
HAL Id: hal-00739202
https://hal.science/hal-00739202

Submitted on 6 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

TAYLOR SERIES FOR ADOMIAN
DECOMPOSITION METHOD

Ekaterina Kutafina

To cite this version:
Ekaterina Kutafina. TAYLOR SERIES FOR ADOMIAN DECOMPOSITION METHOD. Interna-
tional Journal of Computer Mathematics, 2011, pp.1. �10.1080/00207160.2011.611880�. �hal-00739202�

https://hal.science/hal-00739202
https://hal.archives-ouvertes.fr


For Peer Review
 O

nly

 
 
 

 
 

 
 

TAYLOR SERIES FOR ADOMIAN DECOMPOSITION METHOD 
 
 

Journal: International Journal of Computer Mathematics 

Manuscript ID: GCOM-2011-0596-B 

Manuscript Type: Original Article 

Date Submitted by the 
Author: 

22-Jul-2011 

Complete List of Authors: Kutafina, Ekaterina; AGH Academy of Science and Technology, 
Faculty of Applied Mathematics 

Keywords: 35C10, 35C05, 65D15, 65M, G.1.8 

  
 
 

 

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

International Journal of Computer Mathematics



For Peer Review
 O

nly

August 5, 2011 20:59 International Journal of Computer Mathematics kutafina

International Journal of Computer Mathematics
Vol. 00, No. 00, January 2008, 1–8

Research Article

TAYLOR SERIES FOR ADOMIAN DECOMPOSITION

METHOD

Ekaterina Kutafina∗

AGH University of Science and Technology

Faculty of Applied Mathematics

al. A. Mickiewicza 30

30-059 Krakow, Poland

(...)

In this paper we analyze the exact solutions to scalar PDEs obtained thanks to summable
Taylor series provided by Adomian’s decomposition method. We propose a modification of
the method which makes the calculations of Taylor coefficients easier and more direct. The
difference is essential for instance in case of non-homogenous equations or initial conditions
and is illustrated by some examples.
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1. Introduction

The area of exact solutions to nonlinear differential equations has become very pop-
ular in recent decades, when the development of personal computers enabled more
efficient work with known algorithms. Adomian decomposition method [1, 2, 4, 5]
in the matter of fact was developed to find approximated solutions to differential
equations, but in many publications [5, 6] we can find interesting examples where
obtained power series were actually summable to exact solutions. Typical way to
obtain such solutions is to sum up certain Taylor series. In our paper we are going
to present some situations when it seems reasonable to use modified techniques
to obtain Taylor series. In mathematical physics we often have to deal with scalar
PDEs of space and time variables x, t ∈ R. We will show that for non-autonomous
equations of this type the method could be easily modified to get Taylor series di-
rectly. In order to explain our idea let us first briefly present the classical method,
so it would be easier to show the differences.

2. Adomian decomposition method

Let us consider the following one-dimensional equation in Cauchy-Kovalevska form:

ut(x, t) = F (u, ux, uxx, ..., uxn) + g(x), (1)
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where x, t ∈ R, ut = ∂u
∂t

, uxi = ∂iu
∂xi , F (p0, p1, p2, p3, ..., pn) is a analytical function

of it’s arguments and g(x) is an analytic non-autonomous term. The correspond-
ing initial condition is u(x, 0) = f0(x). This quite special case would be perfectly
sufficient to present the advantages of proposed modification.
Let us introduce the auxiliary notation: G[u] = G(u, ux, uxx, ..., uxn) for any func-
tional G defined on jet-space. In classical approach LHS of (1) is usually split into
two parts: F [u] = LF [u] + NF [u], where LF [u] is a linear operator with respect to
u, ux, ..., uxn while NF [u] is nonlinear part of F [u]. Then the operator

L−1(.) =

∫ t

0
(.) dt

can be introduced to express the solution of (1) in the form:

u = f0(x) + g(x) t +

∫ t

0
LF [u] + NF [u] dt.

Next we assume u =
∑

∞

i=0 ui and consequently LF [u] =
∑

∞

i=0 LF [ui] and NF [u] =
NF [

∑

∞

i=0] =
∑

∞

i=0 Ai. The newly introduced terms Ai are so-called Adomian’s
polynomials, which could be obtained e.g. with the help of following formula:

Ai =
1

n!

dn

dλn

[F (
n
∑

i=0

λiui)].

