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Numerous investigations have shown that mitochondrial dys- predispositions (in particular those involving mitochondrial

function is a major mechanism of drug-induced liver injury,
which involves the parent drug or a reactive metabolite gener-
ated through cytochromes P450. Depending of their nature and
their severity, the mitochondrial alterations are able to induce
mild to fulminant hepatic cytolysis and steatosis (lipid accumula-
tion), which can have different clinical and pathological features.
Microvesicular steatosis, a potentially severe liver lesion usually
associated with liver failure and profound hypoglycemia, is due
to a major inhibition of mitochondrial fatty acid oxidation
(FAO). Macrovacuolar steatosis, a relatively benign liver lesion
in the short term, can be induced not only by a moderate reduc-
tion of mitochondrial FAO but also by an increased hepatic de
novo lipid synthesis and a decreased secretion of VLDL-associated
triglycerides. Moreover, recent investigations suggest that some
drugs could favor lipid deposition in the liver through primary
alterations of white adipose tissue (WAT) homeostasis. If the
treatment is not interrupted, steatosis can evolve toward steato-
hepatitis, which is characterized not only by lipid accumulation
but also by necroinflammation and fibrosis. Although the mech-
anisms involved in this aggravation are not fully characterized,
it appears that overproduction of reactive oxygen species by
the damaged mitochondria could play a salient role. Numerous
factors could favor drug-induced mitochondrial and metabolic
toxicity, such as the structure of the parent molecule, genetic
Journal of Hepatology 20

Keywords: Hepatotoxicity; Drugs; Mitochondria; Steatosis; Lipids; Cell death;
Obesity; Oxidative stress.
Received 13 August 2010; received in revised form 5 November 2010; accepted 9
November 2010
⇑Corresponding author. Tel.: +33 2 23 23 30 44; fax: +33 2 23 23 53 85.
E-mail address: bernard.fromenty@inserm.fr (B. Fromenty).
Abbreviations: ACC, acetyl-CoA carboxylase; APAP, acetaminophen; AZT, zidovu-
dine; CAR, constitutive androstane receptor; ChREBP, carbohydrate responsive
element-binding protein; CoA, coenzyme A; CPT, carnitine palmitoyltransferase;
CYP, cytochrome P450; ddI, didanosine; d4T, stavudine; DILI, drug-induced liver
injury; FAO, fatty acid oxidation; GSH, reduced glutathione; GST, glutathione
S-transferase; JNK, c-Jun-N-terminal kinase; LCFA, long-chain fatty acid; MPTP,
mitochondrial permeability transition pore; MTP, microsomal triglyceride trans-
fer protein; MRC, mitochondrial respiratory chain; mtDNA, mitochondrial DNA;
NAFLD, nonalcoholic fatty liver disease; NAPQI, N-acetyl-p-benzoquinone imine;
NASH, nonalcoholic steatohepatitis; NRTI, nucleoside reverse transcriptase
inhibitor; OXPHOS, oxidative phosphorylation; PPAR, peroxisome proliferator-
activated receptor; PXR, pregnane X receptor; ROS, reactive oxygen species;
SREBP-1c, sterol regulatory element-binding protein-1c; TNFa, tumor necrosis
factor-a; TCA, tricarboxylic acid cycle; TZD, thiazolidinedione; VPA, valproic acid;
VLDL, very-low density lipoprotein; WAT, white adipose tissue.
enzymes), alcohol intoxication, hepatitis virus C infection, and
obesity. In obese and diabetic patients, some drugs may induce
acute liver injury more frequently while others may worsen the
pre-existent steatosis (or steatohepatitis).
� 2010 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

More than a 1000 drugs of the modern pharmacopoeia can
induce liver injury with different clinical presentations [1,2]. In
the most severe cases, drug-induced liver injury (DILI) can
require liver transplantation or lead to the death of the patient
[3]. In addition, DILI can lead to the withdrawal of drugs from
the market or earlier during clinical trials, thus causing huge
financial losses. A recent retrospective study indicates that the
risk of DILI is enhanced when the administered daily dosage is
higher than 50 mg or when the drug undergoes significant liver
metabolism [4].

The mechanisms of DILI are not always known, but when they
are investigated mitochondrial dysfunction is often present [5–7].
Importantly, drug-induced mitochondrial dysfunction can be due
to the drug itself and/or to reactive metabolites generated
through cytochrome P450-mediated metabolism [5,6,8]. Mito-
chondrial dysfunction is a generic term, which includes alteration
of different metabolic pathways and damage to mitochondrial
components. In addition, these mitochondrial disturbances can
have a variety of deleterious consequences, such as oxidative
stress, energy shortage, accumulation of triglycerides (steatosis),
and cell death. Regarding steatosis, recent investigations suggest
that besides mitochondrial dysfunction several other mecha-
nisms could be involved. Before discussing the main mechanisms
involved in drug-induced mitochondrial dysfunction and lipid
dysmetabolism, we shall recall some important features pertain-
ing to the central role of mitochondria in cell death and energy
homeostasis. We will also bring to mind some aspects of lipid
metabolism not directly related to mitochondria and the most
relevant effects of the adipose hormones adiponectin and leptin
on liver function. Finally, this review will also evoke the main fac-
tors that could predispose some patients to DILI, in particular
when hepatotoxicity is due to mitochondrial dysfunction or due
to impaired lipid homeostasis.
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Fig. 1. Schematic representation of mitochondrial fatty acid b-oxidation and oxidative phosphorylation in liver mitochondria. In contrast to short-chain and
medium-chain fatty acids (not shown), the entry of long-chain (C14–C18) fatty acid (LCFA) within mitochondria requires a specific shuttle system involving four steps. (A)
LCFAs are activated into LCFA-coenzyme A (acyl-CoA) thioesters by long-chain acyl-CoA synthetases (ACS) located in the outer mitochondrial membrane. (B) The long-chain
acyl-CoA is converted into an acyl-carnitine derivative by carnitine palmitoyltransferase-1 (CPT 1) in the outer mitochondrial membrane. (C) This acyl-carnitine derivative
is then translocated across the inner mitochondrial membrane into the mitochondrial matrix by carnitine-acylcarnitine translocase. (C) Finally, carnitine palmitoyltrans-
ferase-2 (CPT 2), located on the matrix side of the inner mitochondrial membrane, transfers the acyl moiety from carnitine back to coenzyme A. LCFA-CoA thioesters are
then oxidized into acetyl-CoA moieties via the b-oxidation process. Acetyl-CoA moieties directly generate ketone bodies (mainly acetoacetate and b-hydroxybutyrate)
which are liberated into the plasma to be used by extra-hepatic tissues for energy production. Mitochondrial fatty acid oxidation (FAO) generates NADH and FADH2, which
transfer their electrons (e�) to the mitochondrial respiratory chain (MRC), thus regenerating NAD+ and FAD used for other b-oxidation cycles. Within the MRC, electrons are
sequentially transferred to different polypeptide complexes (numbered from I to IV) embedded within the inner membrane. The final transfer of the electrons to oxygen
takes place at the level of complex IV which oxidizes cytochrome c (c). The flow of electrons within the MRC is coupled with the extrusion of protons (H+) from the
mitochondrial matrix to the intermembrane space, which creates the mitochondrial transmembrane potential, Dwm. When energy is needed (i.e. when ATP levels are low),
these protons re-enter the matrix through the F0 portion of the ATP synthase (also referred to as complex V), thus liberating energy that is used to phosphorylate ADP into
ATP. The whole metabolic process which couples substrate oxidation to ATP synthesis is referred to as oxidative phosphorylation (OXPHOS). It is noteworthy that OXPHOS
requires the mitochondrial DNA (mtDNA) since it encodes 13 MRC polypeptides, which are embedded within complexes I, III, IV, and V.

Review
Mitochondrial structure and functions

Mitochondrial membrane permeabilization and cell death

Mitochondria are organelles with two membranes surrounding a
space (matrix) containing various enzymes and the mitochondrial
genome (mtDNA) (Fig. 1). The inner membrane, which also har-
bors many enzymes, behaves as a barrier that is poorly permeable
to various molecules [9]. Thus, this membrane contains transport-
ers allowing the entry of endogenous compounds (ADP, fatty
acids, glutathione, pyruvic acid) and possibly xenobiotics as well.

In some pathophysiological circumstances, the mitochondrial
membranes can lose their structural and functional integrity, in
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particular after the opening of the mitochondrial permeability
transition pores (MPTP) [10]. These pores involve at least 4 can-
didate proteins, namely the peripheral benzodiazepine receptor
(PBR), the voltage-dependent anion channel (VDAC), the adenine
nucleotide translocase (ANT), and cyclophilin D [10]. The later
protein (a modulator of the pore rather than a MPTP component
per se [11]) is able to bind the immunosuppressive drug cyclo-
sporin A that therefore reduces the opening probability of the
MPTP. In contrast, several drugs and toxic compounds, but also
high levels of some endogenous derivatives (e.g. calcium, fatty
acids, and bile salts) can induce MPTP opening. As the latter event
strongly alters mitochondrial function and structure, it can
endanger cell life. However, the exact pathway whereby the cell
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will die (namely apoptosis or necrosis) depends on the number of
mitochondria harboring opened MPTP [6,7,12].

