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Abstract. Cross-sectional analysis of longitudinal MRI data might be
sub-optimal as each dataset is analyzed independently. In this study, we
evaluate how much variability can be reduced by analyzing structural
volume changes of longitudinal data using longitudinal analysis. We pro-
pose a two-part pipeline that consists of longitudinal registration and
longitudinal classification. The longitudinal registration step includes the
creation of subject-specific linear and non-linear templates that are then
registered to a population template. The longitudinal classification is
composed of a 4D EM algorithm, using a priori classes computed by
averaging the tissue classes of all time points obtained cross-sectionally.

To study the impact of these two steps, we apply the framework com-
pletely (called LL method: Longitudinal registration and Longitudinal
classification) and partially (LC method: Longitudinal registration and
Cross-sectional classification) and compare these to a standard cross-
sectional framework (CC method: Cross-sectional registration and Cross-
sectional classification).

The three methods are applied to (1) a scan-rescan database to ana-
lyze the reliability and to (2) the NIH pediatric population to compare
the GM and WM growth trajectories, evaluated with a linear mixed-
model. The LL method, and the LC method to a lesser extent, signif-
icantly reduce the variability in the measurements in the scan-rescan
study and give the best fitted GM and WM growth models with the NIH
pediatric database. The results confirm that both steps of the longitudi-
nal framework reduce the variability and improve the accuracy compared
to the cross-sectional framework, with longitudinal classification yielding
the greatest impact.

1 Introduction

Longitudinal structural change measurements are crucial to study normal brain
development and the impact on the brain growth of neurological disorders or
neurodegenerative diseases.
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While longitudinal MRI scans could be analyzed independently, recent meth-
ods propose to reduce intra-subject variability by taking into account longitudi-
nal consistency whether for registration or tissue segmentation.

Longitudinal registration was first proposed by [15] by computing deforma-
tions between the longitudinal subject scans and a 4D template. Thereafter,
methods using consistent diffeomorphic registration of longitudinal images were
presented [7,12] and more recently, the creation of a subject-specific linear tem-
plate was introduced [14].

Regarding longitudinal classification, a method has been proposed to incorpo-
rate longitudinal consistency constraints in a 3D fuzzy clustering segmentation
[18]. In addition, 4D image segmentation was also presented with graph cuts
algorithm [17].

Inspired by this previous work, we introduce a new method to measure struc-
tural volume changes in longitudinal MRI scans by using longitudinal informa-
tion not only for registration but also for segmentation. First, we propose the
creation of linear and non-linear subject-specific templates. Each time point is
registered to the subject-specific template that is registered to the population
template, making the registration of each timepoint to the population template
more consistent. Second, we combine this registration with a 4D EM algorithm
for tissue classification, using a priori classes computed by averaging the tis-
sue classes of all time points obtained cross-sectionally to take advantage of the
longitudinal consistency of the classification.

The method is applied to a scan-rescan database and to the NIH pediatric
database to study the GM and WM volume growth in childhood. To evaluate
the impact of the longitudinal registration and the longitudinal classification on
the measurements, we compared this longitudinal analysis with a cross-sectional
analysis and a hybrid analysis, using the longitudinal registration and a cross-
sectional tissue classification.

2 Longitudinal Analysis Methods

The three methods to analyze longitudinal MRI data are as follows:

- method CC = Cross-sectional registration - Cross-sectional classification.
This is the standard pipeline. Each time point of each subject is analyzed

independently. The registration steps explained in detail in the following sec-
tion are performed without the linear and non-linear subject-specific template
creation. Each time-point is directly registered to the population template. A
standard [1] cross-sectional classification algorithm is employed.
- method LC = Longitudinal registration - Cross-sectional classification.

All the registration steps described below are applied, and then cross-sectional
tissue classification algorithm [1] is used for each time point.
- method LL= Longitudinal registration - Longitudinal classification.

All the registration steps described below are applied and the longitudinal
tissue classification is used. Figure 1 shows a flowchart with the steps involved
in the LL method and the volume and registration notations used below.
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Fig. 1. Flow diagram of the LL method, for a time point i. (Vni: native T1w data of
time point i, Vi: T1w data of time point i aligned with the other time points in the
stereotaxic space but not scaled, Vstxi: T1w data of time point i linearly resampled in
the stereotaxic space, GMci/WMci/CSFci: cross-sectional classification results for time
point i, GMli/WMli/CSFli: longitudinal classification results for time point i, Tx->y,
transformation from volume x to volume y, *: concatenation of transformations.