In the paper [8] author present very intuitive way to obtain these polynomials. The
idea could be easily understood from the example below.

Example 2.1 For instance if we take nonlinearity in the form NF [u] = uux then

NF [u] = (u0 + εu1 + ε2u2 + ...)(u0x + εu1x + ε2u2x + ...) =

= u0 u0x + ε(u1 u0x + u0 u1x) + ...

and here Ai would be a coefficient at εi.

Let us notice that ”ε”-notation was not used in cited paper, but in our opinion
it makes the choice of Ai more clear. Similar notation was also used in [3]. Let us
underline that each polynomial Ai is dependent only on the functions u0, ..., ui. No
higher orders are involved. Going back to the decomposition algorithm:

u = f0(x) + g(x) t +

∫ t

0

∞
∑

i=0

LF [ui] +

∞
∑

i=0

Ai dt,

therefore the following recurrence could be defined:

u0 = f0(x) + g(x )t

u1 =

∫ t

0
LF [u0] + A0 dt
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...

un =

∫ t

0
LF [un−1] + An−1 dt

...

u = lim
k→∞

k
∑

i=0

ui.

Remark 1 If g(x) = 0 then there exists a sequence of functions hi(x) such as
un = hn(x) tn.

Proof By induction u0 = f0(x) =: h0(x). Let us assume, that ui = hi(x) ti so t

appears in the same power as ε in the example 2.1 which means that Ai = ki(x) ti

and

ui+1 =

∫ t

0
LF [hi(x) ti] + ki(x)tidt =

ti+1

i + 1
(LF [hi(x)] + ki(x)) =: hi+1t

i+1.

�

Remark 2 If f0(x) = 0 then there exists a sequence of functions hi(x) such as
un = hn(x) tn+1.

Proof By induction u0 = t g(x) =: h0(x). Let us assume, that ui = hi(x) ti+1 which
means that Ai = ki(x) ti+1 and

ui+1 =

∫ t

0
LF [hi(x) ti+1] + ki(x)ti+1dt =

ti+2

i + 2
(LF [hi(x)] + ki(x)) =: hi+1t

i+2.

�

These remarks imply that in case of autonomous equation or zero initial condition
the algorithm leads straight to Taylor series.

3. Main Results

In our following research it would be comfortable to skip dividing F [u] into two
parts. The whole functional F [u] could be as well approximated by Adomian poly-

nomials. Let us also denote by u(k) =
∑k

i=0 ui. The key difference would be the
fact that now we choose polynomials in different way. Let B0 = F [u0], but

Bi = F [u(i)] − F [u(i−1)]

for i = 1, 2, ... . Let us notice, that similar approach can be found in [4]. Comparing
to the example 2.1 now we obtain B0 = A0 = u0 u0x, but for a change B1 =
F [u0 + u1] − F [u0] = u0 u1x + u1 u0x + u1 u1x. However it is obvious that still
limi→∞ Bi = F [u]. The new recurrence is:

u0 = f0(x) + g(x )t
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u1 =

∫ t

0
F [u0]dt =

∫ t

0
B0 dt

u2 =

∫ t

0
B1 dt =

∫ t

0
F [u0 + u1] − F [u0] dt

...

uk =

∫ t

0
F [u(k−1)] − F [u(k−2)] dt.

Theorem 3.1 Let us consider a partial differential equation in the form ut(x, t) =
F [u(x, t)] + g(x), together with the initial condition u(x, 0) = f0(x) where x, t ∈

R, u : R
2 → R, F [u(x, t)] = F [u(x, t), ux(x, t), ..., uxn(x, t)], uxi = ∂iu

∂xi . We also
assume, that F [u(x, t)] is analytical of it’s arguments and F [0] = 0. Then formal
Taylor series for the solution u(x, t) could be found using formula (2).