Indeed, MPTP opening can profoundly disturb ATP synthesis,
through the loss of inner mitochondrial membrane integrity. If
numerous mitochondria present opened MPTP, ATP stores will
slump rapidly and necrosis will occur through a sudden rise in
intracellular calcium levels because ATP is mandatory for the
activity of the plasma membrane calcium ATPase (PMCA), an
enzyme responsible for calcium extrusion out of the cell. In con-
trast, if MPTP opening takes place only in some mitochondria,
ATP levels will be maintained thanks to undamaged organelles.
However, the rare mitochondria involved in MPTP opening will
swell allowing the release of different pro-apoptotic proteins
including the apoptosis inducing factor (AIF), several caspases,
and cytochrome c [13]. This key protein of the respiratory chain
(Fig. 1), when released in the cytoplasm, can bind to the Apaf-1
protein and ATP thus initiating the apoptotic pathway through
the activation of caspases 9 and 3. Consequently, MPTP opening
in a few mitochondria can also have deleterious consequences
[12,14].

Several important points must be discussed regarding mito-
chondrial membrane permeabilization. Firstly, MPTP opening ini-
tially permeabilizes the mitochondrial inner membrane without
alteration of the outer membrane. However, MPTP opening
causes an equilibration of solutes with molecular masses up to
1500 Da and the massive entry of water into the matrix, which
causes unfolding of the inner membrane and mitochondrial
swelling. The latter event thus induces outer membrane rupture
and the release of several mitochondrial proteins located in the
intermembrane space (e.g. cytochrome c and AIF), which trigger
apoptotis [10,13,15]. Secondly, mitochondrial membrane perme-
abilization can induce the release of cytochrome c and other cyto-
toxic proteins without any rupture of the mitochondrial outer
membrane [13,16]. This scenario requires the formation of pores
within this membrane thanks to the association of two pro-
apoptotic proteins belonging to the Bcl-2 family, namely Bak
(already located in the outer membrane) and Bax (which is
recruited from the cytosol) [10,13]. Importantly, mitochondrial
outer membrane permeabilization through the formation of Bax/
Bak pores is not sensitive to cyclosporin A [17,18]. Thus, whatever
the mechanism involved in membrane permeabilization, this
event can strongly alter mitochondrial function and structure,
and thus lead to cell death. Finally, it is noteworthy that the MPTP
structure seems to be different from one tissue to another. This
may explain why some organs could be more or less vulnerable
to certain permeability transition inducers [19,20].

Liver mitochondria and energy homeostasis

In most mammalian cells, mitochondria provide the most part of
the energy necessary for cell homeostasis, especially during fast-
ing periods [5,21,22]. Mitochondrial ATP synthesis is possible
thanks to the oxidative degradation of endogenous substrates,
such as pyruvate (generated from glycolysis), fatty acids, and
amino acids. Pyruvate oxidation takes place in the tricarboxylic
acid cycle (TCA, also called Krebs cycle), whereas fatty acid deg-
radation within mitochondria is mediated by b-oxidation (Fig. 1).

In order to undergo the b-oxidation pathway fatty acids must
cross the mitochondrial membranes. Whereas short-chain and
medium-chain fatty acids freely enter the mitochondria, long-
chain fatty acids (LCFAs) can cross the mitochondrial membranes
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only by means of a multienzymatic system requiring coenzyme A
and L-carnitine as cofactors (Fig. 1). In this system, carnitine pal-
mitoyltransferase 1 (CPT1) catalyses the rate limiting step of
LCFA oxidation as this enzyme can be strongly inhibited by mal-
onyl-CoA, an endogenous derivative synthesized during de novo
lipogenesis [23,24].

Inside the mitochondria, short-chain and medium-chain fatty
acids are activated in acyl-CoA molecules by specific acyl-CoA
synthases, whereas long-chain fatty acyl-carnitine intermediates
are transformed back to their corresponding acyl-CoA thioesters
thanks to CPT2 (Fig. 1). Whatever the length of their carbon chain,
acyl-CoA derivatives are then cut down sequentially thanks to the
b-oxidation process that generates acetyl-CoA moieties and
shorter fatty acids that enter new b-oxidation cycles (Fig. 1).
These acetyl-CoA moieties are immediately used for the synthesis
of ketone bodies (mainly acetoacetate and b-hydroxybutyrate)
released in the blood and oxidized in extra-hepatic tissues, such
as kidney, muscle, and brain (Fig. 1). Because mitochondrial
b-oxidation and ketogenesis play a fundamental role in energy
homeostasis [5,25], a severe deficiency in fatty acid oxidation
(FAO) can lead to multiple organ failure and death of the patient
[5,6,26].

FAO deficiency can be associated with reduced plasma ketone
bodies, accumulation of acyl-carnitine derivatives and dicarbox-
ylic acids in plasma (or urine), and severe hypoglycemia
[5,6,26]. Low blood glucose could be due to reduced hepatic glu-
coneogenesis and increased extra-hepatic utilization [5,27].
Although hypoketonemia is usually observed in genetic disorders
of mitochondrial FAO, hyperketonemia can be observed during
drug-induced alteration of mitochondrial b-oxidation [5,6]. A
probable mechanism is the occurrence of drug-induced impair-
ment of the TCA cycle in extra-hepatic tissues consuming high
amounts of ketone bodies [5,28].

Oxidative degradation of pyruvate and fatty acids produces
acetyl-CoA molecules and also reduced cofactors [5,6,9].
Indeed, several dehydrogenases involved in the TCA cycle and
b-oxidation are using NAD+ and FAD to generate NADH and
FADH2, which give their electrons and protons to the mito-
chondrial respiratory chain (MRC) (Fig. 1). Electrons are
sequentially transferred to different multi-protein complexes
of the MRC and finally to cytochrome c oxidase (complex IV),
which safely reduces oxygen into water in the presence of pro-
tons (Fig. 1). Importantly, electron transfer within MRC is asso-
ciated with the ejection of protons from the matrix to the
intermembrane space of the mitochondria, thus generating a
large membrane potential Dwm [9,29]. When cells need energy,
protons are reentering the matrix thanks to the F0 portion of
the ATP synthase (complex V) thus releasing part of the poten-
tial energy of Dwm. This energy is then used by the F1 portion
of the ATP synthase for the phosphorylation of ADP into ATP
(Fig. 1). Some drugs able to abolish ADP phosphorylation
(and thus ATP synthesis) without inhibiting substrate oxidation
are referred to as oxidative phosphorylation (OXPHOS) uncou-
plers [5,6,30].

Mitochondrial production of reactive oxygen species

A major feature of the mitochondria is the production of reactive
oxygen species (ROS) through the activity of the MRC [22,31].
Indeed, a small fraction of electrons entering the MRC can prema-
turely escape from complexes I and III and directly react with
1 vol. 54 j 773–794 775
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oxygen to generate the superoxide anion radical. This radical is
then dismutated by the mitochondrial manganese superoxide
dismutase (MnSOD) into hydrogen peroxide (H2O2), which is
detoxified into water by the mitochondrial glutathione peroxi-
dase (GPx) that uses reduced glutathione (GSH) as a cofactor.
Hence, in the normal (non-diseased) state, most of the ROS
generated by the MRC are detoxified by the mitochondrial anti-
oxidant defenses. The remaining (i.e. non-detoxified) ROS diffuse
out of mitochondria and serve as second messengers to trigger
cellular processes such as mitogenesis [22].

However, this detoxification process can be overwhelmed in
different pathophysiological circumstances. This occurs in partic-
ular in case of GSH depletion within liver mitochondria, which
reduces greatly their capability to detoxify H2O2 since they do
not have catalase [32]. Depletion of mitochondrial GSH below a
critical threshold thus favors H2O2 accumulation by impairing
its detoxification. This in turn triggers mitochondrial dysfunction,
MPTP opening, activation of c-Jun-N-terminal kinase (JNK), and
cell death [33,34]. Chronic ethanol intoxication, fasting, and mal-
nutrition are diseased states favoring GSH depletion, in particular
within mitochondria.

Mitochondrial anti-oxidant enzymes can also be over-
whelmed when MRC is chronically impaired. Indeed, a partial
block in the flow of electrons greatly increases the probability
of monoelectronic reduction of oxygen and superoxide anion pro-
duction within the complexes I and III [35,36]. High steady state
levels of ROS then damage OXPHOS proteins, cardiolipin, and
mtDNA [37–39]. This oxidative damage aggravates mitochondrial
dysfunction to further augment electron leakage and ROS forma-
tion, thus leading to a vicious circle [40].
The mitochondrial genome

A unique feature of mitochondria is the dual genetic origin of the
OXPHOS proteins (ca. 100) [5,22]. Whereas the most part of these
polypeptides are encoded by the nuclear genome and subse-
quently imported within the mitochondria, 13 MRC polypeptides
are instead encoded by the mitochondrial genome, a small piece
of circular doubled-stranded DNA located within the mitochon-
drial matrix (Fig. 1). In a single cell there are several hundred
(or thousand) copies of mtDNA whose replication occurs contin-
uously, even in cells that do not divide [41,42]. Permanent
mtDNA replication by the DNA polymerase c thus allows the
maintenance of constant mtDNA levels in cells despite continu-
ous removal of the most dysfunctional and/or damaged mito-
chondria [43].

