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Abstract. For heavy-tailed distributions, the so-called tail index is an important parameter that con-

trols the behavior of the tail distribution and is thus of primary interest to estimate extreme quantiles.

In this paper, the estimation of the tail index is considered in the presence of a finite-dimensional

random covariate. Uniform weak consistency and asymptotic normality of the proposed estimator are

established and some illustrations on simulations are provided.
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1 Introduction

Extreme value analysis has attracted considerable attention in many fields of application, such as

hydrology, biology and finance, for instance. The main result of extreme value theory asserts that the

asymptotic distribution of the maximum (properly rescaled) of a sequence (Y1, . . . , Yn) of independent

copies of a random variable Y with distribution function (d.f.) F is the Extreme Value Distribution

with d.f.

Gγ(x) = exp(−(1 + γx)+)−1/γ ,

where y+ = max(y, 0). The d.f. F is then said to be in the maximum domain of attraction of Gγ

(F ∈ DA(Gγ)) and the parameter γ is called the extreme value index. Clearly, γ drives the tail

behavior of F and its knowledge is necessary if, for instance, we are interested in the estimation of

extreme quantiles. In practice, the particular case F ∈ DA(Gγ) with γ > 0 is often considered. In
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this situation, F is a heavy tailed distribution i.e. 1 − F (x) =: F (x) = x−1/γL(x), where γ > 0 shall

now be referred to as the tail index and L is a slowly varying function at infinity: namely, L satisfies,

for all λ > 0, L(λx)/L(x) → 1 as x goes to infinity. The estimation of the tail index is one of the

central topics in extreme value theory: this problem has been extensively studied in the literature.

Recent overviews on univariate tail index estimation can be found in the monographs of Beirlant et

al. [3] and de Haan and Ferreira [11]. The most popular semi-parametric estimator was proposed by

Hill [14]. Let kn ∈ {2, . . . , n} and Y1,n ≤ . . . ≤ Yn,n be the ordered statistics associated to the sample

Y1, . . . , Yn (note that, from now on, this way of denoting ordered statistics will be used in this paper).

Hill’s estimator is the statistic

H(kn) =
1

kn − 1

kn−1∑
i=1

log
Yn−i+1,n

Yn−kn+1,n
. (1)

In practice, it is often useful to link the variable of interest Y to a covariate X. In this situation,

the tail index depends on the observed value x of the covariate X and shall be referred to, in the

following, as the conditional tail index. Its estimation has been addressed in the recent extreme value

literature mostly in the “fixed design” case, that is, when the covariates are nonrandom. Smith [16] and

Davison and Smith [7] considered a regression model while Hall and Tajvidi [12] used a semi-parametric

approach to estimate the conditional tail index. Fully non parametric methods have been considered

using splines (see Chavez-Demoulin and Davison [4]), local polynomials (see Davison and Ramesh [6]),

a moving window approach (see Gardes and Girard [8]), or a nearest neighbor approach (see Gardes

and Girard [9]), among others.

Despite the great interest in practice, less attention has been paid to the random covariate case. One

can cite the works of Wang and Tsai [17], based on a maximum likelihood approach, and Daouia

et al. [5] who use a fixed number of non parametric conditional quantile estimators to estimate the

conditional tail index.

The aim of this paper is to adapt Hill’s estimator to the presence of a random covariate. Note that the

uniform weak consistency of the proposed estimator is established while, in most of the aforementioned

studies, the authors only considered pointwise convergence.

The rest of the paper is organised as follows. In Section 2, we define our conditional tail index estimator.

The two main results (uniform weak consistency and asymptotic normality) are stated in Section 3

and a simulation study is provided in Section 4. The proofs are given in Section 5.

2 Estimation of the conditional tail index

Let (X1, Y1), . . . , (Xn, Yn) be n independent copies of a random pair (X,Y ) ∈ Ω × R where Ω is a

compact subset of Rd, d ≥ 1. For all x ∈ Ω, we assume that the conditional survival function of Y

given X = x is heavy-tailed with tail index γ(x) > 0. More precisely, we consider the model:

(M) For all x ∈ Ω and y > 0, F (y|x) := P(Y > y|X = x) = y−1/γ(x)L(y|x), where the function L(.|x)
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is slowly varying at infinity and the function F (.|x) is continuous and decreasing. Furthermore,

X has a density f on Rd with f(x) > 0 if and only if x ∈ Ω.

Note that under model (M), the conditional quantile of Y given X = x is, for α ∈ (0, 1)

q(α|x) := F
−1

(α|x) = α−γ(x)`(α−1|x), (2)

where F
−1

(.|x) is the inverse function of the conditional survival function and `(.|x) is a slowly varying

function at infinity. For i = 1, . . . , n, denoting by X∗i the covariate associated with the ordered statistic

Yn−i+1,n, a straightforward adaptation to the random covariate case of Hill’s estimator (1) is:

H(x, l, h) =
1

Ml(x, h)− 1

l−1∑
i=1

log
Yn−i+1,n

Yn−l+1,n
I{‖X∗i − x‖ ∨ ‖X∗l − x‖ ≤ h}, (3)

if Ml(x, h) > 1 and H(x, l, h) = 0 otherwise. In (3), I{.} is the indicator function, ‖.‖ is a norm on Rd,

l = ln ∈ {2, . . . , n}, h = hn is a nonrandom positive sequence tending to 0 at infinity and

Mi(x, h) =

i∑
j=1

I{‖X∗j − x‖ ≤ h}, i = 1, . . . , n,

is the number of covariates among X∗1 , . . . , X∗i which lie in the ball B(x, h) with center x and radius h.

Clearly, the choice of the number l in (3) is crucial since, for most values of l, the statistic H(x, l, h) is

equal to 0. The behavior of H(x, l, h) as a function of l is thus very erratic. To overcome this drawback,

we propose to estimate the conditional tail index by an average on l of the statistics defined in (3):

γ̂a(x, kx, h) =
1

kx − b(1− a)kxc+ 1

n∑
l=2

H(x, l, h)I{b(1− a)kxc ≤Ml(x, h) ≤ kx}, a ∈ [0, 1), (4)

where bzc = max{j ∈ N|z ≥ j} is the integer part of z and kx is a positive integer belonging to the

interval [2/(1 − a), n]. Clearly, if Mn(x, h) > b(1 − a)kxc, then γ̂a(x, kx, h) > 0 for all a ≥ 0. The

parameter a controls the number of statistics (3) taken into account in the estimator (4). For instance,

if a = 0 and if Mn(x, h) > kx, only one statistic having the form H(x, l, h) is used to compute (4).

We point out that in practice, kx is restricted to the interval [2/(1 − a),Mn(x, h)], since kx is the

number of statistics Yn−i+1,n, whose associated covariates X∗i belong to the ball with center x and

radius h, used to compute γ̂a(x, kx, h): see also Section 4.

3 Main results

In this Section, we state the two main results of the paper: the uniform weak consistency and pointwise

asymptotic normality of γ̂a(x, kx, h). To this aim, we introduce some assumptions. The following

condition specifies the regularity of the conditional tail index γ and of the density f of the covariates.

(A1) The function γ is positive and continuous on Ω and the density f is a positive Hölder continuous

function on Ω with exponent βf ∈ (0, 1].

3



Note that this condition especially implies that, on the compact set Ω, the function γ and the density

f are bounded from below and above by finite positive constants:

0 < γ := inf
x∈Ω

γ(x) ≤ sup
x∈Ω

γ(x) =: γ <∞ and 0 < f := inf
x∈Ω

f(x) ≤ sup
x∈Ω

f(x) =: f <∞.

The next assumption controls the largest oscillation of the log-quantile function with respect to its

second variable. For all u < v ∈ (0, 1), let

ω(u, v, x, h) = sup {|log q(α, x)− log q(α, x′)| , α ∈ [u, v], ‖x′ − x‖ ≤ h} .

We assume that

(A2) There exists δ > 0 such that

lim
n→∞

sup
x∈Ω

ω(n−(1+δ), 1− n−(1+δ), x, h) = 0.

Now, in order to deal with the slowly varying function in (2), we assume that

(A3) For all x ∈ Ω and t ≥ 1,

`(t|x) = c(x) exp

(∫ t

1

∆(u|x)

u
du

)
,

where c(x) > 0 and ∆(.|x) is an ultimately decreasing function converging to 0 at infinity.

Note that (A3) implies in particular that for all x ∈ Ω, `(.|x) is a normalised slowly varying function.

We also introduce the notation

∆x(z) := sup
u∈[z−1,∞)

|∆(u|x)|. (5)

We can now state the uniform weak consistency of our estimator.