2.1 Registration Framework

Pre-processing. Three standard pre-processing steps were applied.
The first step following image reconstruction consists in removing noise in

each MRI data by using the optimized non-local means filter [6]. The filtering
parameter was set as the Rician noise standard deviation estimated using [5].
The second step corrects the impact of intensity inhomogeneity due to RF coil
variations on MRI data using a non-parametric estimation of the slow varying
non-uniformity field [16]. The third step scales the brain mean volume inten-
sity to the target mean intensity (ICBM152 18.5-43.5 template) and linearly
normalizes the intensity ranges to range 0-100 using histogram matching.

Linear Atlas Registration. A hierarchical nine-parameter linear registration
based on intensity cross-correlation as a similarity measure is performed between
each native T1w image (Vni) and the ICBM152 template [3].
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Scale Removed Volume Alignment. All time points are aligned in the same
stereotaxic space using only a rigid-body transformation, by removing scaling
parameters calculated at the previous step. The resulting transformation for
time point i is called TVni→Vi

in the Fig. 1 and the resulting volume is called Vi.

Iterative Subject-Specific Linear Template Creation. The subject tem-
plate creation employs the principles of average template construction based on
the work of [10]. A general diagram of the procedure for the jth iteration is shown
in Fig. 2. For each iteration j (j ∈ [1, 4]) and for each time point i (i ∈ [1, n]),
the algorithm is as follows:

– For each time point i, linear registration (a hierarchical twelve-parameter lin-
ear registration based on intensity cross-correlation) is performed, mapping
VTci,j−1 from the previous iteration to the current template SLj , producing
transformation Ti,j . For the first iteration (j=1), VTci,j−1 is Vi, the T1w
volume of the time point i and SLj is the T1w volume of the first time point
(V1).

– Average of all Ti,j transformations producing Taj .
– For each time point, concatenation of the transformation Ti,j with the in-

verse of the average transformation Taj (Tci,j=Ti,j*Ta
−1
j ).

– Creation of VTci,j , by resampling Vi,j using Tci,j transformation.
– Average of all VTci,j producing new subject template SLj+1.

After this step we have a subject-specific linear template SL. For each time point,
the resulting transformation from Vi to the subject-specific linear template SL
is called TVi→SL in Fig. 1.

Subject-Specific Linear Template to Atlas Linear Registration. A hi-
erarchical nine-parameter linear registration based on intensity cross-correlation
as a similarity measure is performed between the subject-specific linear tem-
plate (SL) and the ICBM152 template [3]. The resulting transformation is called
TSL→ICBM in Fig. 1.

T1 Resampling. Each native T1w volume (V ni) is only resampled once via
the concatenated transformation: TV ni→V i ∗TV i→SL ∗TSL→ICBM where * indi-
cates the concatenation of transformations. The resulting resampled T1w volume
(Vstxi) is therefore in the ICBM152 template stereotaxic space.

Brain Segmentation. A multiresolution non-local segmentation technique is
used to extract the brain in each resampled T1w volume (Vstxi), using BEaST
with a library of priors [8].

Iterative Subject-Specific Non-linear Template Creation. For each time
point i and for each iteration j (j ∈ [1, 12]), the algorithm is as follows:
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Fig. 2. Representation of the model creation algorithm for each iteration j: dotted lines
represent the transformation from VTci,j−1 (i, time point ∈ [1...n]) obtained in the
previous iteration (or Vi,j for the first iteration) to the subject template SLj (or the
first time point volume V1 for the first iteration), solid lines represent the creation of
VTci,j , by resampling VTci,j−1 using Tci,j transformation, dashed lines represent the
volumes averaged to compute the new subject template SLj+1

– For each time point, non-linear registration (Ti,j , a hierarchical non-linear
registration based on intensity correlation coefficient, [2]) from VTci,j−1 from
the previous iteration to the current template SNLj . For the first iteration
(j=1), VTci,j−1 is Vstxi and SNLj is the ICBM152 template.

– Average of all Ti,j transformations (Taj).
– For each time point, concatenation of the transformation Ti,j with the in-

verse of the average transformation Taj (Tci,j=Ti,j*Ta
−1
j ).

– Creation of VTci,j , the resampled Vi,j with Tci,j transformation.
– Average of all VTci,j to compute the new subject template SNLj+1.

After this step we have a subject-specific non-linear template SNL. For each time
point, the resulting transformation from Vstxi to the subject-specific non-linear
template SNL is called TVstxi→SNL

in the Fig. 1.

Subject Non-linear Template to Atlas Non-linear Registration. A hi-
erarchical non-linear registration based on intensity correlation-coefficient as a
similarity measure is performed between the non-linear subject template and the
ICBM152 template [2]. The resulting transformation is called TSNL→ICBM in
Fig. 1.