Most cells (including hepatocytes) have a surplus of mtDNA
copies, and can, therefore, tolerate a substantial depletion of
mtDNA. Classically, it is considered that the number of normal
mtDNA copies must fall below 20–40% of basal levels to induce
mitochondrial dysfunction and severe adverse events [41,44,45].
The few mtDNA copies remaining within each mitochondrion
are not able to provide enough MRC polypeptides, thus leading
to OXPHOS impairment and secondary inhibition of mitochon-
drial FAO and TCA cycle. Another key feature of mtDNA is its
high sensitivity to ROS-induced oxidative damage and muta-
tions due to its proximity to the inner membrane (a major
source of ROS), the absence of protective histone, and an incom-
plete repertoire of mitochondrial DNA repair enzymes
[37,41,46,47].
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Lipid and carbohydrate metabolism in extramitochondrial
compartments

Besides mitochondria, other organelles (or extra-mitochondrial
enzyme systems) can be involved in FAO. For instance, peroxi-
somes degrade long-chain and very long-chain fatty acids but
not medium-chain and short-chain fatty acids. The first step of
peroxisomal FAO continuously generates H2O2 through acyl-
CoA oxidase (ACO) activity [48,49], and thus oxidative stress
can occur during fatty acid overload and/or peroxisomal proli-
feration due to an imbalance between intraperoxisomal H2O2

production and its removal by catalase [50]. Several cytochromes
P450 (CYPs) such as CYP4A and CYP2E1 also oxidize fatty acids
although the CYP-mediated oxidation involves only the terminal
x (or the x-1) carbon of the aliphatic chain [51,52]. Interestingly,
x-hydroxylated fatty acids are further converted into dicarbox-
ylic acids that can induce mitochondrial dysfunction [5,53].
Although most of the CYPs are found within the endoplasmic
reticulum, some of them such as CYP2E1 can have a mitochon-
drial localization [54–56].

Mitochondrial, peroxisomal, and microsomal FAO is strongly
regulated by peroxisome proliferator-activated receptor a
(PPARa), a nuclear receptor and transcription factor, which can
be stimulated by endogenous fatty acids or synthetic drugs
(fibrates) [57]. PPARa stimulation increases the expression of
the mitochondrial enzymes CPT1, medium-chain acyl-CoA dehy-
drogenase (MCAD) and HMG-CoA synthase (involved in ketone
body synthesis), the peroxisomal ACO, and the microsomal
CYP4A [58,59]. Besides PPARa, other transcription factors regu-
lating hepatic FAO include forkhead box A2 (FoxA2) and cAMP-
response element-binding protein (CREB) that are activated
during fasting periods by low insulinemia and high glucago-
nemia, respectively [60].

On the contrary, the metabolic and hormonal context after a
meal favors lipid synthesis with a concomitant reduction of the
FAO pathway. Indeed, high plasma levels of insulin and glucose,
respectively, activate the sterol regulatory element-binding pro-
tein-1c (SREBP-1c) and carbohydrate responsive element-binding
protein (ChREBP) that both increase the hepatic expression of key
enzymes involved in glycolysis (e.g. glucokinase and L-pyruvate
kinase) and de novo lipogenesis (e.g. acetyl-CoA carboxylase
and fatty acid synthase). Lipogenesis is associated with the accu-
mulation of the CPT1 inhibitor malonyl-CoA, thus reducing the
flux of mitochondrial LCFA oxidation [23,24].

It is worthy to mention herein that hepatic SREBP-1c and
ChREBP can be abnormally activated in obese and diabetic indi-
viduals thus favoring fatty liver. Another mechanism that could
contribute to fatty liver in these patients is the permanent and
unrepressed triglycerides lipolysis taking place in the expanded
adipose tissue (due to insulin resistance), which leads to a mas-
sive influx of free fatty acids in the hepatocytes [60]. Besides
SREBP-1c and ChREBP, other transcription factors could play a
significant role in de novo lipogenesis (at least in some metabolic
contexts) such as PPARc and pregnane X receptor (PXR). Both
transcription factors are nuclear receptors that can be activated
by different endogenous and exogenous ligands [61,62].

Once synthesized, fatty acids combine with glycerol to gener-
ate triglycerides. These lipids are subsequently incorporated into
VLDL particles, which are normally secreted into the plasma
unless this route of lipid secretion is impaired. VLDL synthesis
requires not only triglycerides but also apolipoproteins B and CIII.
1 vol. 54 j 773–794
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Furthermore, VLDL assembly within the endoplasmic reticulum
requires the microsomal triglyceride transfer protein (MTP) whose
expression is reduced by insulin [63]. In the plasma, VLDL particles
are hydrolyzed by lipoprotein lipase (LPL), thus allowing the
release of free fatty acids that will be either oxidized in different
extra-hepatic tissues (e.g. heart, skeletal muscles) or re-esterified
into triglycerides in the adipose tissue. LPL is usually not expressed
in the adult liver except in some pathophysiological situations
such as obesity [64].
Impact of leptin and adiponectin on lipid and carbohydrate
metabolism

Besides insulin and glucagon, hormones secreted by the adipose
tissue (referred to as adipokines) can also play a salient role in
lipid homeostasis. Among these adipokines, leptin, and adiponec-
tin present an ‘‘anti-steatotic’’ action by decreasing de novo lipo-
genesis and activating mitochondrial FAO, in particular by
reducing the intracellular levels of malonyl-CoA [65,66]. Indeed,
leptin and adiponectin can induce the phosphorylation of the lip-
ogenic enzyme acetyl-CoA carboxylase (ACC), thus leading to its
inactivation and the subsequent reduction of malonyl-CoA syn-
thesis [66,67]. Both adipokines also control carbohydrate homeo-
stasis in several tissues including the liver [67,68].
Table 1. Hepatotoxic drugs and their corresponding deleterious effects on mitochon
toxic effect has not been reported to date for the corresponding drug and that for d
observed only in vitro.

aAbbreviations: FAO, fatty acid oxidation; MPTP, mitochondrial permeability transition po
oxidative phosphorylation.
bInhibition of mitochondrial FAO through impairment of FAO enzyme(s) and/or depletio
cInhibition of the MRC through impairment of enzyme(s) involved in electron transfer o
dMitochondrial effects of APAP via its reactive metabolite N-acetyl-p-benzoquinone imi
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Leptin also strongly regulates food intake. Consequently, low
leptinaemia can induce obesity and associated metabolic disor-
ders, such as dyslipidemia, type 2 diabetes, and fatty liver
[66,69,70]. However, total leptin deficiency is particularly rare
in humans. In contrast, common obesity is associated with high
leptinemia (a consequence of leptin resistance) and low adipo-
nectinemia, which plays a major role in the pathophysiology of
type 2 diabetes and fatty liver [71,72]. Finally, while leptin favors
inflammation, fibrogenesis, and angiogenesis, adiponectin pre-
vents these different events [71].
Drug-induced mitochondrial dysfunction and liver injury

Drug-induced adverse events and mitochondrial toxicity

The view that drugs could disturb mitochondrial function
emerged several decades ago when clinical studies reported in
some medicated individuals the occurrence of symptoms usually
observed in patients presenting a mitochondrial disease of
genetic origin or a Reye’s syndrome (whose physiopathology
involves severe mitochondrial dysfunction) [5]. For instance, sev-
eral studies reported in the late 70’s and early 80’s the occurrence
of a Reye-like syndrome in epileptic patients treated with val-
proic acid (VPA) [73,74]. Likewise, myopathy, lactic acidosis,
drial function and genome. Note that the absence of cross indicates that the
ifferent compounds listed below some of the mitochondrial effects have been

res; MRC, mitochondrial respiratory chain; mtDNA, mitochondrial DNA; OXPHOS,

n in L-carnitine and coenzyme A.
r ADP phosphorylation.

ne (NAPQI).
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Table 3. Examples of marketed drugs able to induce hepatotoxicity due to
mitochondrial dysfunction, which have received Black Box warnings from
drug agencies.

aAbbreviation: nucleoside reverse transcriptase inhibitors.
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and hepatic steatosis have been reported in the late 80’s and early
90’s in patients treated with the antiretroviral nucleoside reverse
transcriptase inhibitors (NRTIs) zidovudine (AZT), zalcitabine
(ddC), didanosine (ddI) and stavudine (d4T) [5,75–77]. Since
then, the list of drugs inducing adverse events due to mitochon-
drial dysfunction has not ceased to grow year after year.