Theorem 1. Under model (M), assume that (A1), (A2) and (A3) hold. If nhd/ log n→∞,

inf
x∈Ω

min

{
kx

log n
,

nhd

kx log(nhd)

}
→∞, lim

t→0
sup
x∈Ω

∆x(t) = 0,

and if there exists a finite positive constant K1 such that

sup
x∈Ω

sup
‖x′−x‖≤h

|kx − kx′ | ≤ K1,

then, if a ∈ (0, 1), it holds that, as n goes to infinity,

sup
x∈Ω
|γ̂a(x, kx, h)− γ(x)| P−→ 0.

It is straightforward that under condition (A1), the number Mn(x, h) of covariates lying in the ball

B(x, h) is such that

1

n
Mn(x, h) =

1

n

n∑
i=1

I{‖Xj − x‖ ≤ h} = P(‖X − x‖ ≤ h)(1 + oP(1)) = Vhdf(x)(1 + oP(1)), (6)
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where V is the volume of the unit ball of Rd (see Lemma 2 for a uniform result). Thus, since f is

bounded from below and above by finite positive constants, condition nhd/ log n→∞ implies that for

all x ∈ Ω, Mn(x, h) goes to infinity in probability. Furthermore, condition

inf
x∈Ω

min

{
kx

log n
,

nhd

kx log(nhd)

}
→∞

implies that for all x ∈ Ω, b(1 − a)kxc = (1 − a)kx(1 + o(1)) → ∞ and that, with arbitrary large

probability, we have kx < Mn(x, h) for n sufficiently large. Hence, for n large enough, γ̂a(x, kx, h) > 0

for all a ∈ [0, 1) and x ∈ Ω.

We now wish to state the pointwise asymptotic normality of the estimator at a point x ∈ Ω for which

γ(x) > 0. To this aim, the following assumption is required:

(A4) For all x ∈ Ω, the function |∆(.|x)| is regularly varying with index ρ(x) < 0 i.e., for all λ > 0,

lim
t→∞

|∆(λt|x)|
|∆(t|x)|

= λρ(x).

Note that conditions (A3) and (A4) entail that

lim
t→∞

log `(λt|x)− log `(t|x)

∆(t|x)
=
λρ(x) − 1

ρ(x)
,

which is the standard second-order condition classically used to prove the asymptotic normality of tail

index estimators. The asymptotic normality of our estimator is obtained conditionally to the event

{Mn(x, h) = mx}. Note that for instance, under (A1) and from (6), a typical sequence (mx) in this

case is mx = Vf(x)nhd.

Theorem 2. Under model (M), assume that (A1), (A3) and (A4) hold. If, as n goes to in-

finity, mx → ∞, kx/mx → 0, k1/2
x ∆(mx/kx|x) → ξ(x) ∈ R and if there exists δ > 0 such that

k
1/2
x ω(m−1−δ

x , 1−m−1−δ
x , x, h)→ 0, then, for a ∈ [0, 1) and conditionally to the event {Mn(x, h) = mx},

one has

k1/2
x

(
γ̂a(x, kx, h)− γ(x)− ∆(mx/kx|x)

1− ρ(x)
AB(a, x)

)
→ N (0, γ2(x)AV(a)),

where, if a ∈ (0, 1),

AB(a, x) =
1− (1− a)1−ρ(x)

a(1− ρ(x))
and AV(a) =

2(a+ (1− a) log(1− a))

a2
,

and, if a = 0, AB(0, x) = 1 and AV(0) = 1.

As expected, the asymptotic bias is a decreasing function of a while the asymptotic variance is increas-

ing. For a = 0, we find back the asymptotic bias and variance of Hill’s estimator.
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4 Simulation study

To assess the finite-sample performance of the proposed conditional tail-index estimator, some simula-

tion experiments were carried out using the following model: the conditional distribution function of

Y given X = x is given by

F (y|x) =
(

1 + y−ρ/γ(x)
)−1/ρ

, y > 0,

where X is uniformly distributed on Ω = [0, 1]. The negative second-order parameter ρ is chosen to

be independent of x and its value is picked in the set {−1.2,−1,−0.8}. Recall that the smaller is |ρ|,

the slower is the convergence (5) and therefore, the harder is the estimation. As far as the conditional

tail-index γ is concerned, two situations are considered:

γ1(x) =
1

3
+

1

8
sin(2πx)

and γ2(x) =
1

4

{
1 + exp(−60(x− 1/4)2)I{3x ∈ [0, 1]}+ exp(−5/12)I{3x ∈]1, 2]}

+ (5− 6x) (exp(−5/12)I{3x ∈]2, 5/2]} − I{3x ∈]5/2, 3]})
}
.

Note that γ1 is infinitely differentiable and γ2 is continuous but not differentiable at x ∈ {1/3, 2/3, 5/6}.

The aim of this simulation study is to estimate the conditional tail-index on a grid of points {x1, . . . , xM}

of [0, 1]. A small preliminary practical investigation leads to take a = 3/7 which provides reasonable

performances in a large range of situations. This leaves two parameters to be chosen: the bandwidth

h and the number of upper order statistics kx. Our selection procedure for these parameters goes as

follows.

1) We choose a grid {h1, . . . , hP } of possible values of h. In what follows, we let γ̂i,j(k) :=

γ̂3/7(xi, k, hj). For each i ∈ {1, . . . ,M}, j ∈ {1, . . . , P} and k ∈ {qi,j + 4, . . . ,Mn(xi, hj)− qi,j},

where qi,j ∈ N∗, we introduce the set Ei,j,k = {γ̂i,j(l), l ∈ {k − qi,j , . . . , k + qi,j}}. For two fixed

indices i and j, our aim is to select the number of upper order statistics ki,j in a region of stability

for γ̂i,j . To do that, we compute the variance of the set Ei,j,k for every possible value of k. We

then record the number Ki,j for which this variance is minimal. More precisely,

Ki,j = arg min
k

k+qi,j∑
l=k−qi,j

(
γ̂i,j(l)− γ̂i,j(k)

)2

with γ̂i,j(k) =
1

1 + 2qi,j

k+qi,j∑
l=k−qi,j

γ̂i,j(l).

Hence, for a given point xi and a given bandwidth hj , the selected number of upper order statistics

ki,j is picked in the set {Ki,j − qi,j , . . . ,Ki,j + qi,j}. We propose to record the value ki,j such

that γ̂i,j(ki,j) is the median of the set Ei,j,Ki,j . For the sake of simplicity, the estimate γ̂i,j(ki,j)

will be denoted by γ̃i,j .

2) We now want to select a bandwidth that does not depend on x and which is such that the

estimation carried out for bandwidths in its neighborhood does not show a large variance. To
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achieve that, we let q′ be a positive integer such that 2q′ + 1 < P and we compute for each

j ∈ {q′ + 1, . . . , P − q′} the stability criterion

v(j) =
1

M

M∑
i=1

vi(j),

where, for i ∈ {1, . . . ,M},

vi(j) =

j+q′∑
l=j−q′

(γ̃i,l − γ̃i,.(j))2 with γ̃i,.(j) =
1

2q′ + 1

j+q′∑
l=j−q′

γ̃i,l.

We next record the integer J such that v(J) is the first local minimum of the application j 7→ v(j)

which is less than the average of the v(j). In other words, J = q′ if v(.) is increasing, J = P − q′

if v(.) is decreasing and

J = min

j such that v(j) < v(j − 1) ∧ v(j + 1) and v(j) <
1

P − 2q′

P−q′∑
l=q′+1

v(l)

 , (7)

if v(.) is not monotonic. The selected bandwidth is then h∗ = hJ .

To summarize, the bandwidth and the number of upper order statistics are selected in order to satisfy

a stability criterion. The selected bandwidth is independent of x and is given by h∗ = hJ where J is

defined in (7). The selected number of upper order statistics is given, for x = xi, by k∗xi
= ki,J .

This estimation procedure is carried out on N = 100 independent samples of size n = 1000. The

conditional tail-index is estimated on a grid of M = 35 evenly spaced points in [0, 1]. Regarding the

selection procedure, P = 100 values of h ranging from 0.025 to 0.25 are tested. The parameter qi,j is

chosen so that 2qi,j + 1 is approximately equal to 5% of Mn(xi, hj) and q′ is set to 3.

To have an idea of our estimator behaves compared to another estimator in the conditional tail-index

estimation literature, our estimator is compared to the estimator γ̃ := γ̂
(2)
n (x, 0,K,K) of Goegebeur et

al. [10]. Note that this estimator is a kernel version of the case a = 0 of our estimator and that γ̃ is

computed using the exact same procedure as in [10].

