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Abstract. While the automatic detection of AD has been widely studied, the 

problem of the prediction of AD (or its early detection) has been less investi-

gated. This might be explained by the fact that the prediction problem is clearly 

more challenging since the anatomical changes are more subtle. However, from 

a clinical point of view the prediction of AD is the key question since it is in 

that moment when treatment is possible. The potential use of structural MRI as 

imaging biomarker for Alzheimer’s disease (AD) for early detection has be-

come generally accepted, especially the use of atrophy of entorhinal cortex 

(EC) and hippocampus (HC). Therefore, in this study, we analyze the capabili-

ties of the recently proposed method, SNIPE (Scoring by Nonlocal Image Patch 

Estimator), for the early detection of AD to analyze EC and HC atrophy over 

the entire ADNI database (834 subjects). During validation, the detection (AD 

vs. CN) and the prediction (pMCI vs. sMCI) efficiency of SNIPE were studied. 

The obtained results showed that SNIPE obtained competitive or better results 

than HC volume, cortical thickness and TBM. Moreover, results indicated that 

MRI grading-based biomarkers are more relevant than volume-based biomark-

ers. Finally, the success rate obtained by SNIPE was 90% for detection (AD vs. 

CN) and 74% for prediction (pMCI vs. sMCI). 

1 Introduction 

Clinical trials for Alzheimer’s disease (AD) have been lately targeting disease-

modifying therapies [1] stressing the need for identifying the disease in its prodromal 

stage when the pathological injury is not too severe. Finding biomarkers that could 

lead to this detection is therefore a major issue for current international research. 

Structures in the medial temporal lobe are more and more studied because of their 



strong involvement in the pathogenesis of Alzheimer’s disease (AD). The histopa-

thology investigations of Braak and Braak [2] suggests that AD begins with the for-

mation of neurofibrillary tangles in the medial temporal lobe, particularly the entorhi-

nal cortex (EC), a structure of the parahippocampal cortex, and is then followed by 

the hippocampus (HC), and from there on expands to other structures across the neo-

cortex. When the evolution of AD can be studied by post-mortem studies, the ques-

tion arises if neuroimaging techniques might be able to detect these subtle changes in-

vivo before the onset of more downstream symptoms. 

In addition to the accepted use of CSF and PET biomarkers, the potential use of 

structural MRI as early imaging biomarker for AD detection has taken more impor-

tance in the literature [3]. Especially the use of atrophy of the EC and HC as early 

imaging biomarkers is considered a promising way to follow AD progression [3] 

since decrease in cognitive performances on episodic memory tests, the cognitive 

hallmark of AD [4-6], are associated with temporal lobe atrophy. However, the auto-

matic extraction of these medial temporal lobe structures is challenging especially in 

case of EC [7]. Moreover, the inter-subject variability of brain anatomy tends to limit 

AD detection using only volumetric approaches [8, 9]. Recently, new nonlocal patch-

based frameworks have been proposed on these two aspects: a robust approach to 

automatically segment HC and EC [10] and the characterization of structure atrophy 

using a scoring method [9].  

The scoring of the considered structure is achieved by estimating the nonlocal 

similarity of the subject structures under study with different training populations. 

Thanks to a nonlocal framework, the Scoring by Nonlocal Image Patch Estimator 

(SNIPE) handles the inter-subject variability by enabling a one-to-many mapping 

between the subject’s anatomy and the anatomies of many training templates. Moreo-

ver, enabled by the patch-based comparison principle, SNIPE detects subtle changes 

caused by the disease as already shown in [9]. In a previous study, the high success 

rate accuracy of SNIPE for AD detection (i.e., AD patients vs. cognitively normal 

(CN) subjects) has been demonstrated on a subset of the ADNI database (i.e., 100 

subjects).   

From a clinical point a view, AD prediction (i.e., progressive mild cognitive im-

pairment (MCI) vs. stable MCI) is a more crucial question than diagnosis, but this 

question is clearly more clinically challenging since the anatomical changes that need 

to detect are more subtle. Recently, this problem has been studied using image analy-

sis such as HC volume, Cortical Thickness measurement (CTH), Voxel Based Mor-

phometry (VBM) and Tensor Based Morphometry (TBM) [8, 11-18]. Comparison of 

these imaging biomarkers can be found in [8, 13]. According to these comparisons, 

the accuracy of AD prediction of the compared methods (e.g., HC volume, CTH, 

VBM or TBM) is inferior to 66% [8]. To the best of our knowledge, the highest accu-

racy obtained on the entire ADNI database has been obtained by combining four 

methods resulting in 68% of accuracy for pMCI vs. sMCI [8].  

