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In this paper we analyze the exact solutions to scalar PDEs obtained thanks to summable Taylor series provided by Adomian's decomposition method. We propose a modification of the method which makes the calculations of Taylor coefficients easier and more direct. The difference is essential for instance in case of non-homogenous equations or initial conditions and is illustrated by some examples.

Introduction

The area of exact solutions to nonlinear differential equations has become very popular in recent decades, when the development of personal computers enabled more efficient work with known algorithms. Adomian decomposition method [START_REF] Adomian | Solving frontier problems of physics: the decomposition method[END_REF][START_REF] Adomian | Nonlinear stochastic systems theory and applications to physics[END_REF][START_REF] Rach | A new definition of the Adomian polynomials[END_REF][START_REF] Wazwaz | Partial differential equations and solitary waves theory[END_REF] in the matter of fact was developed to find approximated solutions to differential equations, but in many publications [START_REF] Wazwaz | Partial differential equations and solitary waves theory[END_REF][START_REF] Wazwaz | An analytic study of Fisher's equation by using Adomian decomposition method[END_REF] we can find interesting examples where obtained power series were actually summable to exact solutions. Typical way to obtain such solutions is to sum up certain Taylor series. In our paper we are going to present some situations when it seems reasonable to use modified techniques to obtain Taylor series. In mathematical physics we often have to deal with scalar PDEs of space and time variables x, t ∈ R. We will show that for non-autonomous equations of this type the method could be easily modified to get Taylor series directly. In order to explain our idea let us first briefly present the classical method, so it would be easier to show the differences.

Adomian decomposition method

Let us consider the following one-dimensional equation in Cauchy-Kovalevska form: where x, t ∈ R, u t = ∂u ∂t , u x i = ∂ i u ∂x i , F (p 0 , p 1 , p 2 , p 3 , ..., p n ) is a analytical function of it's arguments and g(x) is an analytic non-autonomous term. The corresponding initial condition is u(x, 0) = f 0 (x). This quite special case would be perfectly sufficient to present the advantages of proposed modification. Let us introduce the auxiliary notation: G[u] = G(u, u x , u xx , ..., u x n ) for any functional G defined on jet-space. In classical approach LHS of (1) is usually split into two parts:

u t (x, t) = F (u, u x , u xx , ..., u x n ) + g(x), (1) 

F

F [u] = L F [u] + N F [u]
, where L F [u] is a linear operator with respect to u, u x , ..., u x n while N F [u] is nonlinear part of F [u]. Then the operator L -1 (.) = t 0 (.) dt can be introduced to express the solution of (1) in the form:

u = f 0 (x) + g(x) t + t 0 L F [u] + N F [u] dt. Next we assume u = ∞ i=0 u i and consequently L F [u] = ∞ i=0 L F [u i ] and N F [u] = N F [ ∞ i=0 ] = ∞ i=0 A i .
The newly introduced terms A i are so-called Adomian's polynomials, which could be obtained e.g. with the help of following formula:

A i = 1 n! d n dλ n [F ( n i=0 λ i u i )].
In the paper [START_REF] Wazwaz | A new algorithm for calculating Adomian polynomials for nonlinear operators[END_REF] author present very intuitive way to obtain these polynomials. The idea could be easily understood from the example below.

Example 2.1 For instance if we take nonlinearity in the form

N F [u] = u u x then N F [u] = (u 0 + u 1 + 2 u 2 + ...)(u 0x + u 1x + 2 u 2x + ...) = = u 0 u 0x + (u 1 u 0x + u 0 u 1x ) + ...
and here A i would be a coefficient at i . Let us notice that " "-notation was not used in cited paper, but in our opinion it makes the choice of A i more clear. Similar notation was also used in [START_REF] Adomian | On product nonlinearities in stochastic differential equations[END_REF]. Let us underline that each polynomial A i is dependent only on the functions u 0 , ..., u i . No higher orders are involved. Going back to the decomposition algorithm:

u = f 0 (x) + g(x) t + t 0 ∞ i=0 L F [u i ] + ∞ i=0 A i dt,
therefore the following recurrence could be defined:

u 0 = f 0 (x) + g(x )t u 1 = t 0 L F [u 0 ] + A 0 dt F o r P e e r R e v i e w O n l y ... u n = t 0 L F [u n-1 ] + A n-1 dt ... u = lim k→∞ k i=0 u i .
Remark 1 If g(x) = 0 then there exists a sequence of functions h i (x) such as

u n = h n (x) t n .
Proof By induction u 0 = f 0 (x) =: h 0 (x). Let us assume, that u i = h i (x) t i so t appears in the same power as in the example 2.1 which means that A i = k i (x) t i and

u i+1 = t 0 L F [h i (x) t i ] + k i (x)t i dt = t i+1 i + 1 (L F [h i (x)] + k i (x)) =: h i+1 t i+1 .
Remark 2 If f 0 (x) = 0 then there exists a sequence of functions h i (x) such as

u n = h n (x) t n+1 .
Proof By induction u 0 = t g(x) =: h 0 (x). Let us assume, that

u i = h i (x) t i+1 which means that A i = k i (x) t i+1 and u i+1 = t 0 L F [h i (x) t i+1 ] + k i (x)t i+1 dt = t i+2 i + 2 (L F [h i (x)] + k i (x)) =: h i+1 t i+2 .
These remarks imply that in case of autonomous equation or zero initial condition the algorithm leads straight to Taylor series.