Numerical results are given in Table 1. This chart shows that our estimator outperforms the estimator

of Goegebeur et al. in terms of MSEs by a 2:1 ratio in every case. We display some results on Figures 1–

5: the estimations corresponding to the median, 10% and 90% quantiles of the MSE are represented on

Figures 1– 3, along with a boxplot of the bandwidths used for the computations for both estimators on

Figure 4, and a boxplot of the ratios k∗x/Mn(x, h∗) at x = 1/2 on Figure 5. One can see on Figures 1

and 2 that, at least for the 10% quantile and the median of the error, our estimator follows more

accurately the shape of γ than the estimator of [10] does. γ̂a also uses a smaller bandwidth than the

estimator in [10] does, which can be seen as an indicator of why our estimator generally mimics the
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shape of the function γ quite well. Finally, Figure 5 shows that the proportion of the points used for

the estimation are similar for both estimators.

5 Proofs

For the sake of simplicity, we introduce the notation b(1− a)kxc =: kx,a.

5.1 Proof of the uniform weak consistency

We shall prove that for all ε > 0, the probability

pn := P
(

sup
x∈Ω
|γ̂a(x, kx, h)− γ(x)| > ε

)
, (8)

converges to 0 as n goes to infinity. The proof is based on [13, Lemma 1]. First note that, since Ω is a

compact subset of Rd, for a fixed η > 1/βf , there exists a finite subset Ωn of Ω with card(Ωn) = O(nc),

c > 0 such that for all x ∈ Ω, one can find χ(x) ∈ Ωn satisfying ‖x − χ(x)‖ < n−η. The triangular

inequality yields:

pn ≤ I
{

sup
x∈Ω
|γ(x)− γ(χ(x))| > ε/3

}
+ P

(
sup
ω∈Ωn

|γ̂a(ω, kω, h)− γ(ω)| > ε/3

)
+ P

(
sup
x∈Ω

∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)
∣∣ > ε/3

)
. (9)

The proof of the uniform weak consistency of our estimator consists in showing that the three terms in

the above inequality converge to 0 as n goes to infinity. This is carried out in Propositions 1, 2 and 3.

Theorem 1 is thus a direct consequence of these results. We start by focusing on the convergence of

the first term.

Proposition 1. Under model (M) and (A1), for n large enough,

sup
x∈Ω
|γ(x)− γ(χ(x))| > ε/3.

Proof of Proposition 1 − Recall that for all x ∈ Ω, |x − χ(x)| < n−η → 0. Since Ω is compact,

(A1) entails that the function γ is uniformly continuous, which shows the result.

We are now interested in the second term, namely in the uniform convergence of our estimator on

the finite subsets Ωn of Ω. Some preliminary lemmas are required, whose proofs are postponed to

Appendix. The first one is a useful result of real analysis.

Lemma 1. Let (a1, . . . , an) and (b1, . . . , bn) be two n−tuples of pairwise distinct real numbers such

that for all i ∈ {1, . . . , n}, ai ≤ bi. Let further a1,n ≤ . . . ≤ an,n and b1,n ≤ . . . ≤ bn,n be the associated

ordered n-tuples. Then for all i ∈ {1, . . . , n}, ai,n ≤ bi,n.

Lemma 2 below gives an asymptotic uniform estimation of the total number of covariates Mn(ω, h)

contained in the balls with center ω ∈ Ωn and radius h.
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Lemma 2. Under model (M), assume that (A1) holds together with nhd/ log n → ∞. Then, as n

goes to infinity,
1

nhd
sup
ω∈Ωn

∣∣Mn(ω, h)− Vnhdf(ω)
∣∣ P−→ 0.

Given Mn(x, h) ≥ 1, for i = 1, . . . ,Mn(x, h), let Z(x)
i be the response variable whose associated

covariate W (x)
i belongs to the ball B(x, h). Let us also introduce the notations U (x)

i := F (Z
(x)
i |W

(x)
i )

for i = 1, . . . ,Mn(x, h) and Vi = F (Yi|Xi), i = 1, . . . , n. In the following, Ω̃ denotes a finite subset of

Ω, m := (mω)ω∈Ω̃ is a list of positive integers and BΩ̃(m) is the Borel measurable set

BΩ̃(m) :=
⋂
ω∈Ω̃

{Mn(ω, h) = mω}.

The distributions of U (x)
i and Vi are given in the following result.

Lemma 3. Under model (M), the random variables V1, . . . , Vn are independent standard uniform

random variables which are independent from X1, . . . , Xn. Furthermore, for all ω ∈ Ω̃ and conditionally

to BΩ̃(m), the random variables U (ω)
1 , . . . , U

(ω)
mω are independent standard uniform random variables.

The next lemma provides a representation of our estimator in terms of independent standard expo-

nential random variables.

Lemma 4. Under model (M) and (A3), for all ω ∈ Ω̃ and conditionally to BΩ̃(m), there exist

independent standard exponential random variables E(ω)
1 , . . . , E

(ω)
mω such that for every sequence of real-

valued functions (an) defined on Ω such that an(x) → a ∈ (0, 1) uniformly in x ∈ Ω, one has for n

large enough, uniformly in ω ∈ Ω̃,∣∣∣γ̂an(ω)(ω, kω, h)− γ(ω)E
(ω)

n

∣∣∣ ≤ 2ω(U
(ω)
1,mω

, U (ω)
mω,mω

, ω, h) + E
(ω)

n ∆ω(U
(ω)
kω,mω

)

≤ 2ω(V1,n, Vn,n, ω, h) + E
(ω)

n ∆ω(U
(ω)
kω,mω

)

where

E
(ω)

n :=
1

kω − kω,an(ω) + 1

kω∑
l=kω,an(ω)

1

l − 1

l−1∑
i=1

E
(ω)
i .

We are now in position to prove the following proposition.

Proposition 2. Under model (M), assume that (A1), (A2) and (A3) hold. If nhd/ log n→∞,

lim
n→∞

inf
x∈Ω

min

{
kx

log n
,

nhd

kx log(nhd)

}
=∞ and lim

t→0
sup
x∈Ω

∆x(t) = 0,

then, for every sequence of real-valued functions (an) defined on Ω such that an(x) → a ∈ (0, 1)

uniformly in x ∈ Ω as n goes to infinity,

sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| P−→ 0.
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Note that to show the convergence to zero of the second term in (9), it is obviously sufficient to use

Proposition 2 with the constant sequence an = a for all n ≥ 1. Proposition 2 also handles the case

when (an) is an arbitrary sequence of real-valued functions on Ω uniformly converging to a, which shall

be useful to establish Proposition 3.

Proof of Proposition 2 − Let m = (mω)ω∈Ωn
be a list of positive integers such that

∀ω ∈ Ωn,
mω

f(ω)nhd
∈
[
V
2
,

3V
2

]
, (10)

and let Ln be the set of all possible lists satisfying (10). From Lemma 2, it is clear that P(An)→ 1 as

n goes to infinity, where

An :=
⋃

m∈Ln

BΩn(m)

is the disjoint union of the BΩn
(m) for m ∈ Ln. Let ε > 0. Remarking that

P
(

sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε

)
≤ P(ACn ) +

∑
m∈Ln

P
(

sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε;BΩn(m)

)
≤ P(ACn ) + sup

m∈Ln

P
(

sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε

∣∣∣∣BΩn
(m)

)
,

it is sufficient to prove that as n goes to infinity,

sup
m∈Ln

T (m) := sup
m∈Ln

P
(

sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)| > ε

∣∣∣∣BΩn(m)

)
→ 0. (11)

Let m ∈ Ln. Remarking that

T (m) ≤ P
(

sup
ω∈Ωn

|γ̂an(ω)(ω, kω, h)− γ(ω)E
(ω)

n | >
ε

2

∣∣∣∣BΩn
(m)

)
+P
(

sup
ω∈Ωn

|γ(ω)(E
(ω)

n − 1)| > ε

2

∣∣∣∣BΩn
(m)

)
,

we have from Lemmas 3 and 4 that

T (m) ≤ P
(

sup
ω∈Ωn

ω(V1,n, Vn,n, ω, h) >
ε

8

)
+ P

(
sup
ω∈Ωn

E
(ω)

n ∆ω(U
(ω)
kω,mω

) >
ε

4

∣∣∣∣BΩn
(m)

)
+ P

(
sup
ω∈Ωn

|γ(ω)(E
(ω)

n − 1)| > ε

2

∣∣∣∣BΩn(m)

)
≤ P

(
sup
ω∈Ωn

ω(V1,n, Vn,n, ω, h) >
ε

8

)
+ card(Ωn)

{
sup
ω∈Ωn

P
(
|γ(ω)(E

(ω)

n − 1)| > ε

2

∣∣∣BΩn
(m)

)
+ sup

ω∈Ωn

P
(
E

(ω)

n ∆ω(U
(ω)
kω,mω

) >
ε

4

∣∣∣BΩn(m)
)}

=: T1(m) + card(Ωn)(T2(m) + T3(m)). (12)

First, let us consider the term T1(m). Under condition (A2), for n large enough and uniformly in m,

T1(m) ≤ P(V1,n < n−(1+δ)) + P(Vn,n > 1− n−(1+δ)) = 2(1− (1− n−(1+δ))n)→ 0. (13)

Regarding T2(m), it is easy to see that for n large enough

T2(m) ≤ sup
ω∈Ωn

kω∑
l=kω,an(ω)

P

(∣∣∣∣∣ 1

l − 1

l−1∑
i=1

γ(ω)(E
(ω)
i − 1)

∣∣∣∣∣ > ε

2

∣∣∣∣∣BΩn(m)

)
.

