

# Theoretical description of cluster formation in two-Yukawa competing fluids

Dino Costa, Carlo Caccamo, Jean-Marc Bomont, Jean-Louis Bretonnet

# ► To cite this version:

Dino Costa, Carlo Caccamo, Jean-Marc Bomont, Jean-Louis Bretonnet. Theoretical description of cluster formation in two-Yukawa competing fluids. Molecular Physics, 2011, pp.1. 10.1080/00268976.2011.611480. hal-00739201

# HAL Id: hal-00739201 https://hal.science/hal-00739201

Submitted on 6 Oct 2012

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.



# Theoretical description of cluster formation in two-Yukawa competing fluids

| Journal:                                                                                                                                                | Molecular Physics                                                                                                                                                                                                                                                                                  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Manuscript ID:                                                                                                                                          | TMPH-2011-0217.R1                                                                                                                                                                                                                                                                                  |  |  |  |  |
| Manuscript Type:                                                                                                                                        | Special Issue in honour of Luciano Reatto                                                                                                                                                                                                                                                          |  |  |  |  |
| Date Submitted by the<br>Author:                                                                                                                        | 25-Jul-2011                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Complete List of Authors:                                                                                                                               | Costa, Dino; Università di Messina, Dipartimento di Fisica<br>Caccamo, Carlo; Università di Messina, Dipartimento di Fisica<br>Bomont, Jean-Marc; Universite Paul Verlaine, Institut de Physique<br>Bretonnet, Jean-Louis; Université Paul Verlaine, Laboratoire de<br>Physique des Milieux Denses |  |  |  |  |
| Keywords:                                                                                                                                               | competing interactions, non-homogeneous phases, cluster formation, theory of the liquid state                                                                                                                                                                                                      |  |  |  |  |
|                                                                                                                                                         |                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| Note: The following files were submitted by the author for peer review, but cannot be converted to PDF. You must view these files (e.g. movies) online. |                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| source files.zip                                                                                                                                        |                                                                                                                                                                                                                                                                                                    |  |  |  |  |

# SCHOLARONE<sup>™</sup> Manuscripts

#### Molecular Physics

#### **REPLY TO REFEREE REPORT OF PAPER TMPH-2011-0217**

We have carefully amended the original version of paper TMPH-2011-0217 according to the advice of the referee. A point-to-point report of all corrections is given below. For the clarity sake, all modifications are reported in red colour both in this reply and in the revised manuscript.

§§§

**Referee.** Point 1-i: Throughout the paper, the situation in which the structure factor displays the small-q peak due to cluster-cluster correlation is referred to as pertaining to a "non-homogeneous fluid" or a "non homogeneous phase", as opposed to the "homogeneous fluid", in which such a peak is absent [...] However, the occurrence of such a peak does not correspond in itself to a phase transition between a homogeneous and a non homogeneous phase, and the fluid is actually homogeneous for all the states considered here, including those for which the small-q peak of the structure factor is present [...] I think that this point should be made clearer in the manuscript. In most cases, this will simply amount to a different choice of the words used to design the situation in which cluster formation occurr, yet I think it is well worth doing so.

**Reply:** We agree with the Referee that the cluster formation investigated in this work does not give rise to a thermodynamically resolved phase transition, and therefore the words "non-homogeneous phase" constitutes a misleading expression. To avoid confusion, we have designated throughout the paper the situation in which the cluster formation occurs as a "cluster fluid". This expression is first defined in the Introduction of the revised version (page 2) as:

clusters start to develop out of the fluid phase, giving rise to what we term in the rest of the paper "cluster fluid".

## § § §

**Referee.** Point 1-ii: The above observation also prompts the natural question, of how the (real) phase transition to the non homogeneous phase will come along in the present treatment. I suspect that, if the temperature is taken to values lower than those considered here, the integral equations, either MHNC or BB, will eventually fail to converge, but some

more information would definitely be welcome, even without going into detail. For instance, if this is the case, at what temperatures would the theories fail to converge? Are they much lower than the lowest temperatures investigated here? And how big will the cluster peak be by the time this happens? The structure factors shown in Fig. 4 do certainly show the cluster peak, but its value is relatively small, in particular smaller than that of the peak related to particle-particle correlations.

**Reply:** We have added a comment, also taking into account the conclusions of previous studies [29,36], clarifying the expected behaviour of the system at low enough temperatures and the corresponding performances of the BB and MHNC approximations. The new sentence (page 7) reads:

On the other hand, since our models have a long-range repulsive contribution (non negligible up to  $r \sim 4\sigma$ ), the system is expected to form [29], for low enough temperatures, a Wigner glass of clusters, i.e. a disordered state of polydisperse clusters that do not percolate to give a gel. The investigation of this regime is substantially out of the scope of the theoretical framework employed in this work; moreover, as shown in Ref. [36], the BB algorithms ceases to numerically converge for temperatures approximately around  $T^* = 0.30$  (i.e. close to the lowest temperatures reported in Figure 4), and test calculations (not reported here) demonstrate that the same limiting temperature range holds for the MHNC approximation.