2.2 Classification

The classifications are performed on each T1w volume resampled in the template
sterotaxic space (Vstxi). For each voxel within the brain mask, a tissue label is
assigned: grey matter(GM), white matter (WM) or cereobrospinal fluid (CSF).

Cross-Sectional Classification. For each time point, the label is assigned
to each voxel using a two phase method [1]. First, a set of predefined standard
tissue sample points in the stereotaxic ICBM152 template space is used to extract
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intensity samples from the subject’s MRI. A minimum-distance spanning tree
is used to prune inconsistent samples, yielding a custom set of labels for the
particular time point. Finally, this tag point set is used by an artificial neural
network classifier to classify voxels in the brain.

Longitudinal Classification. A finite Gaussian mixture model is employed in
the longitudinal classification. All time points T1w are merged in the same joint
histogram. Expectation maximization (EM) is used to determine the parameters
of the model [11]. The process is initialized by using a priori classes. For each
tissue, an a priori class is computed by averaging the tissue classes of all the
time points obtained in the cross-sectional classification and applying a 8 mm
FWHM Gaussian filter.

2.3 Structure Segmentation

ICBM152 template region identification is merged with the output of the clas-
sification technique (GM, WM and CSF) in order to accurately identify specific
structures [4]. These include frontal, temporal, occipital and parietal cortical
GM and WM as well as internal structures (thalamus, putamen, globus pallidus
and caudate).

2.4 Data

Two sets of data are used to evaluate the algorithm. First, a set of four scan-
rescan datasets of T1w data from 20 young normal subjects is used (the 20NC-
4V database). MRI data was acquired on a 1.5 T Siemens Sonata Vision clinical
scanner (Siemens Medical Systems, Erlangen, Germany), using the standard
head coil. Each subject was immobilised with a head restrainer. The proto-
col comprises four conventional whole-head high-resolution T1 scans. The T1-
weighted scan was acquired using a 3D spoiled gradient echo (GRE) sequence
(TR = 22ms, TE = 9.2ms, α = 30 deg), providing whole head coverage with
1 mm isotropic voxel size. T1-weighted data were acquired on three different
sessions within the same week (two in the first session, one in the second session
and one in the fourth session).

The second database comes from the NIH-funded MRI study of normal brain
development pediatric database (NIHPD) project that provides a database of
normative pediatric MRI brain and behavioral data [9]. 882 multiple longitudinal
MRI scans were obtained for 292 subjects aged 4.5-18.5 years at six pediatric
study centers. Each subject had at least two scans, and at most four scans,
with approximately two years between scans. The standardized MRI protocol
included a whole brain, three-dimensional (3D) T1-weighted RF-spoiled gradient
echo sequence with 1 mm thick sagittal partitions, TR= 22-25 ms, TE= 10-11
ms, excitation pulse angle 30 deg, 160-180mm FOV.
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3 Results

3.1 Application to the 20NC-4V Database

Scan-rescan reliability was evaluated with the 20NC-4V database where no
change between scans is expected. For each method k (k = LL,LC,CC) and for
each subject j (j = {1...20}), we wanted to compare the size of the anatomical
volumes computed from the four different acquisitions (V i, i = 1, 2, 3, 4) ,where
brain volumes were obtained with BEaST as described above, WM,GM and CSF
obtained with the classifier and the anatomical structures were obtained using
ANIMAL [4]. We compute the Volume Change (VC) defined as:

V Ckji(%) = 100 ∗ |1−
Vkji

1
4

∑4
p=1 Vkjp

|

For each region and for each method k, a total volume change (tVC) is computed
as follow:

tV Ck(%) =
1

80

20∑

j=1

4∑

i=1

V Ckji

Fig. 3 shows the total volume changes for all regions and methods and Table 1
provides the mean and standard deviation (std) of the volume changes. For each
region, the significance of the differences between each pair of methods (CC-LC,
LC-LL and CC-LL) is given (p<0.05, Wilcoxon signed rank test).

Ifwe compare the fourth columnofTable 1with the secondand the third columns,
it is clear that the volume differences estimated by the LL method are all smaller
than the LC andCC volumes differences except for the globus pallidus region. The
reduction is significant (p<0.05) in all regions except for the brain volume (Table
1, sixth and seventh columns). The brain volumes are the same between LL and
LC methods as the two methods used the same framework, including the brain
segmentation, up to the classification step. The differences between brain volumes
estimated by the LL and CCmethods are too small compared to the overall size of
the brain to show significance.When we look at the second and the third columns,
we can see that the volume changes are all smaller for the LC method than for the
CC method, except for the CSF and the globus pallidus. However, the differences
are significant only in the WM regions (Table 1, fifth column).