10



From Lemma 3, using a classical Chernoff bound for independent standard random exponential vari-

ables together with (A1), there exists a positive constant Cε such that, for n large enough,

T2(m) ≤ 2 sup
ω∈Ωn

kω∑
l=kω,an(ω)

exp (−Cε(l − 1)) ≤ 2 exp

(
−Cε

2
inf
ω∈Ωn

(kω,an(ω) − 1)

)
.

Finally, using the fact that card(Ωn) = O(nc), kx,an(x)/kx → 1 − a and kx/ log(n) → ∞ uniformly in

x ∈ Ω, one has, for n sufficiently large, uniformly in m,

card(Ωn)T2(m) ≤ 2 exp

(
−Cε

4
inf
ω∈Ωn

(kω,an(ω) − 1)

)
→ 0. (14)

We now focus on T3(m). Let us define

ε2
n = sup

x∈Ω

kx log(nhd)

nhd
.

Clearly, εn → 0 as n goes to infinity and

T3(m) ≤ sup
ω∈Ωn

P
(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
+ sup
ω∈Ωn

P
(
E

(ω)

n sup
x∈Ω

∆x(εn) >
ε

4

∣∣∣∣BΩn
(m)

)
.

Using Lemma 3, we have:

P
(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
=

mω!

(kω − 1)!(mω − kω)!

∫ 1

εn

xkω−1(1− x)mω−kωdx

≤ mkω
ω (1− εn)mω−kω .

Remarking that log(1− εn) < −εn/2 for n large enough, one has, for all m and ω,

P
(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
≤ exp

(
−mωεn

(
mω − kω

2mω
− kω logmω

mωεn

))
.

Furthermore, under (A1), since m satisfies (10), we have:

kω
mω
≤ 2

fV
ε2
n

log(nhd)
and log(mω) ≤ log

(
3fV

2
nhd

)
≤ 3

2
log(nhd),

for all m and ω. Thus, for n sufficiently large, uniformly in m and ω,

P
(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
≤ exp

(
−1

4
inf
ω∈Ωn

mωεn

)
≤ exp

(
−fV

8
nhdεn

)
.

Furthermore, since log n/(nhdεn) → 0 and card(Ωn) = O(nc), it is straightforward that for n suffi-

ciently large, uniformly in m,

card(Ωn) sup
ω∈Ωn

P
(
U

(ω)
kω,mω

> εn

∣∣∣BΩn
(m)

)
≤ exp

(
−fV

16
nhdεn

)
. (15)

Next, since εn → 0 and that, by assumption, for n large enough,

sup
x∈Ω

∆x(εn) ≤ ε

8
,

one has, under (A1):

sup
ω∈Ωn

P
(
E

(ω)

n sup
x∈Ω

∆x(εn) >
ε

4

∣∣∣∣BΩn
(m)

)
≤ sup

ω∈Ωn

P
(

sup
x∈Ω

∆x(εn)|E(ω)

n − 1| > ε

8

∣∣∣∣BΩn
(m)

)
≤ sup

ω∈Ωn

P
(
γ(ω)|E(ω)

n − 1| > γ
∣∣∣BΩn(m)

)
.
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The right hand-side of the above inequality is similar to T2(m) and thus (14) and (15) lead to

card(Ωn)T3(m) ≤ exp

(
−fV

16
nhdεn

)
+ 2 exp

(
−C

′
ε

4
inf
ω∈Ωn

(kω,an(ω) − 1)

)
→ 0, (16)

for n large enough, uniformly in m, where C ′ε is a positive constant. We then easily obtain (11)

using (13), (14) and (16) and the proof is complete.

The oscillation of the function x 7→ γ̂a(x, kx, h) is studied in Proposition 3. The proof of this result

requires to control of the random variable

Ch(x, r) =

n∑
i=1

I{h− r ≤ ‖Xi − x‖ ≤ h+ r},

which is the total number of covariates in the annulus with center x, inner radius h−r and outer radius

h + r. Lemma 5 below essentially states that this number is asymptotically bounded with arbitrarily

large probability.

Lemma 5. Under model (M), assume that (A1) holds together with nhd → ∞. Then, for every

arbitrary integer K2 > c/(ηβf − 1), P(An,K2
)→ 0 as n goes to infinity, where

An,K2 =

{
sup
ω∈Ωn

Ch(ω, n−η) ≥ K2

}
.

Proposition 3. Under model (M), assume that (A1), (A2) and (A3) hold. If nhd/ log n→∞,

inf
x∈Ω

min

{
kx

log n
,

nhd

kx log(nhd)

}
→∞, lim

t→0
sup
x∈Ω

∆x(t) = 0,

and if there exists a finite positive constant K1 such that

sup
x∈Ω

sup
‖x′−x‖≤h

|kx − kx′ | ≤ K1,

then, as n goes to infinity, if a ∈ (0, 1),

sup
x∈Ω

∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)
∣∣ P−→ 0.

Proof of Proposition 3 − From Lemma 5, it is enough to show that for all ε > 0 and for a fixed

integer K2 > c/(ηβf − 1),

P
({

sup
x∈Ω

∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)
∣∣ > ε

}∣∣∣∣ACn,K2

)
→ 0. (17)

For (k, l) ∈ {2, . . . , n}2 and i ∈ {1, . . . , n− 1}, let

ri,l(x, k, h) =
I{‖X∗i − x‖ ≤ h;Ml(x, h) ≥ k}

Ml(x, h)− 1
,

if Ml(x, h) > 1 and 0 elsewhere, and, for a ∈ (0, 1) and ka = b(1− a)kc,

sl,a(x, k, h) =
I{‖X∗l − x‖ ≤ h;Ml(x, h) ≤ k}

k − ka + 1
.

12



Clearly

γ̂a(x, kx, h) =

n∑
l=2

l−1∑
i=1

log
Yn−i+1,n

Yn−l+1,n
ri,l(x, kx,a, h)sl,a(x, kx, h),

and thus
∣∣γ̂a(x, kx, h)− γ̂a(χ(x), kχ(x), h)

∣∣ ≤ Sn,1(x) + Sn,2(x), where

Sn,1(x) :=

n∑
l=2

l−1∑
i=1

log
Yn−i+1,n

Yn−l+1,n
|ri,l(x, kx,a, h)− ri,l(χ(x), kχ(x),a, h)|sl,a(x, kx, h),

and Sn,2(x) :=

n∑
l=2

l−1∑
i=1

log
Yn−i+1,n

Yn−l+1,n
|sl,a(x, kx, h)− sl,a(χ(x), kχ(x), h)|ri,l(χ(x), kχ(x),a, h).

The idea of the rest of the proof is quite simple. We will show that on the event ACn,K2
, there exist two

sequences of real-valued functions (a−n ) and (a+
n ) on Ω uniformly tending to a, four sequences (α−1,n),

(α+
1,n), (α−2,n) and (α+

2,n) tending to 1 and a positive constant K3 such that, for all x ∈ Ω

Sn,1(x) ≤ 2
(
α+

1,nγ̂a+n (χ(x))

(
χ(x), kχ(x) +K3, h

+
)
− α−1,nγ̂a−n (χ(x))

(
χ(x), kχ(x) −K3, h

−) ), (18)

and

Sn,2(x) ≤ 2
(
α+

2,nγ̂a+n (χ(x))

(
χ(x), kχ(x) +K3, h

+
)
− α−2,nγ̂a−n (χ(x))

(
χ(x), kχ(x) −K3, h

−) ). (19)

Since infx∈Ω kx → ∞, h± = h(1 + o(1)) and the function γ is bounded from below and above by

positive constants, a direct use of Proposition 2 shall then lead to

sup
x∈Ω

Sn,1(x)→ 0 and sup
x∈Ω

Sn,2(x)→ 0,

which shall then conclude the proof of Proposition 3. To obtain (18) and (19), the following straightfor-

ward results will be useful. For all (x, x′) ∈ Ω2 such that ‖x− x′‖ ≤ n−η and for all i ∈ {1, . . . , n− 1},

|I{‖X∗i − x‖ ≤ h} − I{‖X∗i − x′‖ ≤ h}| ≤ I{h− ≤ ‖X∗i − x′‖ ≤ h+}. (20)