Proof
Let us start with the summation:

u(k) =

k
∑

i=0

ui = u0 +

∫ t

0
F [u(k−1)] dt.

Therefore using Taylor’s formula

u(k+1) = u0 +

∫ t

0
F [u(k)] dt =

= u0+

∫ t

0
F [u(k)]|t=0+

[

∂F [u(k)]

∂u(k)

∂u(k)

∂t
+

∂F [u(k)]

∂u
(k)
x

∂u
(k)
x

∂t
+ ... +

∂F [u(k)]

∂u
(k)
xn

∂u
(k)
xn

∂t

]

t=0

t+

+





∂2F [u(k)]

∂(u(k))2

(

∂u(k)

∂t

)2

+ ... + 2
∂2F [u(k)]

∂u(k)∂u
(k)
x

∂u(k)

∂t

∂u
(k)
x

∂t
+ ... +

∂F [u(k)]

∂u
(k)
xn

∂2u
(k)
xn

∂t2





t=0

t2

2!
+.... dt =

= u0+F [u(k)]t=0 t+

[

∂F [u(k)]

∂u(k)

∂u(k)

∂t
+

∂F [u(k)]

∂u
(k)
x

∂u
(k)
x

∂t
+ ... +

∂F [u(k)]

∂u
(k)
xn

∂u
(k)
xn

∂t

]

t=0

t2

2!
+

+





∂2F [u(k)]

∂(u(k))2

(

∂u(k)

∂t

)2

+ ... + 2
∂2F [u(k)]

∂u(k)∂u
(k)
x

∂u(k)

∂t

∂u
(k)
x

∂t
+ ... +

∂F [u(k)]

∂u
(k)
xn

∂2u
(k)
xn

∂t2





t=0

t3

3!
+.... =

Before we continue let us formulate the following lemma:
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Lemma 3.2 If u(i) = a0 + a1 t + a2 t2 + ... and u(i+1) = b0 + b1 t + b2 t2 + ... then
as = bs for s ≤ i.

Proof The statement holds if and only if ui+1 = ti+1 hi+1(x, t) for some analytical
function hk and k ≥ 1.
Basis: for k = 1 u1 =

∫ t

0 F [u0] dt. Since F is analytical, it could be written in series
form:

F (u, ux, ..., uxn) =
∑

i0,i1,...,in

bi0 i1 ...in
ui0ui1

x ...uin

xn .

Thus F also could be written as series with respect to t, F [u0] = c0 + c1 t + ... and
after integration u1 = c0 t + c1

2! t2 + ... .

Inductive step: we assume, that uk = tkhk(x, t), then

uk+1 =

∫ t

0
F [u0+u1+...+uk]−F [u0+u1+...+uk−1] dt =

∫ t

0
F [S+tkhk(x, t)]−F [S] dt,

where S = u0 + u1 + ... + uk−1. Using the series form:

uk+1 =

∫ t

0

∑

i0,i1,...,in

bi0 i1 ...in
((S+tkhk(x, t))i0(S+tkhk(x, t))i1

x ...(S+tkhk(x, t))in

xn−Si0Si1
x ...Sin

xn) dt

In the main theorem we assumed F [0] = 0 so b00...0 = 0. Thus the smallest possible
power of t in the sum is tk and after integration the proof is completed. �

Going back to the main proof:

= u0+F [f0] t+

[

∂F

∂u
[f0](g(x) + F [f0]) +

∂F

∂ux

[f0](g(x) + F [f0])x + ... +
∂F

∂ux
n

[f0](g(x) + F [f0])x
n

]

t2

2!
+

+
[∂2F

∂u2
[f0] (g(x) + F [f0])

2 + ... + 2
∂2F

∂u ∂ux

[f0](g(x) + F [f0])(g(x) + F [f0])x + ...

+
∂F

∂ux
n

[f0]

(

∂F

∂u
[f0](g(x) + F [f0]) +

∂F

∂ux

[f0](g(x) + F [f0])x + ... +
∂F

∂ux
n

[f0](g(x) + F [f0])x
n

)

] t3

3!
+... .