We can conclude that the LL method yields more stable results (smaller vari-
ability) with less bias (closer to zero, i.e., no change) than either the LC or
CC methods. Furthermore, on average the LC method yields less biased results
compared to the CC method.

3.2 Application to the NIHPD Database

For each subject and each time point, GM and WM volumes were estimated
with the three methods. The GM and WM growth models were built using
nlme package [13] in R. The maximum likelihood method was used to estimate
model parameters.
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Fig. 3. Volume changes (in %) of structures segmentation on the scan-rescan 20NC-4V
dataset, comparing the LL, LC and CC methods

Table 1. Volume changes (mean±std) averaged across subjects for the different
anatomical structures for the scan-rescan 20NC-4V dataset. The * indicate the signifi-
cantly reduced variability between CC and LC, LC and LL, and CC and LL methods.

CC method LC method LL method CC-LC LC-LL CC-LL
Regions volume changes volume changes volume changes p<0.05 p<0.05 p<0.05

Brain 0.39 ± 0.38 0.36 ± 0.36 0.36 ± 0.36
CSF 5.16 ± 4.17 5.87 ± 4.18 1.24 ± 1.03 * *
GM 2.61 ± 2.15 2.32 ± 1.79 0.67 ± 0.51 * *
WM 4.05 ± 3.07 2.86 ± 2.25 1.05 ± 0.85 * * *

parietal GM 2.69 ± 2.26 2.63 ± 1.89 1.31 ± 1.25 * *
occipital GM 3.25 ± 2.43 2.61 ± 2.13 0.88 ± 0.81 * *
frontal GM 2.42 ± 1.78 2.28 ± 1.64 0.99 ± 0.79 * *
temporal GM 1.87 ± 1.46 1.75 ± 1.35 0.66 ± 0.53 * *
parietal WM 3.08 ± 2.39 1.99 ± 1.69 1.02 ± 0.92 * * *
occipital WM 6.9 ± 4.57 4.27 ± 3.21 1.86 ± 1.67 * * *
frontal WM 2.98 ± 2.2 2.02 ± 1.63 0.99 ± 0.78 * * *
temporal WM 2.88 ± 2.42 2.11 ± 1.67 1.37 ± 0.91 * * *

thalamus 1.77 ± 1.42 1.46 ± 1.07 1.03 ± 0.82 * *
caudate 1.94 ± 1.48 1.61 ± 1.3 0.9 ± 0.64 * *
putamen 1.34 ± 1 1.18 ± 0.92 0.8 ± 0.61 * *
pallidum 3.43 ± 2.42 3.45 ± 2.58 3.67 ± 2.3
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Table 2. Solution for fixed effects (Interc.: Intercept, DF:Degree of Freedom, Esti:
Estimation, StEr: Standard Error, t: t-value) - WM and GM mean models for NIHPD
population

WM
LL method LC method CC method

Effect DF Esti. StEr t Pr>|t| Esti. StEr t Pr>|t| Esti. StEr t Pr>|t|

β0(Interc.) 532 238.6 7.0 33.8 <10−4 301.1 14.9 20.1 <10−4 290.9 15.7 18.4 <10−4

β1(Age) 532 13.1 0.8 15.8 <10−4 12.4 2.2 5.5 <10−4 14.2 2.3 6.0 <10−4

β2(Age2) 532 -0.19 0.03 -6.6 <10−4 -0.23 0.08 -2.7 7.10−3 -0.29 0.08 -3.4 7.10−4

β3(Sex) 338 9.5 7.5 1.2 0.20 20.5 12.3 1.6 0.09 24.4 13.1 1.8 0.06
β4(Age*Sex) 532 2.6 0.4 5.7 <10−4 2.3 0.9 2.3 0.02 2.1 1.0 2.1 0.03

GM

β0(Interc.) 532 845.2 10.7 78. 4 <10−4 795.5 18.35 43.3 <10−4 799.6 18.97 42.14 <10−4

β1(Age) 532 7.04 1.4 5.0 <10−4 5.98 2.73 2.1 0.02 4.52 2.83 1.59 0.11
β2(Age2) 532 -0.49 0.05 -9.5 <10−4 -0.49 0.10 -4.9 <10−4 -0.42 0.10 -4.04 10−4

β3(Sex) 338 77.48 6.7 11.4 <10−4 71.89 6.88 10.4 <10−4 70.44 6.97 10.10 <10−4

Table 3. Criteria to compare the models fits - the smaller the AIC or BIC, the better
the fit

