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SNIPE: A New Method to Identify Imaging Biomarker for Early Detection of Alzheimer's Disease

While the automatic detection of AD has been widely studied, the problem of the prediction of AD (or its early detection) has been less investigated. This might be explained by the fact that the prediction problem is clearly more challenging since the anatomical changes are more subtle. However, from a clinical point of view the prediction of AD is the key question since it is in that moment when treatment is possible. The potential use of structural MRI as imaging biomarker for Alzheimer's disease (AD) for early detection has become generally accepted, especially the use of atrophy of entorhinal cortex (EC) and hippocampus (HC). Therefore, in this study, we analyze the capabilities of the recently proposed method, SNIPE (Scoring by Nonlocal Image Patch Estimator), for the early detection of AD to analyze EC and HC atrophy over the entire ADNI database (834 subjects). During validation, the detection (AD vs. CN) and the prediction (pMCI vs. sMCI) efficiency of SNIPE were studied. The obtained results showed that SNIPE obtained competitive or better results than HC volume, cortical thickness and TBM. Moreover, results indicated that MRI grading-based biomarkers are more relevant than volume-based biomarkers. Finally, the success rate obtained by SNIPE was 90% for detection (AD vs. CN) and 74% for prediction (pMCI vs. sMCI).

Introduction

Clinical trials for Alzheimer's disease (AD) have been lately targeting diseasemodifying therapies [START_REF] Cummings | Dementia of the Alzheimer type. An inventory of diagnostic clinical features[END_REF] stressing the need for identifying the disease in its prodromal stage when the pathological injury is not too severe. Finding biomarkers that could lead to this detection is therefore a major issue for current international research. Structures in the medial temporal lobe are more and more studied because of their strong involvement in the pathogenesis of Alzheimer's disease (AD). The histopathology investigations of Braak and Braak [START_REF] Braak | Neuropathological stageing of Alzheimer-related changes[END_REF] suggests that AD begins with the formation of neurofibrillary tangles in the medial temporal lobe, particularly the entorhinal cortex (EC), a structure of the parahippocampal cortex, and is then followed by the hippocampus (HC), and from there on expands to other structures across the neocortex. When the evolution of AD can be studied by post-mortem studies, the question arises if neuroimaging techniques might be able to detect these subtle changes invivo before the onset of more downstream symptoms.

In addition to the accepted use of CSF and PET biomarkers, the potential use of structural MRI as early imaging biomarker for AD detection has taken more importance in the literature [START_REF] Frisoni | The clinical use of structural MRI in Alzheimer disease[END_REF]. Especially the use of atrophy of the EC and HC as early imaging biomarkers is considered a promising way to follow AD progression [START_REF] Frisoni | The clinical use of structural MRI in Alzheimer disease[END_REF] since decrease in cognitive performances on episodic memory tests, the cognitive hallmark of AD [START_REF] Schmidt-Wilcke | Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls--a voxel based morphometry study[END_REF][START_REF] Remy | Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI s t u d[END_REF][START_REF] Di Paola | Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study[END_REF], are associated with temporal lobe atrophy. However, the automatic extraction of these medial temporal lobe structures is challenging especially in case of EC [START_REF] Du | Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer's disease[END_REF]. Moreover, the inter-subject variability of brain anatomy tends to limit AD detection using only volumetric approaches [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF][START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF]. Recently, new nonlocal patchbased frameworks have been proposed on these two aspects: a robust approach to automatically segment HC and EC [START_REF] Coupe | Patchbased segmentation using expert priors: application to hippocampus and ventricle segmentation[END_REF] and the characterization of structure atrophy using a scoring method [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF].

The scoring of the considered structure is achieved by estimating the nonlocal similarity of the subject structures under study with different training populations. Thanks to a nonlocal framework, the Scoring by Nonlocal Image Patch Estimator (SNIPE) handles the inter-subject variability by enabling a one-to-many mapping between the subject's anatomy and the anatomies of many training templates. Moreover, enabled by the patch-based comparison principle, SNIPE detects subtle changes caused by the disease as already shown in [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF]. In a previous study, the high success rate accuracy of SNIPE for AD detection (i.e., AD patients vs. cognitively normal (CN) subjects) has been demonstrated on a subset of the ADNI database (i.e., 100 subjects).