Main Results

In our following research it would be comfortable to skip dividing F [u] into two parts. The whole functional F [u] could be as well approximated by Adomian polynomials. Let us also denote by u

(k) = k i=0 u i .
The key difference would be the fact that now we choose polynomials in different way. Let B 0 = F [u 0 ], but

B i = F [u (i) ] -F [u (i-1) ]
for i = 1, 2, ... . Let us notice, that similar approach can be found in [START_REF] Rach | A new definition of the Adomian polynomials[END_REF]. Comparing to the example 2.1 now we obtain

B 0 = A 0 = u 0 u 0x , but for a change B 1 = F [u 0 + u 1 ] -F [u 0 ] = u 0 u 1x + u 1 u 0x + u 1 u 1x . However it is obvious that still lim i→∞ B i = F [u]
. The new recurrence is: 

u 0 = f 0 (x) + g(x )t
u 1 = t 0 F [u 0 ]dt = t 0 B 0 dt u 2 = t 0 B 1 dt = t 0 F [u 0 + u 1 ] -F [u 0 ] dt ... u k = t 0 F [u (k-1) ] -F [u (k-2) ] dt. Theorem 3.1 Let us consider a partial differential equation in the form u t (x, t) = F [u(x, t)] + g(x), together with the initial condition u(x, 0) = f 0 (x) where x, t ∈ R, u : R 2 → R, F [u(x, t)] = F [u(x, t), u x (x, t), ..., u x n (x, t)], u x i = ∂ i u ∂x i .
We also assume, that F [u(x, t)] is analytical of it's arguments and F [0] = 0. Then formal Taylor series for the solution u(x, t) could be found using formula [START_REF] Adomian | Nonlinear stochastic systems theory and applications to physics[END_REF].

Proof

Let us start with the summation:

u (k) = k i=0 u i = u 0 + t 0 F [u (k-1) ] dt.
Therefore using Taylor's formula 

u (k+1) = u 0 + t 0 F [u (k) ] dt = = u 0 + t 0 F [u (k) ]| t=0 + ∂F [u (k) ] ∂u (k) ∂u (k) ∂t + ∂F [u (k) ] ∂u (k) x ∂u (k) x ∂t + ... + ∂F [u (k) ] ∂u (k) x n ∂u (k) x n ∂t t=0 t+ +   ∂ 2 F [u (k) ] ∂(u (k) ) 2 ∂u (k) ∂t 2 + ... + 2 ∂ 2 F [u (k) ] ∂u (k) ∂u (k) x ∂u (k) ∂t ∂u (k) x ∂t + ... + ∂F [u (k) ] ∂u (k) x n ∂ 2 u (k) x n ∂t 2   t=0 t 2 2! +.... dt = = u 0 +F [u (k) ] t=0 t+ ∂F [u (k) ] ∂u (k) ∂u (k) ∂t + ∂F [u (k) ] ∂u (k) x ∂u (k) x ∂t + ... + ∂F [u (k) ] ∂u (k) x n ∂u (k) x n ∂t t=0 t 2 2! + +   ∂ 2 F [u (k) ] ∂(u (k) ) 2 ∂u (k) ∂t 2 + ... + 2 ∂ 2 F [u (k) ] ∂u (k) ∂u (k) x ∂u (k) ∂t ∂u (k) x ∂t + ... + ∂F [u (k) ] ∂u (k) x n ∂ 2 u (k) x n
(i) = a 0 + a 1 t + a 2 t 2 + ... and u (i+1) = b 0 + b 1 t + b 2 t 2 + ... then a s = b s for s ≤ i.
Proof The statement holds if and only if u i+1 = t i+1 h i+1 (x, t) for some analytical function h k and k ≥ 1.

Basis: for k = 1 u 1 = t 0 F [u 0 ] dt.
Since F is analytical, it could be written in series form:

F (u, u x , ..., u x n ) = i0,i1,...,in b i0 i1 ...in u i0 u i1 x ...u in x n .
Thus F also could be written as series with respect to t, F [u 0 ] = c 0 + c 1 t + ... and after integration u 1 = c 0 t + c1 2! t 2 + ... . Inductive step: we assume, that u k = t k h k (x, t), then

u k+1 = t 0 F [u 0 +u 1 +...+u k ]-F [u 0 +u 1 +...+u k-1 ] dt = t 0 F [S+t k h k (x, t)]-F [S] dt,
where S = u 0 + u 1 + ... + u k-1 . Using the series form:

u k+1 = t 0 i0,i1,...,in b i0 i1 ...in ((S+t k h k (x, t)) i0 (S+t k h k (x, t)) i1 x ...(S+t k h k (x, t)) in x n -S i0 S i1 x ...S in x n ) dt
In the main theorem we assumed F [0] = 0 so b 00...0 = 0. Thus the smallest possible power of t in the sum is t k and after integration the proof is completed.