Furthermore, from the inequalities

|Ml(x, h)−Ml(x
′, h)| ≤ Ch(x′, n−η) and |Ml(x

′, h)−Ml(x
′, h±)| ≤ Ch(x′, n−η),

the triangular inequality yields, for all l ∈ {2, . . . , n}, on ACn,K2
,

∣∣Ml(x, h)−Ml(x
′, h±)

∣∣ ≤ 2Ch(x′, n−η) ≤ 2K2. (21)

Especially, if Ml(x, h) > 1 and on ACn,K2
,

Ml(x
′, h+)− 1

Ml(x, h)− 1
≤ 1 +

2K2

Ml(x, h)− 1
and

Ml(x
′, h−)− 1

Ml(x, h)− 1
≥ 1− 2K2

Ml(x, h)− 1
. (22)

Let us first focus on the term Sn,1(x). It is easy to see that

D
(r)
i,l (x, a, h) := |ri,l(x, kx,a, h)− ri,l(χ(x), kχ(x),a, h)| ≤ T (r)

n,1(x) + T
(r)
n,2(x) + T

(r)
n,3(x),
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where

T
(r)
n,1(x) =

|I{‖X∗i − x‖ ≤ h} − I{‖X∗i − χ(x)‖ ≤ h}|I{Ml(χ(x), h) ≥ kχ(x),a}
Ml(x, h)− 1

,

if Ml(χ(x), h) ≥ kχ(x),a and 0 otherwise,

T
(r)
n,2(x) =

|I{Ml(x, h) ≥ kx,a} − I{Ml(χ(x), h) ≥ kχ(x),a}|I{‖X∗i − x‖ ≤ h}
Ml(x, h)− 1

,

if Ml(x, h) ≥ kx,a or Ml(χ(x), h) ≥ kχ(x),a and 0 otherwise and

T
(r)
n,3(x) =

|Ml(χ(x), h)−Ml(x, h)|I{‖X∗i − χ(x)‖ ≤ h}I{Ml(χ(x), h) ≥ kχ(x),a}
(Ml(x, h)− 1)(Ml(χ(x), h)− 1)

,

if Ml(χ(x), h) ≥ kχ(x),a and 0 otherwise. Note that for n large enough, since infx∈Ω kx,a → ∞

and (21) holds, if Ml(χ(x), h) ≥ kχ(x),a then Ml(x, h) > 1 and thus the terms T (r)
n,i (x), i = 1, 2, 3 are

asymptotically well defined. We now study separately these three terms. For u ∈ R, let us introduce

the quantities

ξ+(u) = sup
x∈Ω

(
1 +

2K2

kx,a − u− 1

)
, ξ−(u) = inf

x∈Ω

(
1− 2K2

kx,a − u− 1

)
,

ζ+(u) = sup
x∈Ω

kχ(x) − kχ(x),a + 1 + u

kx − kx,a + 1
and ζ−(u) = inf

x∈Ω

kχ(x) − kχ(x),a + 1− u
kx − kx,a + 1

.

Clearly, for all u ∈ R, ξ±(u) and ζ±(u) converge to one as n goes to infinity. From (20), (21) and (22),

since for all l ∈ {2, . . . , n}, i ∈ {1, . . . , n− 1} and x ∈ Ω, ri,l(x, ., h) is a decreasing function, one has,

T
(r)
n,1(x) ≤ Ml(χ(x), h+)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a, h

+)− Ml(χ(x), h−)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a, h

−)

≤ ξ+(2K2)ri,l(χ(x), kχ(x),a +K4, h
+)− ξ−(2K2)ri,l(χ(x), kχ(x),a −K4, h

−), (23)

where K4 = (a− 1)K1 − 2K2 − 1. Similarly, since |kx,a − kχ(x),a| ≤ (1− a)K1 + 1 uniformly in x ∈ Ω,

noting that

|I{Ml(x, h) ≥ kx,a} − I{Ml(χ(x), h) ≥ kχ(x),a}| ≤ I{kχ(x),a +K4 ≤Ml(χ(x), h) < kχ(x),a −K4}

yields

T
(r)
n,2(x) ≤ Ml(χ(x), h+)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a +K4, h

+)− Ml(χ(x), h−)− 1

Ml(x, h)− 1
ri,l(χ(x), kχ(x),a −K4, h

−)

≤ ξ+(2K2 −K4)ri,l(χ(x), kχ(x),a +K4, h
+)− ξ−(2K2 +K4)ri,l(χ(x), kχ(x),a −K4, h

−). (24)

Clearly,

T
(r)
n,3(x) ≤ K2ξ

+(2K2)

kχ(x),a − 1
ri,l(χ(x), kχ(x),a +K4, h

+), (25)

and K2ξ
+(2K2)/(kχ(x),a − 1) → 0 uniformly in x ∈ Ω. Furthermore, using once again (20), (21)

and (22), letting K3 = K1 + 2K2 and K5 = K3 −K4, one has

ζ−(K5)sl,a−n (χ(x))(χ(x), kχ(x)−K3, h
−) ≤ sl,a(x, kx, h) ≤ ζ+(K5)sl,a+n (χ(x))(χ(x), kχ(x)+K3, h

+), (26)
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where the sequences of functions (a+
n ) and (a−n ) are given by

∀x ∈ Ω, a±n (x) = 1− kx,a ±K4

kx ±K3
.

Collecting (23) to (26) it is easy to construct two sequences (α−1,n) and (α+
1,n) tending to 1 such that

D
(r)
i,l (x, a, h)sl,a(x, kx, h) ≤ 2

(
α+

1,nri,l(χ(x), kχ(x),a +K4, h
+)sl,a+n (χ(x))(χ(x), kχ(x) +K3, h

+)

− α−1,nri,l(χ(x), kχ(x),a −K4, h
−)sl,a−n (χ(x))(χ(x), kχ(x) −K3, h

−)
)
,

which concludes the proof of (18). We now turn to Sn,2(x). We first start from the decomposition

D
(s)
l,a (x, kx, h) := |sl,a(x, kx, h)− sl,a(χ(x), kχ(x), h)| ≤ T (s)

n,1(x) + T
(s)
n,2(x) + T

(s)
n,3(x),

where

T
(s)
n,1(x) =

|I{Ml(x, h) ≤ kx} − I{Ml(χ(x), h) ≤ kχ(x)}|I{‖X∗l − χ(x)‖ ≤ h}
kχ(x) − kχ(x),a + 1

,

T
(s)
n,2(x) =

|I{‖X∗l − x‖ ≤ h} − I{‖X∗l − χ(x)‖ ≤ h}|I{Ml(x, h) ≤ kx}
kχ(x) − kχ(x),a + 1

,

and

T
(s)
n,3(x) =

∣∣∣∣ 1

kx − kx,a + 1
− 1

kχ(x) − kχ(x),a + 1

∣∣∣∣ I{‖X∗l − x‖ ≤ h}I{Ml(x, h) ≤ kx}.

A conjoint use of (20), (21) and (22) leads to

T
(s)
n,1(x) ≤

I{‖X∗l − χ(x)‖ ≤ h+}I{Ml(χ(x), h+) ≤ kχ(x) +K3}
kχ(x) − kχ(x),a + 1

−
I{‖X∗l − χ(x)‖ ≤ h−}I{Ml(χ(x), h−) ≤ kχ(x) −K3}

kχ(x) − kχ(x),a + 1

≤ ζ+(K5)

ζ−(0)
sl,a+n (χ(x))(χ(x), kχ(x) +K3, h

+)− ζ−(K5)

ζ+(0)
sl,a−n (χ(x))(χ(x), kχ(x) −K3, h

−). (27)

Similarly,

T
(s)
n,2(x) ≤ I{h− ≤ ‖X∗l − χ(x)‖ ≤ h+}

kχ(x) − kχ(x),a + 1
I{Ml(x, h) ≤ kx}

≤ ζ+(K5)

ζ−(0)
sl,a+n (χ(x))(χ(x), kχ(x) +K3, h

+)− ζ−(K5)

ζ+(0)
sl,a−n (χ(x))(χ(x), kχ(x) −K3, h

−). (28)

Next, (26) yields

T
(s)
n,3(x) ≤

[
(ζ+(0)− 1) ∨ (1− ζ−(0))

] kx − kx,a + 1

kχ(x) − kχ(x),a + 1
sl,a(x, kx, h)

≤
[
(ζ+(0)− 1) ∨ (1− ζ−(0))

] ζ+(K5)

ζ−(0)
sl,a+n (χ(x))(χ(x), kχ(x) +K3, h

+). (29)

Remarking that

ξ−(0)ri,l(χ(x), kχ(x),a −K4, h
−) ≤ ri,l(χ(x), kχ(x),a, h) ≤ ξ+(0)ri,l(χ(x), kχ(x),a +K4, h

+), (30)

and collecting (27) to (30), one can find sequences (α−2,n) and (α+
2,n) tending to 1 such that

D
(s)
l,a (x, kx, h)ri,l(χ(x), kχ(x),a, h) ≤ 2

(
α+

2,nri,l(χ(x), kχ(x),a +K4, h
+)sl,a+n (χ(x))(χ(x), kχ(x) +K3, h

+)

− α−2,nri,l(χ(x), kχ(x),a −K4, h
−)sl,a−n (χ(x))(χ(x), kχ(x) −K3, h

−)
)
,

which entails (19) and thus concludes the proof.
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5.2 Proof of the asymptotic normality

The following lemma provides a decomposition of the estimator γ̂a(x, kx, h).