## $\S$ $\S$ $\S$

**Referee.** Point 2: One might want to observe that, while the lower temperatures at which the structure factor was studied are close to or even lower than the critical temperatures of the purely attractive fluid estimated by the Noro-Frenkel rule, the structure factor at k=0 always remains much lower than unity, and the second virial coefficient is always positive. This would help substantiate the statement made in the last paragraph of the conclusions, that "the liquid-vapor coexistence ... completely disappers in favor of the microsegregation, once the full 2Y interactions is taken into account".

**Reply:** We thank the Referee for his suggestion; we have simply deemed as more appropriate to cite his remark in the Results section, where we discuss the various features of the

#### Molecular Physics

structure factor (i.e. in connection with Figure 4), leaving untouched the Conclusions. We have in particular added the sentence (page 7):

As visible from Figure 4, while the lower temperatures at which the structure factor is studied are close to or even lower than the critical temperatures of the purely attractive fluid estimated by the Noro-Frenkel rule, the  $k \rightarrow 0$  limit of the structure factor, directly related to the isothermal compressibility, always remains much lower than unity. This evidence (together with the fact that the second virial coefficient is always positive, see Figure 2b), further corroborates our previous statement about the absence of a liquid-vapour phase separation.

§§§§

Referee, Point 3: In the review of theoretical studies on microphase formation given in the Introduction, I think that also the work by A. Ciach deserves mention, see A. Ciach, Phys. Rev. E 78, 061505 (2008); A. Ciach and W. T. Gozdz, Cond. Matt. Phys. 13, 23603 (2010); A. Ciach, Mol. Phys. 109, 1101 (2011).

**Reply:** We agree with the Referee and therefore we have added (page 2) a new sentence shortly making reference to the work of A. Ciach and collaborators (new citations 24, 25 and 26):

At low enough temperatures, a universal sequence of cluster phases (comprising ordered, periodic bcc, hexagonal and lamellar phases), and the existence of a gyroid phase (possibly related to a network-forming cluster of colloids in colloid/polymer mixtures) were predicted in Refs. [24,25] by means of a mesoscopic, coarse-grain theory for soft materials combining density functional and statistical field theory; more recently, the same formalism was used to investigate the general features of microscopic interaction potentials leading to inhomogeneous structures [26].

## §§§§

**Referee, Point 4:** In Sec. 2.1, it is explained that  $z_2$  has been chosen so as to give the same behavior for  $B_2$ . Has the choice of  $z_2$  been made by visual inspection? Or has some different criterion been used?

**Reply:** Indeed, in the original manuscript we omitted a description of the procedure followed to calculate  $z_2$ . We have remedied this point with the new sentence (page 4):

In particular, we have chosen three different  $z_1$  values (i.e.  $z_1 = 19$ , model M1 hereafter;  $z_1 = 13$ , model M2;  $z_1 = 10$ , model M3) and freely fixed  $z_2 = 0.5$  for  $z_1 = 10$ , as in Ref. [36]; then, we have identified the remaining two  $z_2$  values (to within a  $\Delta z_2 = 0.001$  resolution) as those minimizing the variance between the various  $B_2$  in the temperature range [0.4 - 0.8].

For the clarity sake, we have also slightly rearranged the rest of the same paragraph.

## §§§

**Referee, Point 5:** Below Eq. (9), a simplified MHNC scheme is mentioned, where sigma\_HS was determined without imposing thermodynamic self-consistency. How was sigma\_HS determined, then? Was it taken equal to the true hard-sphere diameter?

**Reply:** We have revised the sentence after Eq. (9) to exactly account for the procedure followed by Archer and Wilding in current Ref. [20]:

An application of a simplified, thermodynamically non-consistent MHNC scheme to 2Y fluids — with B(r) in Eq. (9) given by the PY expression for the hardsphere fluid bridge function at the same density [42,43] — is also reported in Ref. [20].

## §§§

**Referee**, **Point 6**: In Sec. 3, the Noro and Frenkel rule of corresponding states is mentioned. I suggest to add a quick reminder of what this rule consists of.

**Reply:** A quick reminder is certainly useful: we have added the following sentence about the Noro-Frenkel rule (page 6):

The empirical rule determined by Noro and Frenkel in Ref. [56] — well verified by a wide class of central potentials — states a linear relationship between the range of a given interaction potential and the corresponding critical temperature, once (i) the critical temperature is expressed in terms of the depth of the potential well (as in our previous definition of  $T^*$ ) and (ii) the range of the potential

#### Molecular Physics

is expressed in terms of an equivalent square-well interaction having the same reduced second virial coefficient  $B_2(T^*)/B_2^{\text{HS}}$  [see Eq. (4)] at the same reduced temperature  $T^*$ .