From a clinical point a view, AD prediction (i.e., progressive mild cognitive impairment (MCI) vs. stable MCI) is a more crucial question than diagnosis, but this question is clearly more clinically challenging since the anatomical changes that need to detect are more subtle. Recently, this problem has been studied using image analysis such as HC volume, Cortical Thickness measurement (CTH), Voxel Based Morphometry (VBM) and Tensor Based Morphometry (TBM) [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF][START_REF] Cho | Individual subject classification for Alzheimer's disease based on incremental learning using a spatial frequency representation of cortical thickness data[END_REF][START_REF] Chupin | Fully automatic hippocampus segmentation and classification in Alzheimer's disease and mild cognitive impairment applied on data from ADNI[END_REF][START_REF] Cuingnet | Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database[END_REF][START_REF] Davatzikos | Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification[END_REF][START_REF] Koikkalainen | Multi-template tensor-based morphometry: application to analysis of Alzheimer's disease[END_REF][START_REF] Misra | Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI[END_REF][START_REF] Querbes | Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve[END_REF][START_REF] Westman | AddNeuroMed and ADNI: similar patterns of Alzheimer's atrophy and automated MRI classification accuracy in Europe and North America[END_REF]. Comparison of these imaging biomarkers can be found in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF][START_REF] Cuingnet | Automatic classification of patients with Alzheimer's disease from structural MRI: a comparison of ten methods using the ADNI database[END_REF]. According to these comparisons, the accuracy of AD prediction of the compared methods (e.g., HC volume, CTH, VBM or TBM) is inferior to 66% [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF]. To the best of our knowledge, the highest accuracy obtained on the entire ADNI database has been obtained by combining four methods resulting in 68% of accuracy for pMCI vs. sMCI [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF].

In this study, we propose to investigate the capabilities of SNIPE for early detection of AD on the entire ADNI database (834 scans). Moreover, we propose to compare our results with the different methods compared by Wolz et al. in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF] as these represent some of the best results published to date using the whole ADNI database.

Methods

MRI scans

The data analyzed in this paper was obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5year public-private partnership. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of MCI and early AD. Determination of sensitive and specific markers of very early AD progression is intended to aid researchers and clinicians to develop new treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.

To facilitate comparison with previous work, the 1.5T baseline scans used here are the same as those used in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF], where the 834 available baseline ADNI scans were divided into 4 populations for CN, progressive MCI (pMCI), stable MCI (sMCI) and AD. An MCI subject is considered as progressive if he or she converted to AD at the date of July 2011. The four groups contained 231 CN, 238 sMCI, 167 pMCI and 198 AD. Demographic details of the used dataset can be found in Table 1. 

Image pre-processing

Before applying SNIPE, all the images were preprocessed through a fully automatic image processing pipeline. This pipeline was composed of the following steps: estimation of the standard deviation of noise with [START_REF] Coupe | Robust Rician noise estimation for MR images[END_REF], denoising based on an optimized nonlocal means filter [START_REF] Coupe | An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images[END_REF], correction of inhomogeneities using N3 [START_REF] Sled | A nonparametric method for automatic correction of intensity nonuniformity in MRI data[END_REF], registration to the stereotaxic space based on a linear transform to the ICBM152 template (1x1x1 mm voxel size) [START_REF] Collins | Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space[END_REF], linear intensity normalization of each subject on template intensity, brain extraction using BEaST [START_REF] Eskildsen | BEaST: brain extraction based on nonlocal segmentation technique[END_REF], image cropping around the structures of interest (see Fig. 1), cross-normalization of the MRI intensity between the subjects using the method proposed in Nyul and Udupa within the estimated brain mask [START_REF] Nyul | Standardizing the MR image intensity scales: making MR intensities have tissue specific meaning[END_REF].