Lemma 6. Under model (M), assume that (A1), (A3) and (A4) hold, mx → ∞, kx/mx → 0,

k
1/2
x ω(m−1−δ

x , 1 − m−1−δ
x , x, h) → 0 and k

1/2
x ∆(mx/kx|x) → ξ(x) ∈ R as n goes to infinity. Under

{Mn(x, h) = mx}, there exist independent standard exponential variables Ẽ(x)
1 , . . . , Ẽ

(x)
kx

such that for

all a ∈ [0, 1),

γ̂a(x, kx, h) = γ(x) +
∆(mx/kx|x)

1− ρ(x)
AB(a, x) + Sn(x) + oP(k−1/2

x ),

where

Sn(x) =
1

kx − kx,a + 1

kx∑
l=kx,a

1

l − 1

l−1∑
i=1

(
γ(x) + ∆(mx/kx|x)

(
i

kx

)−ρ(x)
)

(Ẽ
(x)
i − 1).

In view of the previous lemma, to obtain the asymptotic normality of our estimator, we shall show

that k1/2
x Sn(x)

d−→ N (0, γ2(x)AV(a)). Since k1/2
x ∆(mx/kx|x) → ξ(x) ∈ R, we get ∆(mx/kx|x) → 0

as n goes to infinity. Therefore

Sn(x) =
γ(x)(1 + o(1))

kx − kx,a + 1

kx−1∑
i=1

 kx−1∑
l=(kx,a−1)∨i

1

l

 (Ẽ
(x)
i − 1),

which makes it enough to prove that for all a ∈ [0, 1),

Wn,a(x) :=
k

1/2
x

(AV(a))1/2(kx − kx,a + 1)

kx−1∑
i=1

 kx−1∑
l=(kx,a−1)∨i

1

l

 (Ẽ
(x)
i − 1)

d−→ N (0, 1). (31)

Let us first show that Var(Wn,a(x))→ 1 as n goes to infinity. In the simple case a = 0,

Var(Wn,0(x)) =
kx
AV(0)

kx−1∑
i=1

1

(kx − 1)2
→ 1,

since AV(0) = 1. Now, if a ∈ (0, 1),

Var(Wn,a(x)) =
kx
AV(a)

(
σn,a(x)

kx − kx,a + 1

)2

,

where

σ2
n,a(x) :=

kx−1∑
i=1

 kx−1∑
l=(kx,a−1)∨i

1

l

2

=

kx−1∑
i=1

kx−1∑
l, l′=(kx,a−1)∨i

1

ll′
=

kx−1∑
l, l′=kx,a−1

l ∧ l′

ll′
,

by changing the order of summation. Hence, by breaking the second sum into two parts,

σ2
n,a(x) =

kx−1∑
l=kx,a−1

l − kx,a + 2

l
+

kx−1∑
l=kx,a−1

kx−1∑
l′=l+1

1

l′
=

kx−1∑
l=kx,a−1

2(l − kx,a) + 3

l
,

where the last equality was obtained by changing the order of summation in the second term. Some

straightforward computations lead to

σ2
n,a(x) = 2kx

kx − kx,a + 1

kx
− kx,a − 3/2

kx

kx−1∑
l=kx,a−1

1

l

 .
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Recall that for every nonnegative monotonic and continuous function ϕ defined on (0, 1), we have for

all N,N ′ ∈ N \ {0} with N ′ ≤ N ,∣∣∣∣∣ 1

N

N∑
i=N ′

ϕ

(
i

N

)
−
∫ 1

N ′/N

ϕ(t)dt

∣∣∣∣∣ ≤ 1

N

(
ϕ

(
N ′

N

)
∨ ϕ(1)

)
. (32)

Applying (32) with ϕ(t) = 1/t, since kx →∞ and kx,a/kx → 1− a, one has

σ2
n,a(x) = 2kx(a+ (1− a) log(1− a))(1 + o(1)),

and thus Var(Wn,a(x)) = 1 + o(1). It now only remains to show that for a ∈ [0, 1),

Tn,a(x) :=
k

3/2
x

(kx − kx,a + 1)3

kx−1∑
i=1

 kx−1∑
l=(kx,a−1)∨i

1

l

3

→ 0,

and convergence (31) will be obtained by using Lyapounov’s central limit theorem. First, if a = 0,

Tn,0(x) = k3/2
x

kx−1∑
i=1

1

(kx − 1)3
= k−1/2

x (1 + o(1)) = o(1).

Finally, if a ∈ (0, 1), since from (32) with ϕ(t) = 1/t

kx−1∑
l=(kx,a−1)∨i

1

l
≤

kx−1∑
l=kx,a−1

1

l
= − log(1− a)(1 + o(1)),

we have

Tn,a(x) ≤ k
3/2
x (kx − 1)[− log(1− a)]3

(kx − kx,a + 1)3
(1 + o(1)) = k−1/2

x

[
− log(1− a)

a

]3

(1 + o(1))→ 0,

and the proof is complete.
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Appendix

Proof of Lemma 1 − Without loss of generality, we may assume that b1 ≤ . . . ≤ bn. Two cases

are now considered: if a1,n = a1, then the two (n − 1)-tuples (a2, . . . , an) and (b2, . . . , bn) satisfy the

assumptions of Lemma 1. If, on the contrary, a1,n = ai for some i > 1, then since aj ≤ bj+1 for all

j ∈ {1, . . . , i−1} and aj ≤ bj for all j ∈ {i+1, . . . , n}, the two (n−1)-tuples (a1, . . . , ai−1, ai+1, . . . , an)

and (b2, . . . , bn) satisfy the assumptions of Lemma 1. In conclusion, removing a1,n and b1 from the two

n−tuples (a1, . . . , an) and (b1, . . . , bn) leads to (n− 1)-tuples satisfying the assumptions of Lemma 1.

Remarking that a1,n ≤ b1, the conclusion of the proof is straightforward by induction on n.
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Proof of Lemma 2 − We start with the following consequence of the triangular inequality:

∣∣Mn(ω, h)− Vnhdf(ω)
∣∣ ≤

∣∣nP (‖X − ω‖ ≤ h)− Vnhdf(ω)
∣∣+ |Mn(ω, h)− nP (‖X − ω‖ ≤ h)|

=: T1,n(ω) + T2,n(ω).

Under (A1),
1

nhd
sup
ω∈Ωn

T1,n(ω) ≤ sup
ω∈Ωn

∫
B

|f(ω + hu)− f(ω)|du = O(hβf )→ 0.

It thus remains to prove that, for all ε > 0,

lim
n→∞

P
(

1

nhd
sup
ω∈Ωn

T2,n(ω) > ε

)
= 0.

Remark that{
1

nhd
sup
ω∈Ωn

T2,n(ω) > ε

}
=
⋃
ω∈Ωn

{
1

n

∣∣∣∣∣
n∑
i=1

I{‖Xi − ω‖ ≤ h} − P(‖Xi − ω‖ ≤ h)

∣∣∣∣∣ > εhd

}
. (33)

Since the Xi, 1 ≤ i ≤ n, are independent and identically distributed, Bernstein’s inequality (see

Hoeffding [15]) yields, for all ω ∈ Ωn,

P

(
1

n

∣∣∣∣∣
n∑
i=1

I{‖Xi − ω‖ ≤ h} − P(‖Xi − ω‖ ≤ h)

∣∣∣∣∣ > εhd

)
≤ exp

(
− τn(ω)λn(ω)

2(1 + λn(ω)/3)

)
, (34)

where we have defined

τn(ω) := εnhd and λn(ω) :=
εhd

P(‖Xi − ω‖ ≤ h)P(‖Xi − ω‖ > h)
,

Since (A1) holds, there exists a positive constant κf such that, for all ω ∈ Ωn,

P(‖Xi − ω‖ ≤ h)P(‖Xi − ω‖ > h) ≤ P (‖X − ω‖ ≤ h) ≤ Vhd
(
f(ω) + κfh

βf
)
.

Hence, for n large enough, under (A1),

sup
ω∈Ωn

1

λn(ω)
≤ 2Vf

ε
<∞. (35)

Recalling that card(Ωn) = O(nc), (33), (34) and (35) imply that there exists a positive constant κε

such that

P
(

1

nhd
sup
ω∈Ωn

T2,n(ω) > ε

)
= O(nc exp(−κεnhd))→ 0,

since nhd/ log n→∞.