§§§

**Referee, Point 7:** Pg. 7, line 11: "the cluster peak heralds ...": perhaps "the cluster peak appears ..."?

**Reply:** We used "it heralds" meaning "it becomes more and more prominent", rather than "it appears". For the clarity sake we have used in the revised version the expression (page 7, line 22) develops significantly.

## $\S$ $\S$ $\S$

Referee, Point 8: Pg. 7, line 37: "(see Figure 3)": I assume it is Figure 3 of Ref. [32].

**Reply:** We erroneously referred to Figure 3 of the manuscript rather than to Figure 1, reproducing the same models used in old Ref. [32] (current Ref. [36]). We have corrected and clarified this point by using:

(see Figure 1, reproducing the models adopted in Ref. [36])

§§§

**Referee, Point 9:** Pg. 7, line 44: "... at higher packings the formation of clusters is hampered by strong repulsion and thermal motion ...": actually, the thermal motion, as expressed by the average particle speed, should be independent of density.

**Reply:** We have removed from page 8 (line 21) of the revised version the words "and thermal motion".

## **RESEARCH ARTICLE**

## Theoretical description of cluster formation in two-Yukawa competing fluids

D. Costa<sup>a\*</sup> C. Caccamo<sup>a</sup>, J.-M. Bomont<sup>b</sup> and J.-L. Bretonnet<sup>b</sup>

<sup>a</sup>Dipartimento di Fisica, Università degli Studi di Messina Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy <sup>b</sup>Laboratoire de Physique des Milieux Denses, Université Paul Verlaine 1 Bd. Arago, 57078 Metz, France

(Received 00 Month 200x; final version received 00 Month 200x)

We investigate the temperature threshold whereupon two-Yukawa fluids with microscopic competing interactions transform from normal to cluster fluids. Specifically, we apply two refined, thermodynamically self-consistent integral equation theories of the liquid state to study a family of two-Yukawa models having the same interaction strength, independently on the choice of potential parameters. We find, over the range of potential parameters and fluid densities investigated, an almost linear scaling between the temperature threshold for the cluster formation and the height of repulsive interactions, with higher barriers stabilizing the cluster fluid at higher temperatures. Cluster-cluster correlation lengths seem instead influenced by the long-range features of interactions.

Keywords: competing interactions; non-homogeneous phases; cluster formation; theory of the liquid state.

#### 1. Introduction

Microscopic competing interactions are characterized by the presence, in the overall particle-particle potential, of attractive and repulsive contributions (generally beside an excluded volume term) acting on different length scales. Such peculiar interactions are ubiquitous in soft materials: as few examples, they were used to model protein solutions [1–5], colloids [1, 6, 7], star polymers [8]. The long-range repulsion is generally attributed to the weakly screened charge carried by the colloidal molecules, or to the presence of cosolutes in the solution [9], whereas the short-range attraction arises from several different mechanisms, including van der Waals interactions, depletion forces, hydrophobic effects [10–12]. Perhaps the most intriguing effect related to the presence of such competing interactions is the large variety of different fluid phases they can give rise, including (besides normally homogeneous phases) patterned or modulated phases and other locally inhomogeneous states characterized by the presence of stripes, bubbles, lamellæ or clusters (see e.g. the review [13]).

Several aspects of the rich phenomenology exhibited by fluids with competing interactions were elucidated by Luciano Reatto and coworkers in the last decade,

ISSN: 00268976 print/ISSN 13623028 online © 2011 Taylor & Francis DOI: 10.1080/0026897YYxxxxxxx http://www.informaworld.com