2.3

Scoring by Nonlocal Image Patch Estimator (SNIPE)

SNIPE is an image-based metric that uses a non-local, patch-based method to compare the local neighborhood (i.e., the 3D patch) around each voxel from a segmented structure of a test volume to similar patches from MRI data in a template library. This technique is not unlike patch-based segmentation procedures [START_REF] Di Paola | Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study[END_REF], but instead of using a voting scheme to determine the voxel label for segmentation, the patch-based similarity is used as weights in a function that yields a metric that describes the similarity of the test voxel to a particular patient group. In this case, the SNIPE metric score will indicate if the voxel in question is more like one group (e.g., NC) or another (e.g., AD). Details of the method are given in the following. For efficiency in template library generation, SNIPE propagates structure labels from a small number of manually segmented templates to all members of the training library. As in our previous work [START_REF] Remy | Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI s t u d[END_REF], the hippocampus (HC) and entorhinal cortex (EC) were manually labeled on 10 CN and 10 AD subjects using protocol described in [START_REF] Pruessner | Volumetry of temporopolar, perirhinal, entorhinal and parahippocampal cortex from high-resolution MR images: considering the variability of the collateral sulcus[END_REF]. These manual segmentations are then used in a patch-based segmentation procedure [START_REF] Di Paola | Episodic memory impairment in patients with Alzheimer's disease is correlated with entorhinal cortex atrophy. A voxel-based morphometry study[END_REF] to label the HC and EC in the 231 CN and the 198 AD datasets consti-tuting the template library. Once completed, the template library is used to both segment and grade the HC and EC of new subjects.

Label propagation for library generation

Structure segmentation and grading

With the template library built, the SNIPE algorithm can be used to segment the HC and EC and estimate the grading map for each subject within each ADNI database group (AD, pMCI, sMCI and CN) using the following procedure (see Fig. 1):

• Templates selection: The closest N/2 subjects from each training population (i.e., AD and CN) are selected based on an SSD metric evaluated over a standard, predefined initialization mask. For AD and CN subjects, we carefully removed the subject under study from the training library. • Scoring and segmentation of the subject under study: For each voxel (included in the initialization mask) of the subject under study (progressive MCI in the example provided in Fig. 1), we compared its surrounding patch with all the patches from the N training templates selected from the AD and CN populations. This way, we simultaneously obtained a grading map and a segmentation for HC and EC. • Feature extraction: The segmentations were used to compute the structure volumes, and the average grading value was estimated over the HC and EC segmentations. Both biomarkers were used as features during the classification step.

Feature classification

The classification between different groups is based on a linear discriminant analysis (LDA). In previous work [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF], we showed that slightly better classification accuracy could be obtained for AD vs. CN using quadratic discriminant analysis (QDA). However, in order to enable a more direct comparison with the work of Wolz et al. [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF], we used LDA in this study. Moreover, in [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF], it has been demonstrated that better classification accuracy could be obtained using subjects' age as feature in addition to volume or grade. Therefore, age was included as an additional feature for all experiments presented here for grade and volume biomarkers. The correlation between imaging biomarkers and the subjects' age will be analyzed. In addition, in [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF], it has been shown that better classification was obtained for HC and HC-EC complex. Thus we will use these two structures for image-based biomarkers during methods comparisons. Finally, we used a repeated leave-N-out cross validation procedure (100 x LNOCV) in a similar manner to that presented in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF]. In each LNOCV experiment, 95% of the datasets were used as training set and the remaining 5% as testing set, randomly chosen. To reduce the variance of the results, this procedure was repeated 100 times and the mean classification rate was used as the final result.

Implementation details

All parameters proposed in [START_REF] Remy | Verbal episodic memory impairment in Alzheimer's disease: a combined structural and functional MRI s t u d[END_REF] are used here, except the patch size for EC and the number of used training templates N. In more recent work, it has been shown in [START_REF] Hu | Validation of appearance-model based segmentation with patch-based refinement on medial temporal lobe structures[END_REF] that a patch of 5x5x5 voxels can be enough for EC segmentation and thus has been used for better computational efficiency instead of a larger patch size. Therefore, we used this patch size for the EC and patches of 7x7x7 voxels for HC as suggested in [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF]. Moreover, in [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF], it was suggested to select 60% of the entire library during template selection (i.e. 30 AD and 30 CN of the 50 subjects available). In this study, we use only around 25% of the entire library (N AD =50 and N CN =50) for computational reasons as well.