Regarding drug-induced liver diseases, different mechanisms
of mitochondrial dysfunction have been described thus far,
including membrane permeabilization, OXPHOS impairment,
FAO inhibition, and mtDNA depletion (Table 1) [5–7]. Importantly,
DILI due to mitochondrial toxicity has led to the interruption of
clinical trials, or drug withdrawal after marketing, in particular
when the benefit/risk ratio was deemed to be too low for the
patient’s healthiness (Table 2). Moreover, some marketed drugs
have received Black Box warnings from drug agencies due to mito-
chondrial dysfunction and related hepatotoxicity (Table 3) [6,78].

Drug-induced mitochondrial alterations and cytolytic hepatitis

Cytolytic hepatitis encompasses a wide spectrum of liver injury
of different severity since the destruction of hepatocytes (i.e.
cytolysis) can involve a variable amount of the hepatic mass. Con-
sequently, the mildest forms are characterized by an isolated
increase in plasma alanine aminotransferase (ALT) and asparate
aminotransferase (AST), whereas in the most severe cases fulmin-
ant hepatitis can occur thus requiring liver transplantation [3]. As
already mentioned, hepatocyte cytolysis occurring in vivo can be
the consequence of necrosis or apoptosis. While necrosis leads to
the destruction of the plasma membrane and the release in the
extracellular milieu of different cell components such as trans-
aminases and lactate dehydrogenase (LDH), apoptosis is gener-
ally associated with a discreet removal of the dying cells by
neighboring macrophages [14,79]. However, the removal of a
large number of apoptotic cells can induce the recruitment of
inflammatory cells and the subsequent overproduction of ROS
and cytokines that promote cell necrosis [80]. Thus, apoptosis
in liver can also be associated in vivo with secondary necrosis
and elevated plasma transaminases [81,82].

Drug-induced MPTP opening

MPTP opening is one mechanism whereby drugs can induce cyto-
lytic hepatitis (Table 1) [6,17,83–87]. Among these drugs, disulfi-
ram can also induce mitochondrial membrane permeabilization
through a MPTP-independent mechanism [17]. Studies pertain-
Table 2. Examples of drugs, the potential of which to cause mitochondrial
dysfunction and DILI has led to the interruption of clinical trials, or their
withdrawal after marketing.

aAbbreviation: NSAID, nonsteroidal anti-inflammatory drug.
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ing to drug-induced MPTP are sometimes performed in mito-
chondria de-energized with oligomycin and in the presence of
high concentrations of calcium (e.g. from 10 to 50 lM). Since
these conditions have a profound impact on MPTP opening
[10], it is difficult to extrapolate some data to the in vivo
situation.

The precise mechanisms whereby drugs can induce MPTP
opening are not known although recent investigations suggest
at least three hypotheses, which are not mutually exclusive.

Firstly, drugs can interact with some MPTP components. For
instance, alpidem could trigger mitochondrial membrane perme-
abilization and cell death through its binding to PBR which is
located on the outer membrane [86].

Secondly, drug-induced oxidative stress can favor the oxida-
tion of regulatory thiol groups located within some MPTP compo-
nents [8,17,88]. This mechanism could occur with disulfiram and
acetaminophen (APAP) that both induce major oxidative stress
[8,17,89]. As regards APAP, it is, however, unclear whether this
drug induces MPTP opening via GSH depletion, or through the
direct interaction of its reactive metabolite N-acetyl-p-benzo-
quinone imine (NAPQI) with some (still uncharacterized) MPTP
components. Indeed, NAPQI is able to bind covalently to
mitochondrial proteins and this could have deleterious effect
not only on MPTP but also on mitochondrial respiration and
FAO [90–92].

Thirdly, drugs such as APAP and cisplatin could cause mito-
chondrial permeability transition through an activation of JNK
or other endogenous MPTP inducers [89,93,94]. Regarding APAP,
several studies suggest that JNK activation is related to ROS gen-
eration and, therefore, APAP-induced oxidative stress could pro-
mote MPTP opening through direct and indirect pathways
[34,93].

Drug-induced OXPHOS impairment

Drugs can also induce cell death through a direct impairment of
OXPHOS (Table 1), which reduces ATP synthesis. As already men-
tioned, severe ATP depletion inhibits calcium extrusion from the
cell thus leading to its intracellular accumulation. This in turn
activates proteases, endonucleases, and phospholipases that par-
ticipate in the destruction (or the disorganization) of cell constit-
uents including the plasma membrane and cytoskeleton, thus
leading to necrosis [14,95]. In fact, drug-induced OXPHOS impair-
ment can occur through different mechanisms.

The first mechanism is OXPHOS uncoupling without subse-
quent inhibition of the MRC. In this case, substrate oxidation is
1 vol. 54 j 773–794



Table 4. Examples of drugs inducing microvesicular steatosis.

aAbbreviations: NRTIs, nucleoside reverse transcriptase inhibitors; NSAID, non-
steroidal anti-inflammatory drug.

Hepatocyte

Mitochondrial FAO

Fatty acids

Triglycerides

Toxicity

Microvesicular
Steatosis
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maintained (since electron transfer within the MRC is not altered)
although ATP synthesis is strongly hindered. Indeed, OXPHOS
uncouplers are usually protonophores, namely molecules that
are protonated in the mitochondrial intermembrane space thus
generating cationic compounds that take advantage of the mem-
brane potential Dwm to cross the inner membrane. Consequently,
protons are entering the matrix independently of ATP synthase
thus causing a drop of ATP synthesis. Drugs that induce OXPHOS
uncoupling without subsequent inhibition of the MRC are for
instance the nonsteroidal anti-inflammatory drug (NSAID)
nimesulide and the anti-Alzheimer drug tacrine [83,96]. Other
NSAIDs such as salicylic acid and ibuprofen are also OXPHOS
uncouplers but their uncoupling effect is so mild that it may
not induce deleterious consequences in vivo [5,97]. Finally,
OXPHOS uncoupling can be associated with other mitochondrial
effects that present a more harmful impact on cell viability. For
instance, although diclofenac both uncouples OXPHOS and favors
MPTP opening only the latter effect could be responsible for cell
injury [98].

The second mechanism is OXPHOS uncoupling with subse-
quent inhibition of the MRC activity, thus leading to a secondary
impairment of substrate oxidation such as FAO. Unfortunately,
the precise mechanism whereby these drugs alter electron trans-
fer within the MRC is unknown. Actually, the dual effect of some
drugs on OXPHOS (i.e. uncoupling followed by inhibition) seems
to be concentration-dependent and ‘‘isolated’’ uncoupling never-
theless can be observed for low concentrations of these drugs.
Drug-induced dual effect on OXPHOS has been described with
amiodarone, perhexiline, alpidem, tamoxifen, and buprenorphine
[5,86,99–103]. A dual effect has also been described for salicylic
acid but strong MRC inhibition induced by this drug occurs for
concentrations in the millimolar range [104,105]. Finally, while
drug-induced MRC blockage can participate in the inhibition of
mitochondrial FAO, some drugs, such as amiodarone, perhexiline,
and tamoxifen can also directly inhibit FAO enzymes such as
CPT1, as discussed below [102,106,107].

A third mechanism is an inhibition of the MRC activity without
any prior OXPHOS uncoupling. This situation has been described
for instance with the anti-androgen drug nilutamide [108].
ATP Acetyl-CoA

Gluconeogenesis
(   PC activity)

Energy deficiency
in extra-hepatic tissues

Ketone bodies

Glucose

Fig. 2. Metabolic consequences of severe inhibition of mitochondrial fatty
acid b-oxidation. A severe impairment of mitochondrial fatty acid oxidation
(FAO) can induce accumulation of free fatty acids and triglycerides (thus
explaining microvesicular steatosis), reduced ATP synthesis and lower production
of ketone bodies. Inhibition of FAO also decreases gluconeogenesis through
different mechanisms including lower ATP production and reduced pyruvate
carboxylase (PC) activity. Low plasma levels of ketone bodies (or reduced ketone
bodies utilization) and hypoglycemia are thus responsible for a profound energy
deficiency in extra-hepatic tissues. The accumulation of free fatty acids (and some
of their metabolites such as dicarboxylic acids) could play a major role in the
pathophysiology of microvesicular steatosis. Indeed, these lipid derivatives can
impair mitochondrial function through different mechanisms, thus reinforcing
drug-induced inhibition of FAO.
Drug-induced severe inhibition of mitochondrial b-oxidation and
microvesicular steatosis

Some drugs can induce microvesicular steatosis (Table 4)
[5,6,109–113], which is sometimes referred to as microsteatosis.
Microvesicular steatosis is a potentially severe liver lesion that
can be associated with liver failure, encephalopathy, and pro-
found hypoglycemia thus leading to the death of some patients.
Liver pathology shows the presence of numerous cytoplasmic
lipid droplets, which can be stained with oil red O [109,114].
Hepatic cytolysis and increased plasma transaminases can also
be observed to a variable degree. Amiodarone, although being
able to induce ‘‘pure’’ microvesicular steatosis in a few patients
[115,116], most often provokes macrovacuolar steatosis (occa-
sionally associated with microvesicular steatosis) and steatohep-
atitis. Microvesicular steatosis or mixed steatosis has seldom
been reported with troglitazone in addition to other lesions, such
as necroinflammation, fibrosis, and cholestasis [117–119]. Micro-
vesicular steatosis can be also observed during ethanol intoxica-
tion, Reye’s syndrome, acute fatty liver of pregnancy, and several
inborn errors of mitochondrial FAO and OXPHOS [5,109,120,121].
Journal of Hepatology 201
Whatever its etiology, microvesicular steatosis results primar-
ily from a severe inhibition of the mitochondrial FAO (Fig. 2)
[5,6,122,123]. Although other metabolic pathways could also be
impaired [124], these additional mechanisms most probably play
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a secondary role in the pathophysiology and severity of microve-
sicular steatosis.