Proof of Lemma 3− Since the random pairs (Xi, Yi), 1 ≤ i ≤ n, are independent, it is straightforward

to show that V1, . . . , Vn are also independent. Furthermore, if t ∈ (0, 1), one has for all i = 1, . . . , n:

P(Vi ≤ t) =

∫
Ω

P(F (Y |s) ≤ t|X = s)f(s)ds = t,

since

P(F (Y |s) ≤ t|X = s) =

∫ ∞
0

I{F (y|s) ≤ t}ϕ(y|s)dy = t,
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where ϕ(.|x) is the conditional density of Y given X = x. Let now A be an arbitrary Borel subset of

Ω. For all i = 1, . . . , n,

P(Vi ≤ t;Xi ∈ A) =

∫
A

∫ ∞
0

I{F (y|s) ≤ t}ϕ(y|s)dyf(s)ds = tP(Xi ∈ A) = P(Vi ≤ t)P(Xi ∈ A),

which concludes the first part of the proof. Furthermore, if (t1, . . . , tmω
) ∈ (0, 1)mω , we have

P
(
{U (ω)

i ≤ ti, i = 1, . . . ,mω};BΩ̃(m)
)

=

(
n

mω

)
P
(
{Vi ≤ ti;Xi ∈ B(ω, h), i = 1, . . . ,mω};BΩ̃(m)

)
.

Using the first part of the proof and the fact that the event BΩ̃(m) belongs to the σ−algebra generated

by X1, . . . , Xn, one has

P
(
{U (ω)

i ≤ ti, i = 1, . . . ,mω};BΩ̃(m)
)

= t1 . . . tmω

(
n

mω

)
P
(
{Xi ∈ B(ω, h), i = 1, . . . ,mω};BΩ̃(m)

)
.

Remarking that

P(BΩ̃(m)) =

(
n

mω

)
P
(
{Xi ∈ B(ω, h), i = 1, . . . ,mω};BΩ̃(m)

)
concludes the proof.

Proof of Lemma 4 − Note that, conditionally to BΩ̃(m), for n large enough, uniformly in ω ∈ Ω̃,

γ̂an(ω)(ω, kω, h) =
1

kω − kω,an(ω) + 1

kω∑
l=kω,an(ω)

1

l − 1

l−1∑
i=1

log

(
Z

(ω)
mω−i+1,mω

Z
(ω)
mω−l+1,mω

)
.

In this case, one has, for all i = 1, . . . ,mω,

logZ
(ω)
i = log q(U

(ω)
i |W

(ω)
i ) ≤ log q(U

(ω)
i |ω) + ω(U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h).

Lemma 1 now gives

logZ
(ω)
mω−i+1,mω

≤ log q(U
(ω)
i,mω
|ω) + ω(U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h).

A similar idea yields

log q(U
(ω)
i,mω
|ω)− ω(U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h) ≤ logZ
(ω)
mω−i+1,mω

,

and therefore ∣∣∣logZ
(ω)
mω−i+1,mω

− log q(U
(ω)
i,mω
|ω)
∣∣∣ ≤ ω(U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h).

This yields∣∣∣∣∣log

(
Z

(ω)
mω−i+1,mω

Z
(ω)
mω−l+1,mω

)
− log

(
q(U

(ω)
i,mω
|ω)

q(U
(ω)
l,mω
|ω)

)∣∣∣∣∣ ≤ ∣∣∣logZ
(ω)
mω−i+1,mω

− log q(U
(ω)
i,mω
|ω)
∣∣∣

+
∣∣∣logZ

(ω)
mω−l+1,mω

− log q(U
(ω)
l,mω
|ω)
∣∣∣

≤ 2ω
(
U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h
)
,
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which in turn implies∣∣∣∣∣∣γ̂an(ω)(ω, kω, h)− 1

kω − kω,an(ω) + 1

kω∑
l=kω,an(ω)

1

l − 1

l−1∑
i=1

i log

(
q(U

(ω)
i,mω
|ω)

q(U
(ω)
i+1,mω

|ω)

)∣∣∣∣∣∣ ≤ 2ω
(
U

(ω)
1,mω

, U (ω)
mω,mω

, ω, h
)
.

(36)

Note that to obtain (36), we have used the straightforward identity

l−1∑
i=1

log

(
q(U

(ω)
i,mω
|ω)

q(U
(ω)
l,mω
|ω)

)
=

l−1∑
i=1

i log

(
q(U

(ω)
i,mω
|ω)

q(U
(ω)
i+1,mω

|ω)

)
.

For all i ∈ {1, . . . ,mω}, let now F
(ω)
i := − logU

(ω)
i . From Lemma 3, conditionally to BΩ̃(m),

F
(ω)
1 , . . . , F

(ω)
mω are independent standard exponential random variables. Condition (A3) then yields,

for all i ∈ {1, . . . , kω − 1},

i log

(
q(U

(ω)
i,mω
|ω)

q(U
(ω)
i+1,mω

|ω)

)
= γ(ω)i(F

(ω)
mω−i+1,mω

− F (ω)
mω−i,mω

) + i

∫ (U
(ω)
i )−1

(U
(ω)
i+1)−1

∆(u|ω)

u
du.

Rényi’s representation shows that{
E

(ω)
i := i(F

(ω)
mω−i+1,mω

− F (ω)
mω−i,mω

), i = 1, . . . , kω − 1
}

are independent standard exponential random variables. Moreover, for all i ∈ {1, . . . , kω − 1},∣∣∣∣∣i log

(
q(U

(ω)
i,mω
|ω)

q(U
(ω)
i+1,mω

|ω)

)
− γ(ω)E

(ω)
i

∣∣∣∣∣ ≤ E(ω)
i ∆ω(U

(ω)
kω,mω

). (37)

Inequalities (36) and (37) conclude the proof.

Proof of Lemma 5 − First remark that

P(An,K2
) ≤

∑
ω∈Ωn

P(Ch(ω, n−η) ≥ K2).

Furthermore, for all ω ∈ Ωn,

{Ch(ω, n−η) ≥ K2} ⊂
⋃

1≤i1<...<iK2
≤n

K2⋂
q=1

{h− ≤ ‖Xiq − ω‖ ≤ h+},

where h± := h± n−η. Therefore,

P(An,K2
) ≤ card(Ωn)

(
n

K2

)
sup
ω∈Ωn

(
P(h− ≤ ‖X − ω‖ ≤ h+)

)K2
.

Some straightforward calculus leads to

P(h− ≤ ‖X − ω‖ ≤ h+) =
(
(h+)d − (h−)d

)
(f(ω)V +Rn,1(ω)) +R+

n,2(ω)−R−n,2(ω),

where, if B is the unit ball of Rd,

Rn,1(ω) =

∫
B

(f(ω + hu)− f(ω))du and R±n,2(ω) = (h±)d
∫
B

(f(ω + h±u)− f(ω + hu))du.
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Under (A1), and since η > 1/βf ≥ 1/d and nhd →∞ imply that nηh→∞, we have, uniformly in ω:

Rn,1(ω) = O(hβf ) = o(1) and R±n,2(ω) = O(hdn−ηβf ).

Furthermore, remarking that, because nηh→∞,

(h+)d − (h−)d = hd
(

2dn−η

h
+O

(
n−η

h

))
= O

(
hd−1n−η

)
,

and since, under (A1) f is bounded, one has uniformly in ω

P(h− ≤ ‖X − ω‖ ≤ h+) = O
(
hd−1n−η

)
+O

(
hdn−ηβf

)
= O(n−ηβf ),

because h→ 0 and βf ≤ 1. Using the well-known equivalent(
n

K2

)
=
nK2

K2!
(1 + o(1)),

and since card(Ωn) = O(nc), we thus have

sup
ω∈Ωn

P(Ch(ω, n−η) ≥ K2) = O
(
nc+K2(1−ηβf )

)
= o(1)

and the proof is complete.