WM
LL method LC method CC method

Log Likelihood -3851 -4500 -4556
AIC 7720 9018 9130
BIC 7763 9060 9173

GM

Log Likelihood -4272 -4718 -4740
AIC 8559 9452 9497
BIC 8597 9490 9535

For each method, the following quadratic mixed model with fixed and ran-
dom effects is defined as the best model for WM volumes using the Akaike’s
information criterion:

WMij = β0+γ0i+(β1+γ1i).Age+β2.Age
2+β3.Sexi+β4.(Age∗Sex)i+ǫij (1)

where

– WMij is the value of the WM volumes for the j time point of the subject i.
– β0,...,β4 are the fixed-effect coefficients which are identical for all subjects: β0

is the intercept, β1 the linear slope, β2 the quadratic slope, β3 the coefficient
of sex (multiplied by 1 if male, 0 if female) and β4 the interaction between
age and sex.

– γ0i and γ1i are the random-effect coefficients for subject j, assumed to be
mean 0 and constant variance. Because each subject has a different WM
volume at the first time point, a random effect is added γ0i to the intercept.
Each subject has a different growth, so a random effect γ1i is added to
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Fig. 4. Measured, predicted and GM volume mean model (with confidence intervals
on the mean parameters) for the NIHPD population - From top to bottom: LL, LC
and CC methods. Residuals are plotted in the rightmost column.

the linear slope. The variance-covariance matrix for the random effects is
specified with a general symmetric positive-definite matrix.

– ǫij is the error for time point j in subject i. The errors for group i are assumed
to be mean 0 and constant variance and independent of the vector (γ0i, γ1i).

For GM volumes, the best-adjusted model is defined with the same fixed and
random effects, except the age*sex interaction term that was not significant.
The fixed effects estimated for each method are provided in Table 2. Table
3 gives information about the models fits. The Akaike’s Information Criterion
(AIC) and the Schwarz’s Bayesian Information Criterion (BIC) are log-likelihood
values adjusted for the number of parameters estimated in the model [13]. When
comparing fitted models, the smaller the AIC or BIC, the better the fit.

From left to right, Fig. 4 and Fig. 5 display individual data points for measured
GM and WM volumes respectively, individual data points for predicted GM and
WM volumes, GM and WMmean model with confidence intervals and individual
data points for residuals. For individual data points, longitudinal measurements
from the same subject are connected by solid lines. The results of LL, LC and
CC methods are respectively at the top, in the middle and at the bottom of Fig.
4 and Fig. 5.
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Fig. 5. Measured, predicted and mean model WM volumes (with confidence intervals
on the mean parameters) for the NIHPD population - From top to bottom: LL, LC
and CC methods. Residuals are plotted in the rightmost column.

We can clearly see on the graphs of Figs 4 and 5 that the standard deviation
of the residuals, called the standard error of estimate (SEE), is smaller for the
LL method than for the LC method and to a lesser extent, smaller for the LC
method than for the CC method. The estimated fixed effects parameters are all
more significant and the standard errors are all smaller for the LL method than
for the other methods (cf Table 2), except for the sex effect in the GM growth
model.

One should also note that due to the different algorithms used in the longi-
tudinal and the cross-sectional classification, the WM/GM boundary is slightly
shifted between the two classification results. That explains why the longitudinal
classification obtains higher GM and lower WM volumes than the cross-sectional
classification (cf Fig. 4 and 5).

4 Discussion and Conclusion

The scan-rescan experiments with the 20NC-4V data demonstrate that the LL
pipeline has smaller variance and reduced bias in comparison to the LC and CC
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pipelines. This indicates that the processing pipeline is stable and reduces noise
associated with cross-sectional analysis by taking advantage of longitudinal con-
sistency of the data. Moveover, the experiments with the NIHPD data indicate
that LL pipeline is also sensitive to change and can be used to derive consis-
tent parameters for a mixed model with fixed and random effects for analysis of
growth trajectories. Using the NIHPD data, our results indicate that GM growth
trajectory is driven by age, age2 and sex effects, while WM is driven by age, age2

and age∗sex effects. These results will require further analysis and we will apply
these techniques to individual structure growth trajectories in the future.

The reduced variance of the LL model enables the detection of subtle effects
between groups. For example, in our analysis of the NIHPD data using the
CC-method data, the age effect was not significant and the age2 effect was less
significant for GM while age2 and sex effects were much less significant for WM.
It is likely that with a smaller cohort, these effects would not have been detected
with the CC pipeline. With the enhanced power of the LL pipeline due to reduced
variance, smaller cohorts can be used to detect differences between groups. This
is important in research studies where funds are limited and potentially useful
in clinical trials to reduce cohort sizes or to reduce the time required for a trial.
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