A primary consequence of severe inhibition of mitochondrial
FAO is an accumulation of fatty acids that are either esterified
into triglycerides or that remain as a free form, which can rein-
force mitochondrial dysfunction (Fig. 2) [5,18,125]. Another
major consequence is an impairment of energy output in the liver
but also in extra-hepatic tissues attributable to lower ketone
body production (or utilization). Importantly, reduced mitochon-
drial FAO hampers hepatic gluconeogenesis as a consequence of
ATP shortage and pyruvate carboxylase inhibition, which can lead
to severe hypoglycemia in some individuals (Fig. 2) [5,6]. Finally,
severe impairment of mitochondrial FAO is associated with an
accumulation in plasma and urines of fatty acid derivatives, such
as acyl-carnitine and acyl-glycine esters and dicarboxylic acids
[5,6,126].

Drug-induced severe inhibition of mitochondrial FAO can
result from several mechanisms and some drugs impair this met-
abolic pathway by interacting with different mitochondrial
enzymes [5,6]. These mechanisms can be classified into four dif-
ferent categories.

Firstly, drugs, such as ibuprofen, tianeptine, amiodarone,
tamoxifen, and VPA can directly inhibit one or several mitochon-
drial FAO enzymes (Table 1) [5,102,127,128]. VPA-induced severe
FAO inhibition is probably due to D2,4-VPA-CoA and other reac-
tive metabolites which irreversibly inactivate FAO enzyme(s)
(Fig. 3) [129,130]. Likewise, APAP may inhibit FAO enzymes
through the generation of its reactive metabolite NAPQI [91]. This
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may explain why this analgesic drug induces steatosis in some
individuals [1,131]. Unfortunately, the FAO enzymes inhibited
by these drugs have not always been identified, although CPT1
(Fig. 1) could be a key target. Indeed, this enzyme can be inhib-
ited by VPA (Fig. 3), amiodarone, and tamoxifen [102,107,132].
Interestingly, troglitazone is able to inhibit long-chain acyl-CoA
synthase (ACS) (Fig. 1), thus impairing the mitochondrial entry
of LCFAs [133].

Secondly, drugs can impair mitochondrial FAO through the
generation of coenzyme A and/or L-carnitine esters, thus decreas-
ing the levels of these major FAO cofactors (Fig. 1). This mecha-
nism has been shown for VPA (Fig. 3), salicylic acid, and
ibuprofen [5,104,134,135].

Thirdly, mitochondrial FAO can be secondarily impaired as a
result of severe inhibition of the MRC [5,6]. Indeed, the MRC
allows the constant regeneration of FAD and NAD+ required for
the enzymatic reactions catalyzed, respectively, by the FAO
enzymes acyl-CoA dehydrogenases and 3-hydroxyacyl-CoA dehy-
drogenases (Fig. 1). Inhibition of FAO secondarily to MRC impair-
ment could occur with amiodarone (Fig. 4), perhexiline,
tamoxifen, and buprenorphine [6,30,99,101,102]. Interestingly,
these amphiphilic drugs can be protonated within the intermem-
brane space of the mitochondria thus generating cationic com-
pounds entering the matrix thanks to the membrane potential
Dwm (Fig. 4) [5,7,30,102]. Besides OXPHOS uncoupling, this
allows their mitochondrial accumulation and the subsequent
inhibition of both FAO and MRC enzymes. Whereas relatively
low concentrations of these amphiphilic drugs can inhibit
chondrion CPT1
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Fig. 4. Mechanisms of amiodarone-induced impairment of oxidative phosphorylation and mitochondrial fatty acid b-oxidation. Amiodarone (Am) is an amphiphilic
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matrix which induces the subsequent inhibition of different enzymes involved in the mitochondrial respiratory chain (MRC) and FAO. Hence, amiodarone-induced
inhibition of FAO could result from the direct inhibition of FAO enzymes (such as CPT 1) and to an impairment of the MRC activity at the level of complexes I and II.
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directly FAO enzyme(s), higher concentrations are required in
order to impair the MRC [30,99,101,102,106]. Thus, accumulation
of these amphiphilic drugs within the mitochondria eventually
inhibits FAO through a dual mechanism. Finally, although tetra-
cycline derivatives can also reduce the MRC activity [5,136], it
is still unclear whether these drugs inhibit mitochondrial FAO
through MRC impairment or by a direct mechanism.

Fourthly, drugs can impair mitochondrial FAO and induce
microvesicular steatosis by reducing mtDNA levels (Table 1).
Indeed, profound mtDNA depletion induces MRC impairment
and secondary inhibition of FAO. This has been shown for the
antiviral fialuridine (FIAU), AZT, d4T, and ddI, which all inhibit
the mtDNA polymerase c [5,6,41,137,138]. Low mtDNA levels
can also be associated with lactic acidosis resulting from the
inhibition of the TCA cycle [6,139,140]. Tamoxifen and tacrine
can also induce hepatic mtDNA depletion although it is still
unclear whether this mechanism plays a major pathophysiolog-
ical role [7,96,102]. Both tamoxifen and tacrine reduce mtDNA
synthesis by interacting with the mitochondrial topoisomerases
[96,102].

Drugs can also induce mtDNA damage through the produc-
tion of ROS, reactive nitrogen species (RNS) and/or reactive
metabolites. For instance APAP and troglitazone can induce
mtDNA strand breaks which eventually lead to a reduction of
mtDNA levels [141,142]. Indeed, damaged mtDNA molecules
harboring numerous strand breaks can be rapidly degraded
by mitochondrial endonucleases [143–145]. The antiretroviral
NRTIs can also cause the accumulation of the oxidized base
8-hydroxydeoxyguanosine (8-OH-dG) in liver and muscle
mtDNA [41,146]. In addition, mtDNA point mutations have
been detected in some patients treated with NRTIs. These
point mutations may result from the misreading of 8-OH-dG
by DNA polymerase c during mtDNA replication and/or
NRTI-induced impairment of polymerase c repair capacity
Journal of Hepatology 201
[41,147]. Hence, some drugs are liable to cause quantitative
and qualitative mtDNA alterations due to their interaction with
mitochondrial enzymes involved in mtDNA replication and
maintenance and/or through the generation of ROS and reac-
tive metabolites.
1 vol. 54 j 773–794 781



Table 5. Examples of drugs inducing macrovacuolar steatosis and
steatohepatitis.

aAbbreviation: NRTIs, nucleoside reverse transcriptase inhibitors.
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Drug-induced alterations of hepatic lipid metabolism
inducing macrovacuolar steatosis
With some drugs (Table 5) [6,148–151], liver triglycerides accu-
mulate as a large (often single) lipid vacuole displacing the
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Fig. 5. Mechanisms of drug-induced macrovacuolar steatosis and steatohepatitis. Dru
(1) by inducing a moderate impairment of mitochondrial fatty acid oxidation (FAO); (2)
activating transcription factors involved in hepatic lipogenesis, such as SREBP-1c, PP
hyperinsulinemia, which can be the consequence of obesity or lipoatrophy (i.e. a red
steatohepatitis in some patients involves the production of reactive oxygen species (ROS)
events subsequently trigger the production of different cytokines such as TNFa and TGFb
majority of ROS through the alteration of the mitochondrial respiratory chain (MRC), other
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nucleus at the periphery of the hepatocyte. This liver lesion is
commonly referred to as macrovacuolar steatosis [6,152]. Several
drugs responsible for this hepatic lesion can also induce a mixed
form of fat accumulation with macrovacuolar steatosis in some
hepatocytes and microvesicular steatosis in others. It is possible
that the size of the fat droplets could depend on the nature of
some proteins wrapping the lipids (e.g. perilipin and adipophilin)
and/or their content in free fatty acids [5,153]. Alternatively, the
coexistence of both types of steatosis could result from the occur-
rence of different mechanisms of toxicity in distinct hepatocytes.

Macrovacuolar steatosis is also observed in a large number of
obese and diabetic patients, even in those that do no drink alco-
hol. That is why it is often referred to as nonalcoholic fatty liver in
the context of obesity and related metabolic disorders
[60,69,154]. In these disorders, hepatic steatosis primarily results
from two mechanisms: 1) an increased delivery of free fatty acids
to the liver which is the consequence of insulin resistance in adi-
pose tissue (that favors triglycerides hydrolysis); and, 2) a stimu-
lation of de novo hepatic lipogenesis, which is mainly due to
hyperinsulinemia and hyperglycemia that activate the transcrip-
tion factors SREBP-1c and ChREBP, respectively [60,155,156].