In this study, we propose to investigate the capabilities of SNIPE for early detec-

tion of AD on the entire ADNI database (834 scans). Moreover, we propose to com-

pare our results with the different methods compared by Wolz et al. in [8] as these 

represent some of the best results published to date using the whole ADNI database. 



2 Methods 

2.1 MRI scans 

The data analyzed in this paper was obtained from the Alzheimer’s Disease Neuro-

imaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical 

Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), 

private pharmaceutical companies and non-profit organizations, as a $60 million, 5-

year public-private partnership. The primary goal of ADNI has been to test whether 

serial magnetic resonance imaging (MRI), positron emission tomography (PET), other 

biological markers, and clinical and neuropsychological assessment can be combined 

to measure the progression of MCI and early AD. Determination of sensitive and 

specific markers of very early AD progression is intended to aid researchers and clini-

cians to develop new treatments and monitor their effectiveness, as well as lessen the 

time and cost of clinical trials. 

To facilitate comparison with previous work, the 1.5T baseline scans used here are 

the same as those used in [8], where the 834 available baseline ADNI scans were 

divided into 4 populations for CN, progressive MCI (pMCI), stable MCI (sMCI) and 

AD. An MCI subject is considered as progressive if he or she converted to AD at the 

date of July 2011.  The four groups contained 231 CN, 238 sMCI, 167 pMCI and 198 

AD. Demographic details of the used dataset can be found in Table 1. 

Table 1: Demographic details of the four groups analyzed: patients with AD (AD), cognitively 

normal subjects (CN), patients with progressive mild cognitive impairment (pMCI) and patients 

with stable mild cognitive impairment.  

 Population size % males Age ± std MMSE ± std 

CN 231 52%  76.0 ± 5.0 29.1 ± 0.9 

sMCI 238 67% 74.9 ± 7.7 27.2 ± 2.5 

pMCI 167 60% 74.5 ± 7.2 26.4 ± 2.0 

AD 198 50% 75.6 ± 7.7 22.8 ± 2.9 

 

2.2 Image pre-processing 

Before applying SNIPE, all the images were preprocessed through a fully automatic 

image processing pipeline. This pipeline was composed of the following steps: esti-

mation of the standard deviation of noise with [19], denoising based on an optimized 

nonlocal means filter [20], correction of inhomogeneities using N3 [21], registration 

to the stereotaxic space based on a linear transform to the ICBM152 template (1x1x1 

mm! voxel size) [22], linear intensity normalization of each subject on template inten-

sity, brain extraction using BEaST [23], image cropping around the structures of in-

terest (see Fig. 1), cross-normalization of the MRI intensity between the subjects us-

ing the method proposed in Nyul and Udupa within the estimated brain mask [24].  



2.3 Scoring by Nonlocal Image Patch Estimator (SNIPE) 

SNIPE is an image-based metric that uses a non-local, patch-based method to 

compare the local neighborhood (i.e., the 3D patch) around each voxel from a seg-

mented structure of a test volume to similar patches from MRI data in a template li-

brary. This technique is not unlike patch-based segmentation procedures [6], but in-

stead of using a voting scheme to determine the voxel label for segmentation, the 

patch-based similarity is used as weights in a function that yields a metric that de-

scribes the similarity of the test voxel to a particular patient group.  In this case, the 

SNIPE metric score will indicate if the voxel in question is more like one group (e.g., 

NC) or another (e.g., AD).  Details of the method are given in the following. 

 

Label propagation for library generation 

 

 

Figure 1: Example of SNIPE workflow for an MCI subject. After initial label 

propagation step, the resulting template training libraries are used by SNIPE to esti-

mate the grading maps of the entire ADNI database (AD, pMCI, sMCI and CN).   