Proof of Lemma 6 − From (36) (see proof of Lemma 4), conditionally to {Mn(x, h) = mx}, one has∣∣∣∣∣∣γ̂a(x, kx, h)− 1

kx − kx,a + 1

kx∑
l=kx,a

1

l − 1

l−1∑
i=1

i log

(
q(U

(x)
i,mx
|x)

q(U
(x)
i+1,mx

|x)

)∣∣∣∣∣∣ ≤ 2ω
(
U

(x)
1,mx

, U (x)
mx,mx

, x, h
)
, (38)

where, conditionally to {Mn(x, h) = mx}, U (x)
1 , . . . , U

(x)
mx are independent standard uniform vari-

ables. Furthermore, from [1, Theorem 2.1] there exist independent standard exponential variables

Ẽ
(x)
1 , . . . , Ẽ

(x)
kx−1 such that uniformly in i ∈ {1, . . . , kx − 1},

i log

(
q(U

(x)
i,mx
|x)

q(U
(x)
i+1,mx

|x)

)
=

(
γ(x) + ∆

(
mx

kx

∣∣∣∣x)( i

kx

)−ρ(x)
)
Ẽ

(x)
i + β

(x)
i + oP(∆(mx/kx|x)), (39)

where β(x)
1 , . . . , β

(x)
kx−1 are random variables satisfying∣∣∣∣∣∣

kx−1∑
i=j

β
(x)
i

i

∣∣∣∣∣∣ = oP

(
∆

(
mx

kx

∣∣∣∣x)max

(
log

(
kx
j

)
, 1

))
. (40)

Note also that from [1, Lemma 2.3], equation (40) holds uniformly in j ∈ {1, . . . , kx − 1}. Hence, (38)

and (39) entail that∣∣∣∣γ̂a(x, kx, h)− γ(x)− ∆(mx/kx|x)

1− ρ(x)
AB(a, x)− Sn(x)

∣∣∣∣ ≤ 2ω
(
U

(x)
1,mx

, U (x)
mx,mx

, x, h
)

+ |Rn,1(x)|

+

∣∣∣∣∆(mx

kx

∣∣∣∣x)∣∣∣∣ |Rn,2(x)|+ oP(∆(mx/kx|x)),
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where

Rn,1(x) =
1

kx − kx,a + 1

kx∑
l=kx,a

1

l − 1

l−1∑
i=1

β
(x)
i

and Rn,2(x) =
1

kx − kx,a + 1

kx∑
l=kx,a

1

l − 1

l−1∑
i=1

(
i

kx

)−ρ(x)

− AB(a, x)

1− ρ(x)
.

It thus remains to prove that

k1/2
x ω

(
U

(x)
1,mx

, U (x)
mx,mx

, x, h
)

P−→ 0, (41a)

k1/2
x Rn,1(x)

P−→ 0, (41b)

Rn,2(x)→ 0, (41c)

with (41c) being sufficient to show that k1/2
x ∆(mx/kx|x)Rn,2(x)→ 0, since k1/2

x ∆(mx/kx|x) converges

to a finite constant.

To prove (41a), let us introduce the event Ãn := {U (x)
1,mx

> m−1−δ
x } ∩ {U (x)

mx,mx < 1 −m−1−δ
x }, where

δ > 0. Clearly, since mx →∞,

P(ÃCn ) ≤ P(U
(x)
1,mx

≤ m−1−δ
x ) + P(U (x)

mx,mx
≥ 1−m−1−δ

x ) = 2(1− (1−m−1−δ
x )mx)→ 0

as n goes to infinity. Furthermore, on the event Ãn,

k1/2
x ω

(
U

(x)
1,mx

, U (x)
mx,mx

, x, h
)
≤ k1/2

x ω(m−1−δ
x , 1−m−1−δ

x , x, h)→ 0

which, since P(Ãn)→ 1, concludes the proof of (41a).

Let us now show (41b). Changing the order of summation,

Rn,1(x) =
1

kx − kx,a + 1

kx−1∑
i=1

ui(x)
β

(x)
i

i
, where ui(x) :=

kx−1∑
l=(kx,a−1)∨i

i

l
.

Remarking that u0(x) = 0, some straightforward computations lead to

|Rn,1(x)| ≤ 1

kx − kx,a + 1

kx−1∑
j=1

|uj(x)− uj−1(x)|

∣∣∣∣∣∣
kx−1∑
i=j

β
(x)
i

i

∣∣∣∣∣∣ .
Let us first consider the case a = 0 (i.e. kx = kx,a). In this situation, uj(x) − uj−1(x) = 1/(kx − 1)

and thus by using (40),

|Rn,1(x)| ≤ 1

kx − 1

kx−1∑
j=1

∣∣∣∣∣∣
kx−1∑
i=j

β
(x)
i

i

∣∣∣∣∣∣ = oP

(
∆

(
mx

kx

∣∣∣∣x))× 1

kx − 1

kx−1∑
j=1

max

(
log

(
kx
j

)
, 1

)
.

Since kx →∞, using (32) with ϕ(t) = max(log(1/t), 1), we get

1

kx − 1

kx−1∑
j=1

max

(
log

(
kx
j

)
, 1

)
→
∫ 1

0

max(log(1/t), 1)dt <∞, (42)
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Using this convergence together with the fact that k1/2
x ∆(mx/kx|x) converges to a finite constant

implies that k1/2
x Rn,1(x)

P−→ 0 in the case a = 0. Consider next the case a ∈ (0, 1). It is easy to check

that

|uj(x)− uj−1(x)| =

∣∣∣∣∣∣
kx−1∑

l=(kx,a−1)∨j

1

l
− I{j ≥ kx,a}

∣∣∣∣∣∣ ≤
kx−1∑

l=kx,a−1

1

l
+ 1.

Using together (32) (see the proof of Theorem 2) with ϕ(t) = 1/t, the fact that kx → ∞ and the

convergence kx,a/kx → 1− a, one has

kx−1∑
l=kx,a−1

1

l
+ 1→ 1− log(1− a).

Hence, by using (40), (42) and the fact that (kx − 1)/(kx − kx,a + 1)→ 1/a, we have for a ∈ (0, 1) and

for n large enough,

|Rn,1(x)| ≤ 2(1− log(1− a))

kx − kx,a + 1

kx−1∑
j=1

∣∣∣∣∣∣
kx−1∑
i=j

β
(x)
i

i

∣∣∣∣∣∣ = oP

(
∆

(
mx

kx

∣∣∣∣x)) ,
In conclusion, k1/2

x Rn,1(x)
P−→ 0 for all a ∈ [0, 1).

Finally, let us prove (41c). Using (32) with ϕ(t) = t−ρ(x), it is clear that uniformly in l ∈ {kx,a, . . . , kx},

1

l − 1

l−1∑
i=1

(
i

l − 1

)−ρ(x)

=
1

1− ρ(x)
(1 + o(1)),

leading to

(1− ρ(x))Rn,2(x) =
1

kx − kx,a + 1

kx∑
l=kx,a

(
l − 1

kx

)−ρ(x)

(1 + o(1))−AB(a, x).

In the case a = 0, kx = kx,a and thus

(1− ρ(x))Rn,2(x) = 1 + o(1)−AB(0, x) = o(1), (43)

since AB(0, x) = 1. Now, if a ∈ (0, 1), using again (32) with ϕ(t) = t−ρ(x) together with the fact that

kx/(kx − kx,a + 1)→ 1/a leads to

(1− ρ(x))Rn,2(x) =
1− (1− a)1−ρ(x)

a(1− ρ(x))
(1 + o(1))−AB(a, x) = o(1). (44)

In conclusion, (43) and (44) imply that Rn,2(x)→ 0 for all a ∈ [0, 1) and the proof is complete.
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Situation
Estimator γ̃ Smoothed Hill

of Goegebeur et al. estimator γ̂a

γ = γ1

ρ = −0.8 0.0241 0.0115

ρ = −1 0.0157 0.00753

ρ = −1.2 0.00972 0.00512

γ = γ2

ρ = −0.8 0.0321 0.0164

ρ = −1 0.0198 0.0102

ρ = −1.2 0.0148 0.00724

Table 1: MSEs associated to the estimators in all cases.
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(a) Case γ = γ1
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(b) Case γ = γ2

Figure 1: Case ρ = −1: the true function γ (solid line), its estimator γ̃ as in [10] (dashed-dotted line)

and its smoothed Hill estimator γ̂a (dashed line), each corresponding to the 10% quantile of the MSE.
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(a) Case γ = γ1
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(b) Case γ = γ2

Figure 2: Case ρ = −1: the true function γ (solid line), its estimator γ̃ as in [10] (dashed-dotted line)

and its smoothed Hill estimator γ̂a (dashed line), each corresponding to the median of the MSE.
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(a) Case γ = γ1
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(b) Case γ = γ2

Figure 3: Case ρ = −1: the true function γ (solid line), its estimator γ̃ as in [10] (dashed-dotted line)

and its smoothed Hill estimator γ̂a (dashed line), each corresponding to the 90% quantile of the MSE.
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(a) Case γ = γ1
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(b) Case γ = γ2

Figure 4: Case ρ = −1: boxplots of the bandwidths for both estimators. Left: estimator γ̃ of [10],

right: smoothed Hill estimator γ̂a.
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(b) Case γ = γ2

Figure 5: Case ρ = −1: boxplots of the ratios k∗x/Mn(x, h∗) for both estimators at x = 1/2. Left:

estimator γ̃ of [10], right: smoothed Hill estimator γ̂a.
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