3

Results

!" !! #" #! $" $! %" %! &" &! '""" ("""
)""" !""" #""" $""" %""" &""" *"""" +,-./0123-.45.678.45.33 ( 9:./0123-.;6<.+,-. . += >.?."<(#@.A(;B12-.C."<""* AD:E >.?."<')@.A(;B12-.?."<""' 6D:E >.?."<'*@.A(;B12-.?."<""* :F >.?."<''@.A(;B12-.C."<""*

!" !! #" #! $" $! %" %! &" &! " '"" ("" )"" *"" !"" #"" $"" %"" &"" +,-
./0123-.45.678.45.33 ) 9:./0123-.;6<.+,-. . += >.?."<(%@.A(;B12-.C."<""' AD:E >.?."<")@.A(;B12-.?."<#$ 6D:E >.?."<"&@.A(;B12-.?."<'$ :F >.?."<'"@.A(;B12-.?."<'* . +; 0.<."()"=.>(/156-.?."(""' >@8A 0.<."()'=.>(/156-.?."(""' :@8A 0.<."()'=.>(/156-.?."(""' 8B 0.<."()*=.>(/156-.?."(""' . +; 0.<."(*)=.>(/156-.?."(""' >@8A 0.<."(*B=.>(/156-.<."(""B :@8A 0.<."(*!=.>(/156-.?."(""' 8C 0.<."(*'=.>(/156-.<."(""' Figure 2: Volumes and grades of HC and EC structures for the studied populations according to the age of the subjects. Linear regressions are displayed for better visualization of global tendencies. Pearson's coefficients and p-values of the regressions are provided in the legend.

!" !! #" #! $" $! %" %! &" &! ('
!" !! #" #! $" $! %" %! &" &! ('

SNIPE volumetric study

The top of Fig. 2 shows the volumes obtained by SNIPE for HC and EC. These volumes are plotted according to the age of the subjects for the four studied populations. First, we can observe a significant reduction of the volumes with age for HC while for EC this reduction is not statistically significant as assessed by p-values and Pearson's coefficients. Moreover, for HC a stronger reduction can be noted for the AD population. This can be explained by the addition of the atrophy related to the age with the atrophy related to the pathology. The evolution of EC volumes along the age is more difficult to interpret. The low Pearson's coefficient r and the high p-values of the linear regressions indicate a non-significant linear correlation of EC volumes with age except for AD. Compared to HC volumes, this might be due to higher intersubject variability and more frequent errors in the segmentation as discussed in [START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF]. Therefore, for EC, the pathology-related patterns seem partially hidden by intersubject variability.

SNIPE grading study

The bottom of Fig. 2 presents the average grading values obtained by SNIPE for HC and EC. For the structures studied, the grading values are significantly correlated with age (all the p-values are < 0.005) and decrease with age. Moreover, compared to the volumetric study, the correlation coefficients obtained with grade are larger. As expected, CN subjects have the highest grading values and AD patients the lowest. More interestingly, the same observation holds for sMCI compared to pMCI. Finally, as we will show later during the classification experiment by comparing volume and grade biomarkers, the higher correlation with age enables a better distinction of anatomical differences due to age-related modifications and pathology-related alterations, and the lower intra-population variance enables a better distinction of anatomical differences due to inter-subject variability and pathology-related alterations.

Patient's classification

Table 2 shows the success rates obtained by the proposed imaging biomarkers (i.e., HC volume, HC score, HC-EC volume, HC-EC score) for AD vs. CN, pMCI vs. CN, and pMCI vs. sMCI.

First, the SNIPE results show that grading-based biomarkers outperform volumebased biomarkers. Moreover, the HC-grade and HC-EC complex grade provided similar results. As expected, classification accuracies decrease when populations with more similar pathological status are used. Thus, the lowest accuracy was obtained for the pMCI vs. sMCI experiment.