For efficiency in template library generation, SNIPE propagates structure labels 

from a small number of manually segmented templates to all members of the training 

library.  As in our previous work [5], the hippocampus (HC) and entorhinal cortex 

(EC) were manually labeled on 10 CN and 10 AD subjects using protocol described 

in [25]. These manual segmentations are then used in a patch-based segmentation 

procedure [6] to label the HC and EC in the 231 CN and the 198 AD datasets consti-



tuting the template library. Once completed, the template library is used to both seg-

ment and grade the HC and EC of new subjects. 

 

Structure segmentation and grading 

 

With the template library built, the SNIPE algorithm can be used to segment the 

HC and EC and estimate the grading map for each subject within each ADNI database 

group (AD, pMCI, sMCI and CN) using the following procedure (see Fig. 1): 

• Templates selection: The closest N/2 subjects from each training population (i.e., 

AD and CN) are selected based on an SSD metric evaluated over a standard, prede-

fined initialization mask. For AD and CN subjects, we carefully removed the sub-

ject under study from the training library.       

• Scoring and segmentation of the subject under study: For each voxel (included in 

the initialization mask) of the subject under study (progressive MCI in the example 

provided in Fig. 1), we compared its surrounding patch with all the patches from 

the N training templates selected from the AD and CN populations. This way, we 

simultaneously obtained a grading map and a segmentation for HC and EC. 

• Feature extraction: The segmentations were used to compute the structure volumes, 

and the average grading value was estimated over the HC and EC segmentations. 

Both biomarkers were used as features during the classification step. 

 

Feature classification  

The classification between different groups is based on a linear discriminant analy-

sis (LDA). In previous work [9], we showed that slightly better classification accu-

racy could be obtained for AD vs. CN using quadratic discriminant analysis (QDA). 

However, in order to enable a more direct comparison with the work of Wolz et al. 

[8], we used LDA in this study. Moreover, in [9], it has been demonstrated that better 

classification accuracy could be obtained using subjects’ age as feature in addition to 

volume or grade. Therefore, age was included as an additional feature for all experi-

ments presented here for grade and volume biomarkers. The correlation between im-

aging biomarkers and the subjects’ age will be analyzed. In addition, in [9], it has 

been shown that better classification was obtained for HC and HC-EC complex. Thus 

we will use these two structures for image-based biomarkers during methods com-

parisons. Finally, we used a repeated leave-N-out cross validation procedure (100 x 

LNOCV) in a similar manner to that presented in [8]. In each LNOCV experiment, 

95% of the datasets were used as training set and the remaining 5% as testing set, 

randomly chosen. To reduce the variance of the results, this procedure was repeated 

100 times and the mean classification rate was used as the final result.  

2.4 Implementation details 

All parameters proposed in [5] are used here, except the patch size for EC and the 

number of used training templates N.  In more recent work, it has been shown in [26] 

that a patch of 5x5x5 voxels can be enough for EC segmentation and thus has been 



used for better computational efficiency instead of a larger patch size. Therefore, we 

used this patch size for the EC and patches of 7x7x7 voxels for HC as suggested in 

[9]. Moreover, in [9], it was suggested to select 60% of the entire library during tem-

plate selection (i.e. 30 AD and 30 CN of the 50 subjects available). In this study, we 

use only around 25% of the entire library (NAD=50 and NCN=50) for computational 

reasons as well.  

3 Results 
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Figure 2: Volumes and grades of HC and EC structures for the studied populations 

according to the age of the subjects. Linear regressions are displayed for better visu-

alization of global tendencies. Pearson’s coefficients and p-values of the regressions 

are provided in the legend. 



3.1 SNIPE volumetric study 

The top of Fig. 2 shows the volumes obtained by SNIPE for HC and EC. These 

volumes are plotted according to the age of the subjects for the four studied popula-

tions. First, we can observe a significant reduction of the volumes with age for HC 

while for EC this reduction is not statistically significant as assessed by p-values and 

Pearson’s coefficients. Moreover, for HC a stronger reduction can be noted for the 

AD population. This can be explained by the addition of the atrophy related to the age 

with the atrophy related to the pathology. The evolution of EC volumes along the age 

is more difficult to interpret. The low Pearson’s coefficient r and the high p-values of 

the linear regressions indicate a non-significant linear correlation of EC volumes with 

age except for AD. Compared to HC volumes, this might be due to higher inter-

subject variability and more frequent errors in the segmentation as discussed in [9]. 