In other words, after taking limit we obtain the following formal form:

u(x, t) ≈ a0 + a1
t

1!
+ a2

t2

2!
+ ..., (2)

where

a0 = f0

a1 = g(x) + F [f0]

a2 =
∂F

∂u
[f0] a1 +

∂F

∂ux

[f0] a1x + ... +
∂F

∂uxn

[f0] a1xn
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a3 =
∂2F

∂u2
[f0]a

2
1+

∂2F

∂u2
x

[f0]a
2
1x+...+2

∂2F

∂u∂ux

[f0]a1a1x+...+
∂F

∂u
[f0]a2+...+

∂F

∂uxn

[f0]a2xn

...

Further terms could be easily obtained using formulae for higher differentials and
the key fact, that uk and uk+1 have the same coefficients up to kth power. �

4. Examples

Example 4.1 Let us start with the example from [6]. Authors considered the fol-
lowing Fisher’s equation

ut = uxx + 6u(1 − u) (3)

together with the initial condition

u(x, 0) =
1

(1 + ex)2
,

and obtain the exact solution of (3) using Adomian decomposition method. Here

F [u] = F (u, uxx), ∂F (u,uxx)
∂u

= 6 − 12u, ∂F (u,uxx)
∂uxx

= 1, ∂2F (u,uxx)
∂u2 = 1, f0 = 1

(1+ex)2 ,

a0 = f0

a1 = F [f0] =

(

1

(1 + ex)2

)

′′

+ 6
1

(1 + ex)2

(

1 −
1

(1 + ex)2

)

=
10ex

(1 + ex)3

a2 = (6 − 12f0)a1 + a1xx = 50
ex(2ex − 1)

(ex + 1)4

a3 = −12(a1)
2 + (6 − 12f0)a2 + a2xx = 250

4e2x − 7ex + 1

(ex + 1)5

etc..

The result after summation repeats the cited paper:

u(x, t) =
1

(1 + ex−5t)2
.

.

As we have seen from propositions 1, 2 the classical method does not lead straight
to Taylor’s series only if the equation or initial condition is nonhomogenous. The
next two examples cover both situations.
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Example 4.2 Now let us consider the non-autonomous heat equation [5]:

ut = uxx + sinx,

with the initial condition u(0, x) = cos x. Using classical approach we obtain:

u0 = cos x + t sinx

u1 = −t cos x −
1

2!
t2 sin x

u2 =
1

2!
t2 cos x +

1

3!
t3 sin x

....

Applying theorem 3.1 we can directly obtain Taylor series (the only non-zero deriva-
tive is ∂F

∂uxx

):

a0 = cos x

a1 = sin x + [cos x]xx = sin x − cosx

a2 =
∂F

∂uxx

a1xx = − sin x + cos x

a3 =
∂F

∂uxx

a2xx = sin x − cos x

etc.,

so finally

u(x, t) ≈ cos x + (sin x − cos x)(t −
t2

2!
+

t3

3!
− ...) = cos xe−t + sin x(1 − e−t).

To complete the illustration we choose the example with nonlinearity and non-
autonomous term.

Example 4.3 The following inhomogeneous advection problem is solved in [5]:

ut + uux = x, u(x, 0) = 2.

With the help of decomposition method the following recursive relations was ob-
tained:

u0 = 2 + x t
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u1 = −t2 −
1

3
xt3

u2 =
5

12
t4 +

2

15
xt5

...

Meanwhile using theorem 3.1

f0 = 2, g(x) = x, Fu[u] = −ux, Fu[2] = 0,

Fux
[u] = −u Fux

[2] = −2, Fu ux
= −1

and all other derivatives vanish at a0.

a0 = 2, a1 = x, a2 = −2, a3 = −2x, ...

In both methods we obtain

2

(

1 −
1

2!
t2 +

5

4!
t4 + ...

)

+ x

(

t −
1

3
t3 +

2

15
t5
)

=

= 2 sech t + x tanh t.
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