ(ω)E

(ω)
i

∣∣∣∣∣ ≤ E
(ω)
i ∆ω(U

(ω)
kω ,mω

). (35)Inequalities (34) and (35) onlude the proof. 22



Proof of Lemma 6 − First remark that
P(An,K2) ≤

∑

ω∈Ωn

P(Ch(ω, n
−η) ≥ K2).Furthermore, for all ω ∈ Ωn,

{Ch(ω, n
−η) ≥ K2} ⊂

⋃

1≤i1<...<iK2≤n

K2⋂

q=1

{h− ≤ ‖Xiq − ω‖ ≤ h+},where h± := h± n−η. Therefore,
P(An,K2) ≤ card(Ωn)

(
n

K2

)
sup
ω∈Ωn

(
P(h− ≤ ‖X − ω‖ ≤ h+)

)K2
.Some straightforward alulus leads to

P(h− ≤ ‖X − ω‖ ≤ h+) =
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)
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n,2(ω),where, if B is the unit ball of Rd,

Rn,1(ω) =

∫
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(f(ω + hu)− f(ω))du and R±
n,2(ω) = (h±)d

∫

B

(f(ω + h±u)− f(ω + hu))du.Note that Lemma 2 implies that one an take n large enough suh that B(ω, h+) ⊂ S for every ω ∈ Ωn.Under (A1), and sine η > 1/βf ≥ 1/d and nhd → ∞ imply that nηh → ∞, we have, uniformly in ω:
Rn,1(ω) = O(hβf ) = o(1) and R±

n,2(ω) = O(hdn−ηβf ).Furthermore, remarking that, beause nηh → ∞,
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(
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h
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(
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)
= o(1)and the proof is omplete.Proof of Lemma 7 − From (34) (see proof of Lemma 5), onditionally to {Mn(x, h) = mx}, one has
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, (36)23



where, onditionally to {Mn(x, h) = mx}, U
(x)
1 , . . . , U

(x)
mx are independent standard uniform vari-ables. Furthermore, from [1, Theorem 2.1℄ there exist independent standard exponential variables
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(x)
kx−1 suh that uniformly in i ∈ {1, . . . , kx − 1},
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(
mx

kx

∣∣∣∣x
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. (38)Note also that from [1, Lemma 2.3℄, equation (38) holds uniformly in j ∈ {1, . . . , kx − 1}. Hene, (36)and (37) entail that
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Rn,2(x) → 0, (39)with (39) being su�ient to show that k1/2x ∆(mx/kx|x)Rn,2(x) → 0, sine k1/2x ∆(mx/kx|x) onvergesto a �nite onstant.To prove (39a), let us introdue the event Ãn := {U
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Remarking that u0(x) = 0, some straightforward omputations lead to
|Rn,1(x)| ≤

1
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.Let us �rst onsider the ase a = 0 (i.e. kx = kx,a). In this situation, uj(x) − uj−1(x) = 1/(kx − 1)and thus by using (38),
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.Sine kx → ∞, using (29) with ϕ(t) = max(log(1/t), 1), we get
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−→ 0 in the ase a = 0. Consider next the ase a ∈ (0, 1). It is easy to hekthat
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.In onlusion, k1/2x Rn,1(x)
P

−→ 0 for all a ∈ [0, 1).Finally, let us prove (39). Using (29) with ϕ(t) = t−ρ(x), it is lear that uniformly in l ∈ {kx,a, . . . , kx},
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(1 − ρ(x))Rn,2(x) = 1 + o(1)−AB(0, x) = o(1), (41)25



sine AB(0, x) = 1. Now, if a ∈ (0, 1), using again (29) with ϕ(t) = t−ρ(x) together with the fat that
kx/(kx − kx,a + 1) → 1/a leads to

(1− ρ(x))Rn,2(x) =
1− (1 − a)1−ρ(x)

a(1− ρ(x))
(1 + o(1))−AB(a, x) = o(1). (42)In onlusion, (41) and (42) imply that Rn,2(x) → 0 for all a ∈ [0, 1) and the proof is omplete.
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Situation Smoothed Hill Estimator γ̃D Estimator γ̃G Estimator γ̃G,BCestimator γ̂a of Daouia et al. of Goegebeur et al. of Goegebeur et al.
γ = γ1

ρ = −0.8 0.0115 0.0116 0.0241 0.00490
ρ = −1 0.00753 0.00668 0.0157 0.00410
ρ = −1.2 0.00512 0.00416 0.00972 0.00359
γ = γ2

ρ = −0.8 0.0164 0.0189 0.0321 0.00715
ρ = −1 0.0102 0.0102 0.0198 0.00714
ρ = −1.2 0.00724 0.00679 0.0148 0.00606Table 1: MSEs assoiated to the estimators in all ases.
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Figure 1: Choie of hJ on a given sample: x−axis: bandwidth h, blue line: moving average σ, blakline: mean of σ.
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(a) Case γ = γ1
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(b) Case γ = γ2Figure 2: Case ρ = −1: the true funtion γ (solid line) and its smoothed Hill estimator γ̂a (dashedline), eah orresponding to the 10% quantile of the MSE.
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(a) Case γ = γ1
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(b) Case γ = γ2Figure 3: Case ρ = −1: the true funtion γ (solid line) and its smoothed Hill estimator γ̂a (dashedline), eah orresponding to the median of the MSE.28
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(b) Case γ = γ2Figure 4: Case ρ = −1: the true funtion γ (solid line) and its smoothed Hill estimator γ̂a (dashedline), eah orresponding to the 90% quantile of the MSE.
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(b) Case γ = γ2Figure 5: Case ρ = −1: boxplots of the bandwidths for the smoothed Hill estimator γ̂a.29
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(b) Case γ = γ2Figure 6: Case ρ = −1: boxplots of the ratios k∗x/Mn(x, h
∗) for the smoothed Hill estimator γ̂a.
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