Therefore, for EC, the pathology-related patterns seem partially hidden by inter-

subject variability. 

3.2 SNIPE grading study 

The bottom of Fig. 2 presents the average grading values obtained by SNIPE for 

HC and EC. For the structures studied, the grading values are significantly correlated 

with age (all the p-values are < 0.005) and decrease with age. Moreover, compared to 

the volumetric study, the correlation coefficients obtained with grade are larger. As 

expected, CN subjects have the highest grading values and AD patients the lowest. 

More interestingly, the same observation holds for sMCI compared to pMCI. Finally, 

as we will show later during the classification experiment by comparing volume and 

grade biomarkers, the higher correlation with age enables a better distinction of ana-

tomical differences due to age-related modifications and pathology-related alterations, 

and the lower intra-population variance enables a better distinction of anatomical 

differences due to inter-subject variability and pathology-related alterations. 

3.3 Patient’s classification 

Table 2 shows the success rates obtained by the proposed imaging biomarkers (i.e., 

HC volume, HC score, HC-EC volume, HC-EC score) for AD vs. CN, pMCI vs. CN, 

and pMCI vs. sMCI.  

First, the SNIPE results show that grading-based biomarkers outperform volume-

based biomarkers. Moreover, the HC-grade and HC-EC complex grade provided 

similar results. As expected, classification accuracies decrease when populations with 

more similar pathological status are used. Thus, the lowest accuracy was obtained for 

the pMCI vs. sMCI experiment.  

For AD vs. CN, SNIPE obtained similar results to the combination of 4 methods as 

proposed in [8] (90% here compared to 89% in [4]). However, SNIPE obtained better 

results than HC volume, manifold-based learning, CTH and TBM; although TBM 

obtained results close to those of SNIPE. However, it should be noted that SNIPE 



does not require nonlinear registration contrary to TBM and thus is less computation-

ally expensive (i.e., around 5 minutes of processing).  

For pMCI vs. CN, SNIPE obtained better results than all the methods compared in 

[8] as well as their combination (88% compared to 84%). Moreover, these results are 

close to the results obtained by SNIPE for AD vs. CN. This seems to indicate that the 

pMCI subjects can be as reliably classified as the AD population indicating that the 

SNIPE technique with the inclusion of HC and EC grade is better able to distinguish 

pMCI from CN than the multi-method used in [4].  
For pMCI vs. sMCI, SNIPE obtained clearly better results than all the methods 

compared in [8] (74% compared to 68%). These worst results compared to pMCI vs 

CN, could be explained by the heterogeneity of sMCI group including a mix of indi-

viduals including some who will convert to AD as well as others who will not. In any 

case, these results highlight the potential of SNIPE for AD prediction by enabling the 

detection of anatomical changes caused by AD at the early stages of the pathology.   

Table 2: Imaging Biomarker Comparison. Results obtained for AD vs. CN, pMCI vs. CN 

and pMCI vs. SMCI using 100 x LNOCV for several imaging biomarkers. 

 AD vs. CN pMCI vs. 

CN 

pMCI vs. 

sMCI 

SNIPE  

• HC Volume 82 78 66 
• HC Grade 90 87 74 

• HC-EC Volume 81 77 67 
• HC-EC Grade 90 88 73 

Multi-Method [8]  

• HC Volume 81 76 65 

• Manifold learning 85 78 65 
• Cortical thickness 81 77 56 
• TBM 87 79 64 

• All 89 84 68 

 

Finally, it is noted that HC volume-based classification obtained with patch-based 

label fusion [10] yielded results similar to those based on multi-atlas label fusion [27].   

4 Conclusion 

In this study, we have shown that SNIPE-based biomarkers are as good as, or in 

some cases better than, the HC volume, manifold learning, cortical thickness, and 

TBM methods compared by Wolz et al. [8]. Moreover, we demonstrated a better clas-

sification rate using grading approaches than volumetric methods. Finally, the com-

petitive results obtained on pMCI vs. sMCI highlight the potential use of SNIPE for 

early detection of AD. Although the obtained prediction rate (74%) is not yet suitable 



for clinical use, the recent progresses of the MRI-based biomarkers [8, 9] on this clas-

sification problem are encouraging. Finally, SNIPE-based biomarkers might be com-

bined with other efficient biomarkers to improve results as proposed in [8]. 
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