For AD vs. CN, SNIPE obtained similar results to the combination of 4 methods as proposed in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF] (90% here compared to 89% in [START_REF] Schmidt-Wilcke | Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls--a voxel based morphometry study[END_REF]). However, SNIPE obtained better results than HC volume, manifold-based learning, CTH and TBM; although TBM obtained results close to those of SNIPE. However, it should be noted that SNIPE does not require nonlinear registration contrary to TBM and thus is less computationally expensive (i.e., around 5 minutes of processing).

For pMCI vs. CN, SNIPE obtained better results than all the methods compared in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF] as well as their combination (88% compared to 84%). Moreover, these results are close to the results obtained by SNIPE for AD vs. CN. This seems to indicate that the pMCI subjects can be as reliably classified as the AD population indicating that the SNIPE technique with the inclusion of HC and EC grade is better able to distinguish pMCI from CN than the multi-method used in [START_REF] Schmidt-Wilcke | Memory performance correlates with gray matter density in the ento-/perirhinal cortex and posterior hippocampus in patients with mild cognitive impairment and healthy controls--a voxel based morphometry study[END_REF].

For pMCI vs. sMCI, SNIPE obtained clearly better results than all the methods compared in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF] (74% compared to 68%). These worst results compared to pMCI vs CN, could be explained by the heterogeneity of sMCI group including a mix of individuals including some who will convert to AD as well as others who will not. In any case, these results highlight the potential of SNIPE for AD prediction by enabling the detection of anatomical changes caused by AD at the early stages of the pathology. Finally, it is noted that HC volume-based classification obtained with patch-based label fusion [START_REF] Coupe | Patchbased segmentation using expert priors: application to hippocampus and ventricle segmentation[END_REF] yielded results similar to those based on multi-atlas label fusion [START_REF] Lotjonen | Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer's disease[END_REF].

Conclusion

In this study, we have shown that SNIPE-based biomarkers are as good as, or in some cases better than, the HC volume, manifold learning, cortical thickness, and TBM methods compared by Wolz et al. [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF]. Moreover, we demonstrated a better classification rate using grading approaches than volumetric methods. Finally, the competitive results obtained on pMCI vs. sMCI highlight the potential use of SNIPE for early detection of AD. Although the obtained prediction rate (74%) is not yet suitable for clinical use, the recent progresses of the MRI-based biomarkers [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF][START_REF] Coupe | Simultaneous segmentation and grading of anatomical structures for patient's classification: application to Alzheimer's disease[END_REF] on this classification problem are encouraging. Finally, SNIPE-based biomarkers might be combined with other efficient biomarkers to improve results as proposed in [START_REF] Wolz | Multi-method analysis of MRI images in early diagnostics of Alzheimer's disease[END_REF].

Figure 1 :

 1 Figure 1: Example of SNIPE workflow for an MCI subject. After initial label propagation step, the resulting template training libraries are used by SNIPE to estimate the grading maps of the entire ADNI database (AD, pMCI, sMCI and CN).
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Table 1 :

 1 Demographic details of the four groups analyzed: patients with AD (AD), cognitively normal subjects (CN), patients with progressive mild cognitive impairment (pMCI) and patients with stable mild cognitive impairment.

		Population size	% males	Age ± std	MMSE ± std
	CN	231	52%	76.0 ± 5.0	29.1 ± 0.9
	sMCI	238	67%	74.9 ± 7.7	27.2 ± 2.5
	pMCI	167	60%	74.5 ± 7.2	26.4 ± 2.0
	AD	198	50%	75.6 ± 7.7	22.8 ± 2.9

Table 2 :

 2 Imaging Biomarker Comparison. Results obtained for AD vs. CN, pMCI vs. CN and pMCI vs. SMCI using 100 x LNOCV for several imaging biomarkers.

			AD vs. CN	pMCI vs.	pMCI vs.
				CN	sMCI
	SNIPE			
	•	HC Volume	82	78	66
	•	HC Grade	90	87	74
	•	HC-EC Volume	81	77	67
	•	HC-EC Grade	90	88	73
	Multi-Method [8]			
	•	HC Volume	81	76	65
	•	Manifold learning	85	78	65
	•	Cortical thickness	81	77	56
	•	TBM	87	79	64
	• All	89	84	68