Ethanol intoxication frequently induces macrovacuolar stea-
tosis although microvesicular steatosis can be also observed
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gs can induce macrovacuolar steatosis through at least four different mechanisms:
by decreasing the secretion of very-low density lipoprotein (VLDL); (3) by directly

ARc, and PXR, and; (4) by favoring the occurrence of insulin resistance and
uction of body fatness). It is noteworthy that the progression of steatosis into
, which is responsible for oxidative stress and lipid peroxidation. These deleterious
that favor necroinflammation and fibrosis. Although the mitochondria produce the
sources could involve peroxisomal FAO and microsomal cytochromes P450 (CYPs).
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[5,157]. Ethanol-induced fatty liver results from different mecha-
nisms including increased hepatic uptake of fatty acids and de
novo lipogenesis, impaired PPARa signaling, mitochondrial dys-
function and reduced secretion of triglycerides [5,158–161].
Some of these effects could be due to reduced adiponectin secre-
tion by the adipose tissue and elevated expression of tumor
necrosis factor-a (TNFa, which both favor lipid synthesis and
reduced mitochondrial FAO [162–164].

Regarding drug-induced macrovacuolar steatosis, different
mechanisms seem involved (Fig. 5), and a single molecule can
alter several metabolic pathways.

Firstly, a moderate inhibition of mitochondrial FAO could play
a role with amiodarone, perhexiline, tamoxifen, NRTIs, and gluco-
corticoids [5,6,102,165,166]. However, some of these drugs could
induce stronger inhibition of mitochondrial FAO in a few patients
thus leading to the occurrence of microvesicular steatosis, as pre-
viously mentioned.

Secondly, a reduction of hepatic VLDL secretion has been
described with amiodarone, perhexiline, and tetracycline which
all inhibit MTP activity [5,124]. D4T was shown to reduce MTP
mRNA expression in cultured rat hepatocytes but MTP activity
was not assessed [167]. Interestingly, small molecules inhibiting
MTP have been tested in order to lower blood lipids, but the clin-
ical usefulness of this therapeutic strategy has been hampered by
their potential to induce hepatic steatosis [168,169].

Thirdly, increased cellular uptake of fatty acids could play a
significant role with some compounds. This mechanism has been
proposed for efavirenz which activates AMP-activated protein
kinase (AMPK) most probably as a consequence of mitochondrial
complex I inhibition and reduced ATP synthesis [170]. Indeed,
AMPK activation promotes fatty acid uptake into the cell through
the fatty acid transporter FAT/CD36 in addition to its stimulating
role on mitochondrial FAO [171]. Thus, efavirenz-induced lipid
accumulation in hepatocytes is likely favored by the concomitant
increased uptake of extracellular fatty acids and impaired mito-
chondrial FAO [170].

Fourthly, a stimulation of hepatic lipid synthesis could be
involved with drugs, such as interferon-a, glucocorticoids,
tamoxifen, troglitazone, and nifedipine [172–175]. Although the
mechanisms whereby these drugs favor lipid synthesis are not
precisely known, some of them could activate lipogenic tran-
scription factors thus leading to the subsequent induction of
enzymes, such as ACC and fatty acid synthase [165,175,176]. At
least three transcription factors could be involved in drug-
induced activation of lipogenesis: (1) PXR, which could play a role
with nifedipine, tamoxifen, and troglitazone as these drugs are
PXR activators [62,177,178]; (2) PPARc, which could be involved
with the PPARc ligand troglitazone [176]. Actually, thiazolidined-
iones (TZDs) could favor lipid accretion and worsen liver function
more easily in the context of pre-existent induction of PPARc
expression [179,180], as discussed in the next section; (3) Gluco-
corticoid receptor (GR) whose activation plays a central role in
glucocorticoid-induced hepatic lipogenesis and steatosis
[165,181]. Finally, some investigations suggest that the activation
of the constitutive androstane receptor (CAR) could play a role in
phenobarbital-induced hepatic steatosis [182]. However, steato-
sis is rarely observed in patients treated with phenobarbital [1],
and liver fat accumulation in mice is only transient and disap-
pears after 1 week of treatment with this CAR activator [182].
In addition, CAR activation with 1,4-bis[2-(3,5-dichloropyridyl-
oxy)]benzene (TCPOBOP) reduces hepatic lipogenesis and
Journal of Hepatology 201
prevents fatty liver induced by obesity or a methionine choline-
deficient diet [183–185]. Hence, the nuclear receptor CAR may
have divergent effects on hepatic lipogenesis depending of the
duration of its activation and/or the nature of its activator.
Mechanisms involved in the progression of steatosis into
steatohepatitis

Several drugs can induce steatohepatitis (Table 5) [5,6,116,
149,186–189], a potentially severe liver lesion characterized by
the presence of necroinflammation, fibrosis, and Mallory bodies.
In the context of drug-induced steatohepatitis, fat accumulates
usually as large vacuoles, although microvesicular steatosis can
also be present in some hepatocytes. Inflammation and fibrosis
can be of variable severity and occasionally cirrhosis occurs
with drugs, such as amiodarone, perhexiline, and didanosine
[116,149,190–192]. Importantly, drug-induced steatohepatitis
shares many pathological and clinical features with alcoholic
steatohepatitis and nonalcoholic steatohepatitis (NASH).

Although there are still some unsolved issues about the mech-
anisms involved in the progression of steatosis into steatohepati-
tis, there is evidence for a key role of mitochondrial dysfunction
(Fig. 5). Indeed, several drugs causing steatohepatitis are able to
impair the mitochondrial OXPHOS process and inhibit the MRC
(Fig. 5) [5–7,193]. Actually, inhibition of the MRC could not only
participate to fat deposition but also to ROS overproduction.
However, other (i.e. nonmitochondrial) sources of ROS are prob-
ably involved, such as peroxisomal FAO, or microsomal CYPs
[194,195].

ROS, whatever their sources, can then trigger peroxidation
of polyunsaturated fatty acids, a degradative process genera-
ting reactive aldehydic derivatives, such as malondialdehyde
and 4-hydroxynonenal [195–197]. Importantly, ROS and lipid
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peroxidation products activate Kupffer and stellate cells that
play a role in inflammation and fibrogenesis, respectively (Fig. 5)
[155,196,198–201]. Lipid peroxidation products are also able to
modulate stress signaling pathways, damage DNA (including
mtDNA), inhibit MRC activity and induce cell death [202–206].
Interestingly, malondialdehyde can cross-link cytokeratine 8,
which may contribute to Mallory bodies’ formation [207]. ROS
and lipid peroxidation-induced MRC impairment and mtDNA dam-
age also promote mitochondrial dysfunction, thus leading to a
vicious circle, which can further increase ROS production and pro-
voke cell death. Finally, the production by activated inflammatory
cells of several cytokines, such as TNFa and TGFb can also partici-
pate in cell death during steatohepatitis (Fig. 5) [7,155,208].

Some drugs, such as tamoxifen, irinotecan, methotrexate, and
the TZDs pioglitazone and rosiglitazone could aggravate the pre-
existing nonalcoholic fatty liver disease (NAFLD) in obese and
diabetic patients, and sometimes hasten the progression of stea-
tosis into steatohepatitis and severe fibrosis [180,209,210–212].
Although the mechanisms involved in drug-induced aggravation
of pre-existing NAFLD in obese patients are not known, some
hypotheses can be put forward. For instance, activation of PPARc
and de novo lipogenesis could be involved with the TZDs
[176,180]. Indeed, although PPARc expression is low (or nil) in
normal liver it could be enhanced in liver presenting NAFLD
[69,213–215], thus allowing its full-blown activation by the syn-
thetic PPARc ligands. Alternatively, some of these drugs could
worsen the pre-existing mitochondrial dysfunction present in
NAFLD [155,216]. This may occur with tamoxifen and methotrex-
ate which both impair MRC activity [102,193,217]. Finally, ciga-
rette smoke exposure and chronic ethanol intoxication could
also aggravate NAFLD in the context of obesity [218–220].
Drug-induced lysosomal phospholipidosis

Drugs such as amiodarone and perhexiline can induce liver phos-
pholipidosis, which is characterized by an accumulation of phos-
pholipids within the lysosomes, thus leading to the formation of
‘‘lamellar bodies’’ in affected hepatocytes [221,222]. Drug-
induced phospholipidosis is frequent and has apparently few
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(or no) biochemical or clinical consequences if it is not associated
with other histopathological alterations [5,223]. At least two
mechanisms could be involved in drug-induced phospholipidosis
including a decline of intracellular lysosomal enzyme levels and
an inhibition of several lysosomal phospholipases [5,221,224].
Interestingly, investigations showed that amiodarone and per-
hexiline-induced effects on mitochondria and lysosomes are
related to their chemical structure. Indeed, these amphiphilic
drugs can be protonated in the intermembrane space of mito-
chondria or inside the lysosomes that are both acidic milieus.
This protonation generates cationic molecules that accumulate
within the mitochondria and inhibit MRC and FAO enzymes (as
previously discussed), or interact with intralysosomal phospho-
lipids, thus inhibiting the action of phospholipases [5,30,221].
Drug-induced hepatic steatosis through adipose tissue
alterations and insulin resistance

Some drugs could favor fatty liver by altering the white adipose
tissue (WAT) (Table 6). This situation occurs for instance with
d4T and ddI which can induce lipoatrophy (i.e. reduction of body
fat mass) and a subsequent reduction of leptin secretion by the
white adipocytes [225,226]. Indeed, low leptinemia enhances de
novo lipogenesis in the liver, as already mentioned [69,227]. In
addition, hypoleptinemia likely promotes lipid accretion in skel-
etal muscle and pancreas, thus causing insulin resistance and
type 2 diabetes (Fig. 5) [228,229]. Consequently, both hypoleptin-
emia and subsequent insulin resistance could favor liver lipid
accumulation in patients suffering from NRTI-induced lipoatro-
phy [225–227].