Going back to the main proof:

= u 0 +F [f 0 ] t+ ∂F ∂u [f 0 ](g(x) + F [f 0 ]) + ∂F ∂u x [f 0 ](g(x) + F [f 0 ]) x + ... + ∂F ∂u x n [f 0 ](g(x) + F [f 0 ]) x n t 2 2! + + ∂ 2 F ∂u 2 [f 0 ] (g(x) + F [f 0 ]) 2 + ... + 2 ∂ 2 F ∂u ∂u x [f 0 ](g(x) + F [f 0 ])(g(x) + F [f 0 ]) x + ... + ∂F ∂u x n [f 0 ] ∂F ∂u [f 0 ](g(x) + F [f 0 ]) + ∂F ∂u x [f 0 ](g(x) + F [f 0 ]) x + ... + ∂F ∂u x n [f 0 ](g(x) + F [f 0 ]) x n t 3 3! +... .
In other words, after taking limit we obtain the following formal form:

u(x, t) ≈ a 0 + a 1 t 1! + a 2 t 2 2! + ..., (2) 
where 

a 0 = f 0 a 1 = g(x) + F [f 0 ] a 2 = ∂F ∂u [f 0 ] a 1 + ∂F ∂u x [f 0 ] a 1x + ... + ∂F ∂u x n [f 0 ] a 1x n
a 3 = ∂ 2 F ∂u 2 [f 0 ]a 2 1 + ∂ 2 F ∂u 2 x [f 0 ]a 2 1x +...+2 ∂ 2 F ∂u ∂u x [f 0 ]a 1 a 1x +...+ ∂F ∂u [f 0 ]a 2 +...+ ∂F ∂u x n [f 0 ]a 2x n ...
Further terms could be easily obtained using formulae for higher differentials and the key fact, that u k and u k+1 have the same coefficients up to kth power.

Examples

Example 4.1 Let us start with the example from [START_REF] Wazwaz | An analytic study of Fisher's equation by using Adomian decomposition method[END_REF]. Authors considered the following Fisher's equation

u t = u xx + 6 u(1 -u) (3) 
together with the initial condition

u(x, 0) = 1 (1 + e x ) 2 ,
and obtain the exact solution of (3) using Adomian decomposition method. Here 

F [u] = F (u, u xx ), ∂F (u,uxx) ∂u = 6 -12 u, ∂F (u,uxx) ∂uxx = 1, ∂ 2 F (u,uxx) ∂u 2 = 1, f 0 = 1 (1+e x ) 2 , a 0 = f 0 a 1 = F [f 0 ] = 1 (1 + e x ) 2 + 6 1 (1 + e x ) 2 1 - 1 (1 + e x ) 2 = 10e x (1 + e x ) 3
u t = u xx + sin x,
with the initial condition u(0, x) = cos x. Using classical approach we obtain:

u 0 = cos x + t sin x u 1 = -t cos x - 1 2! t 2 sin x u 2 = 1 2! t 2 cos x + 1 3! t 3 sin x ....
Applying theorem 3.1 we can directly obtain Taylor series (the only non-zero derivative is ∂F ∂uxx ):

a 0 = cos x a 1 = sin x + [cos x] xx = sin x -cos x a 2 = ∂F ∂u xx a 1xx = -sin x + cos x a 3 = ∂F ∂u xx a 2xx = sin x -cos x etc., so finally u(x, t) ≈ cos x + (sin x -cos x)(t - t 2 2! + t 3 3! -...) = cos xe -t + sin x(1 -e -t ).
To complete the illustration we choose the example with nonlinearity and nonautonomous term.

Example 4.3

The following inhomogeneous advection problem is solved in [START_REF] Wazwaz | Partial differential equations and solitary waves theory[END_REF]:

u t + u u x = x, u(x, 0) = 2.
With the help of decomposition method the following recursive relations was obtained: In both methods we obtain 

u 0 = 2 + x t

Lemma 3 . 2

 32 we continue let us formulate the following lemma: If u

a 2 = ( 6 - 4 a 3 =

 2643 12f 0 )a 1 + a 1xx = 50 e x (2e x -1) (e x + 1) -12(a 1 ) 2 + (6 -12f 0 )a 2 + a 2xx = 250 4e 2x -7e x + 1 (e x + 1) 5 etc..The result after summation repeats the cited paper:u(x, t) = 1 (1 + e x-5t ) 2 .. As we have seen from propositions 1, 2 the classical method does not lead straight to Taylor's series only if the equation or initial condition is nonhomogenous. The next two examples cover both situations.

Example 4 . 2

 42 Now let us consider the non-autonomous heat equation[START_REF] Wazwaz | Partial differential equations and solitary waves theory[END_REF]:
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 810 = 2, g(x) = x, F u [u] = -u x , F u [2] = 0, F ux [u] = -u F ux [2] = -2, F u ux = -1and all other derivatives vanish at a 0 .a 0 = 2, a 1 = x, a 2 = -2, a 3 = -2x, ...
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