In contrast, some drugs promote steatosis and steatohepatitis
by increasing body fatness (Table 6). In this context, insulin resis-
tance and subsequent hyperinsulinemia induce hepatic lipid
accumulation [60,156]. This scenario occurs with glucocorticoids,
which cause central obesity, at least in part as a result of CNS-
mediated increase in food intake [230]. Glucocorticoid-induced
obesity can be associated with insulin resistance, diabetes, dysli-
pidemia, and fatty liver, as previously mentioned [174,231,232].
Glucocorticoids could also promote hypoadiponectinemia and
related metabolic disturbance through a mechanism unrelated
to the expansion of body fat mass [233]. Tacrolimus (another
immunosuppressive drug) favors hepatic steatosis in some liver
transplant recipients through reduced pancreatic insulin secre-
tion and secondary diabetes [234,235].

The antipsychotic drugs clozapine, olanzapine, chlorproma-
zine, and risperidone can increase food intake and induce obesity
through mechanisms that may involve interaction with the sero-
toninergic 5-HT2C receptors and/or disruption of leptin signaling
in the hypothalamus [236,237]. Besides increasing appetite
through CNS actions, some of these drugs could also directly
favor lipogenesis in adipocytes [238–240]. Importantly, anti-
psychotics-induced obesity can be associated with various meta-
bolic disorders, such as insulin resistance, diabetes, dyslipidemia,
and fatty liver [237,241–244]. Although antipsychotics-induced
fatty liver could be an indirect consequence of obesity and insulin
resistance, experimental studies showed that drugs such as
clozapine and olanzapine directly increase de novo lipogenesis
in hepatocytes [245]. SREBP activation could be a common
mechanism whereby some antipsychotic drugs directly trigger
lipogenesis in both adipocytes and hepatocytes [240,245,246].
1 vol. 54 j 773–794



Table 6. Examples of drugs inducing obesity, or lipoatrophy, thus favoring the
occurrence of insulin resistance and NAFLD.

aAbbreviation: NRTIs, nucleoside reverse transcriptase inhibitors.
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Occurrence of obesity is also a great concern in patients trea-
ted with VPA [247,248], which could stimulate appetite directly
through a hypothalamic effect and indirectly by impairing leptin
secretion or bioavailability [247,249,250]. Actually, macrovacuo-
lar steatosis seems highly prevalent in VPA-treated patients and
liver fat accretion is positively correlated with body mass index
and plasma insulin levels [251,252]. In addition, steatohepatitis
can also occur in patients treated with VPA [253,254]. Hence,
the high prevalence of hepatic steatosis in VPA-treated patients
is likely related to its propensity to induce obesity and insulin
resistance. However, one cannot exclude a direct detrimental
effect of this drug on hepatic mitochondrial FAO, as previously
discussed.

Finally, it is noteworthy that ethanol intoxication could favor
fatty liver and steatohepatitis through reduced adiponectin secre-
tion [162,255]. As adiponectin presents anti-steatotic and anti-
inflammatory action, reduced plasma adiponectin in alcoholics
could favor both hepatic lipid accretion and necroinflammation.
Liver dysfunction resulting from hypoadiponectinemia adds to
the numerous deleterious effects directly induced by ethanol
intoxication in hepatocytes including oxidative stress, lipid per-
oxidation, and mitochondrial dysfunction [5,7,256]. However,
moderate ethanol consumption enhances plasma adiponectin
levels and this may explain, at least in part, why reasonable alco-
hol intake affords favorable effects on obesity-associated fatty
liver and type 2 diabetes [257–259].
Factors favoring drug-induced toxicity on mitochondria and
lipid metabolism

Numerous factors may favor drug-induced mitochondrial and
metabolic toxicity in treated patients and only the most impor-
tant of them will be mentioned below.

Drug structure and metabolism

Chemical structure and intrahepatic metabolism play a major
role for several drugs. Amiodarone, perhexiline, tamoxifen, and
buprenorphine are amphiphilic drugs harboring protonable
amine moieties that favor their accumulation inside the mito-
chondrial matrix under the influence of the membrane potential
Dwm (Fig. 4) [7,30,99,101,102]. VPA (dipropylacetic acid) is a
branched-chain fatty acid activated by coenzyme A, thus explain-
ing why this drug can reduce the intracellular levels of this
mitochondrial FAO cofactor (Fig. 3) [5,7,135]. In addition,
CYP-mediated biotransformation of VPA into D4-VPA subse-
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quently gives rise to D2,4-VPA-CoA and other reactive meta-
bolites that irreversibly inactivate FAO enzymes (Fig. 3)
[5,129,130]. This contribution of CYPs in VPA-induced mitochon-
drial toxicity explains in large part why its hepatotoxicity is
favored by the concomitant administration of CYP inducers such
as phenobarbital and phenytoin (Fig. 3) [5,7,260]. Finally, NRTIs
inhibit mtDNA replication due to their ability to undergo phos-
phorylation as the cognate endogenous nucleosides and to be
subsequently incorporated within the mitochondrial genome by
the DNA polymerase c [41,147].

Drug dosage and duration of the treatment

Clinical reports in the 50’s and 60’s indicated that severe micro-
vesicular steatosis induced by tetracycline and its derivatives was
clearly dose-dependent [5]. In particular, most cases of fatty liver
were observed in patients receiving large intravenous dosages
(>1.5 g/day) of tetracycline derivatives [5,261]. However, tetracy-
cline-induced steatosis is no longer observed since such huge
intravenous doses have been abandoned. Regarding VPA, asymp-
tomatic elevation of transaminases can be normalized by reduc-
ing its dosage but VPA-induced microvesicular steatosis does not
appear to be dose-dependent [5,262]. Long-term administration
of amiodarone and perhexiline could also favor steatohepatitis,
a liver lesion which usually occurs after several months or years
of treatment [5,149]. Amiodarone accumulates in numerous
tissues of treated patients including liver, lung, and adipose tis-
sue and can be detectable in plasma several months after its
discontinuation [189,263,264]. Hence, amiodarone-induced
hepatotoxicity can further deteriorate despite stopping the anti-
arrhythmic therapy [265]. Long-lasting administration of NRTIs
also increases the risk of mitochondrial toxicity in liver and
adipose tissue [266,267].

Genetic predispositions

Several genetic predispositions could enhance the risk of drug-
induced mitochondrial toxicity and subsequent liver injury. Con-
ceptually, DNA polymorphisms (or sometimes mutations) can
favor DILI through different mechanisms including: (1) accumu-
lation of the potentially toxic parent drug via reduced activity
of drug-metabolizing enzymes such as CYPs; (2) increased levels
of reactive metabolite(s) and oxidative stress due to lower activ-
ity of enzymes involved in drug or ROS detoxication; and (3) mild
pre-existent mitochondrial dysfunction that can be deteriorated
during the course of the treatment. Several examples of gene
alteration predisposing for mitochondrial/metabolic toxicity and
DILI are given below.

In patients treated with perhexiline, polymorphism in the
CYP2D6 gene may favor steatohepatitis and cirrhosis through a
reduction of its oxidation [5,268]. A polymorphism in the CYP17
gene, which regulates serum estrogen, has been associated with
an increased risk of tamoxifen-induced hepatic steatosis [269].
The risk of troglitazone-induced hepatotoxicity was enhanced
in patients harboring the combined glutathione S-transferase
GSTT1-GSTM1 null genotype [270], whereas the same genotype
was found to increase the susceptibility of liver injury induced
by other drugs [271]. As these GSTs seem to be involved in the
detoxication of an epoxide metabolite of troglitazone, their defi-
ciency may promote the accumulation of this reactive intermedi-
ate and subsequent liver toxicity [270]. On the contrary, CYP2C9
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genetic polymorphism may reduce the formation of D4-VPA and
thus the likelihood of VPA-induced hepatotoxicity [272].

Several congenital defects in mitochondrial enzymes involved
in FAO and OXPHOS have been detected in patients with VPA
hepatotoxicity [5,273–275]. This drug also induced more fre-
quently liver injury in patients harboring mutations (e.g. A467T,
W748S and Q1236H) in the gene encoding DNA polymerase c
[276,277]. Another mutation (R964C) in the gene encoding DNA
polymerase c may also favor mitochondrial toxicity induced by
NRTIs, possibly by enhancing the probability of their incorpora-
tion within the mtDNA molecules and the subsequent arrest of
mtDNA replication [278,279]. Inter-individual differences in
mitochondrial anti-oxidant enzymes such as MnSOD may
increase the risk of mitochondrial oxidative damage and hepato-
toxicity induced by different drugs and alcoholic intoxication
[280–283]. Finally, some genetic factors may augment the risk
of drug-induced obesity, insulin resistance, and dyslipidemia
[237,284–286], thus indirectly promoting the occurrence of fatty
liver.

Obesity and type 2 diabetes

There is growing evidence that obesity can increase the risk of
DILI, at least for some drugs. In fact, two distinct clinical settings
may exist. Firstly, obese patients could be more prone to develop
drug-induced acute hepatitis. This has been suggested for the
volatile halogenated anaesthetic halothane [287–289], APAP
[290,291], and different drugs, such as losartan, ticlopidine, and
omeprazole [292]. Interestingly, it has been reported that diabe-
tes also increases the risk of acute liver failure (ALF), including
drug-induced ALF [293]. Secondly, the pre-existing NAFLD
observed in obese and diabetic individuals could be further
aggravated by the chronic intake of drugs, such as tamoxifen
[209], irinotecan [151,210], NRTIs, [267] and methotrexate
[294,295]. However, obesity may not increase the risk of DILI
for all potential hepatotoxic drugs. For instance, amiodarone
may not be more hepatotoxic in obese patients with a metabolic
syndrome [296].

Experimental studies have dealt with the issue of xenobiotic-
induced hepatotoxicity in the context of obesity. Unfortunately,
the mechanisms of enhanced liver sensitivity have not always
been determined. For instance, hepatotoxicity has been found
more severe in obese rodents treated with tetracycline [297],
phenobarbital, [298] and haloperidol [299], but no mechanistic
explanations were provided in these studies. As previously men-
tioned, activation of PPARc could explain why the TZD rosiglitaz-
one aggravated NASH in obese ob/ob mice [180]. Studies in
rodents have shown that obesity also favors hepatotoxicity
induced by binge ethanol exposures through mechanisms involv-
ing increased expression of TNFa and Fas ligand [220,300].
Hence, NAFLD could be aggravated by drugs through different
mechanisms including an enhanced ability of the obese liver to
synthesize fat and to produce cytokines promoting necroinflam-
mation and fibrosis. Other common mechanisms may be based
on reduced anti-oxidant defenses with lower GSH levels and
GST expression [301,302], as well as latent MRC dysfunction
[60,155,216].

For halothane and APAP, a specific mechanism could be an
increased activity of hepatic CYP2E1, which is the main CYP iso-
enzyme involved in the generation of their toxic reactive metab-
olites [303–306]. Indeed, CYP2E1 expression and activity are
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enhanced in obese patients, in particular in those with NAFLD,
although the exact mechanism of CYP2E1 induction is still poorly
understood [307–310]. When compared to lean individuals mor-
bidly obese patients tended to have higher plasma levels of triflu-
oroacetic acid, the end product of CYP2E1-mediated oxidation of
halothane, which reflects the generation of the reactive metabo-
lite trichloroacetyl chloride [311]. Unfortunately, hepatic CYP2E1
activity was not assessed in this study. As regards APAP, although
different investigations dealt with the effect of obesity on its
disposition it is still unknown whether the toxic metabolite
NAPQI is generated at a greater extent in obese patients
[312–314]. Finally, investigations in obese animals treated with
APAP have given conflicting results with either increased hepato-
toxicity [315,316] or an obvious protection [317,318]. Although
the reasons of these discrepancies are still unclear, protection
against APAP-induced liver toxicity was observed in obese
ob/ob mice and fa/fa Zucker rats that consistently present
normal, or even reduced, hepatic CYP2E1 expression and activity
[220,300,319–322].

Hepatitis C virus infection and alcohol intoxication

Other factors such as hepatitis C virus (HCV) and alcoholic intox-
ication can enhance the risk of DILI, in particular during NRTI
therapy [323,324]. Interestingly, both factors induce mitochon-
drial dysfunction and oxidative stress [5,256,325–327]. These
factors also disturb lipid metabolism beyond their deleterious
effects on mitochondrial function. Whereas HCV impairs hepatic
VLDL secretion and induces insulin resistance [328,329], alco-
holic intoxication strongly enhances hepatic lipogenesis through
SREBP-1c activation [160,161,164,327].

Alcoholic intoxication could also favor hepatotoxicity with
methotrexate, buprenorphine and APAP [7,330,331]. Although
chronic heavy alcohol consumption enhances the risk of APAP-
induced liver injury in the context of APAP overdose, some cases
of hepatotoxicity have also been reported in alcoholics taking
modest doses of APAP [330,332]. Ethanol overconsumption could
favor APAP-induced liver injury through at least three different
mechanisms: (1) CYP2E1 induction; (2) reduction of GSH stores;
and (3) damage of mitochondrial components including MRC
complexes and mtDNA [6,333,334]. CYP2E1 induction enhances
the biotransformation of APAP into NAPQI, a particularly reactive
metabolite that binds covalently to endogenous molecules, such
as DNA, some polypeptides (in particular within the mitochon-
dria), and GSH. The covalent binding of large amounts of NAPQI
to GSH thus induces a massive reduction of its intracellular levels
and subsequent oxidative stress, which can reinforce mitochon-
drial dysfunction [34,90,92,303]. Hence, APAP-induced oxidative
stress and cell demise are favored when GSH stores are reduced
by previous alcohol intoxication. Finally, it is noteworthy that a
significant amount of hepatic CYP2E1 is located within the mito-
chondria, in particular after ethanol intake [54–56,321]. Thus,
NAPQI could be directly generated within liver mitochondria in
the context of prior alcoholic overconsumption.

Remaining issues and concluding remarks

Numerous drugs can be toxic for the liver [1] and hepatic mito-
chondria seem to be preferential targets (Table 1). However, more
investigations are needed to determine the precise list of drugs
inducing mitochondrial dysfunction and subsequent liver lesions.
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To address this major issue it is urgent to set up high-throughput
technologies [335], which could help to rapidly screen a great
number of molecules. This screening is also important for the
early detection of mitochondrial toxicity during preclinical stud-
ies since it can avoid late-stage withdrawal during drug develop-
ment [6,78,336].

More than a decade ago, drug-induced steatosis was mainly
considered as the consequence of impaired mitochondrial FAO
[5,337]. Although this concept remains valid for microvesicular
steatosis, recent investigations clearly indicate that drug-induced
macrovacuolar steatosis can be due to several mechanisms
including reduced VLDL export, enhancement of de novo lipogen-
esis and alteration of body fatness. The latter mechanism illus-
trates the concept that some drugs can indirectly damage the
liver by increasing (or less frequently, decreasing) body fat mass,
thus inducing insulin resistance and altering the secretion of
adiponectin and leptin. This is a challenging issue since such indi-
rect mechanisms of liver injury cannot be detected thanks to
in vitro investigations. Because fatty liver can progress into ste-
atohepatitis and cirrhosis, this lesion cannot be deemed as benign
in the long-term. Moreover, recent investigations also suggest
that obese individuals could present a greater risk of DILI
although this could involve some (but not all) drugs. Thus, it
has become clear that the adipose tissue plays a role in DILI. As
there are millions of obese individuals taking drugs on a regular
basis more investigations are needed to determine the exact
impact of obesity on drug safety, in particular regarding the liver.

Circadian rhythms significantly change gene expression in dif-
ferent tissues including the liver [338,339]. Recent experimental
investigations suggest that these circadian rhythms may modu-
late the incidence and severity of drug-induced hepatotoxicity,
in particular by modifying CYP expression [340,341]. However,
clinical investigations will be required to translate these results
to the human situation. Disruption in circadian rhythmicity
may also have various detrimental effects regarding carbohydrate
and lipid homeostasis in the liver [342,343]. Since some drugs
can alter the hepatic expression of clock genes [344,345], it will
be interesting to determine whether these changes favor the
occurrence of steatosis and steatohepatitis.

Another major issue is the identification of the main factors
increasing the risk of DILI. Since numerous cases of DILI may be
idiosyncratic (i.e. host-dependent), it will be important to iden-
tify these factors in order to reduce the frequency of side effects
[346,347]. Although some congenital and acquired factors that
modify mitochondrial/metabolic homeostasis have already been
detected, there are many others that need to be uncovered. While
large-scale prospective human studies will be required to solve
this issue, investigations in appropriate animal models will also
be useful [78,348–350].
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