<sup>\*</sup>Corresponding author. Email: dcosta@unime.it

July 25, 2011 16:21

2

Molecular Physics

dcosta-molphys-rev1 Molecular Physics

Page 7 of 23

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57 58

59 60

#### D. Costa et al.

by means of a variety of theoretical and simulation techniques. As a few examples, in models exhibiting a normal liquid-vapour phase separation they found a great expansion of the temperature-density region around the critical point where the system experiences large density fluctuations and a remarkable enhancement of the short-range correlations, in comparison with a fluid with purely attractive interactions [14, 15]. First and second order phase transitions from a uniform fluid to a modulated inhomogeneous phase were described in [16]. Spontaneous pattern formation, and the effect of shear on the formation and stability of clusters and stripes in bidimensional systems were analysed in Refs. [17] and [18], respectively. The interfacial properties of fluids with competing interactions, as the density profiles at the planar liquid-gas interface or fluids adsorbed at a planar hard wall, were investigated in Ref. [19]. In order to further extend this overview, we mention the possibility to observe a first-order transitions separating the vapour from a fluid of spherical liquid-like clusters or the liquid from a fluid of spherical voids [20]. Theoretical studies [21] predicted that model colloidal particles confined to an interface such as the air-water interface have a bulk phase diagram exhibiting clusters, stripes, and bubble modulated phases, in addition to homogeneous fluid phase and a rather complex phase behaviour upon confinement. The prediction of lamellar order, microphase structures, and glassy phases in a field theoretic model for charged colloids was reported in Refs. [22, 23], suggesting that the cluster phase observed in such systems might be the signature of an underlying equilibrium lamellar phase, hidden on the experimental time scale. At low enough temperatures, a universal sequence of cluster phases (comprising ordered, periodic bcc, hexagonal and lamellar phases), and the existence of a gyroid phase (possibly related to a network-forming cluster of colloids in colloid/polymer mixtures) were predicted in Refs. [24, 25], by means of a mesoscopic, coarse-grain theory for soft materials combining density functional and statistical field theory; more recently, the same formalism was used to investigate the general features of microscopic interaction potentials leading to inhomogeneous structures [26]. Investigations in this area attracted increasing attention also because they may shed light on aggregation phenomena that can precede arrested states [27–34]; more generally, the control of aggregation processes constitutes a crucial step in disparate realms of science and technology, e.g. in colloid and polymer science, in the study of human diseases caused by the formation of fibrillar aggregates, in the protein structure determination, in the production of photonic crystals, in food science. We refer the interested reader to Refs. [20, 35, 36] for an up-to-date bibliography accounting quite extensively for the last three decades studies on this topic.

In this work, we focus on the phenomenon of cluster formation, particularly regarding the temperature threshold whereupon clusters start to develop out of the fluid phase, giving rise to what we term in the rest of the paper "cluster fluid". The onset of aggregation is experimentally signalled by the appearance of a lowwavevector peak in the static structure factor of the fluid (cluster peak), beside the main particle-particle correlation peak [1, 27, 30]. Theoretical studies interpreted the development of such low-k peak in terms of enhanced density fluctuations that, at variance with the purely attractive case, do not evolve into a fully developed macroscopic phase separation [6, 14, 17]; therefore, the formation of aggregates in the fluid phase results from an appropriate balance between attraction, favouring the cluster growth at low enough temperature, and long-range repulsion, preventing a complete phase separation.

A widely studied prototype system exhibiting competing interactions is represented by the two-Yukawa (2Y) model — see Eq. (1) in the next section — where the competition is obtained from the sum of two Yukawa screened interactions with

 different amplitudes and decay lengths, see e.g. [5, 14–21, 28, 36–40]. Several of such studies involved an investigation of the model based on a systematic variation of one or more potential parameters, not necessarily implying a corresponding systematic variation of the overall shape of the 2Y potential itself (see e.g. Figure 1 in the next section). We here assume a different viewpoint, and choose a set of potential parameters originating a family of 2Y models characterized by (almost) the same shape of the attractive interaction, and in which the total strength of interactions (as measured by the second virial coefficient of the models) depends on the temperature but is held constant with respect to the choice of potential parameters. With this procedure, we aim to elucidate the connection between the features of the attractive contribution), the properties of the aggregation process, and the cluster fluid thereby formed.

Our theoretical investigation is carried out in the framework provided by the Ornstein-Zernike integral equation theory of atomic fluids [41]. In particular, we have adopted two refined, thermodynamically self-consistent closure relations [42, 43], namely the Modified Hypernetted Chain (MHNC) scheme of Rosenfeld and Ashcroft [44] and a relation proposed by two of the authors (Bomont and Bretonnet, BB hereafter) [45, 46], interpolating via a consistency parameter between the Hypernetted Chain (HNC) [42, 43] and the Martynov-Sarkisov [47] closures. We again acknowledge the substantial contribution of Luciano Reatto and collaborators to the theoretical characterization of the fluid phase, as provided by the development of the Hierarchical Reference Theory [48] (see also [49, 50] for recent advances), and by refinements of the basic MHNC [51] and Optimized Random Phase approximations [52] theories.

The paper is organized as follows: in the next section we introduce the 2Y models, in Section 3 we report and discuss our results, last section contains the conclusions.

## 2. Model and theories

## 2.1. The two-Yukawa model

Two-Yukawa particles interact via the potential:

$$V(r) = \begin{cases} +\infty & r < \sigma \\ \frac{-K_1}{r/\sigma} \exp\left[-z_1\left(\frac{r}{\sigma} - 1\right)\right] + \frac{K_2}{r/\sigma} \exp\left[-z_2\left(\frac{r}{\sigma} - 1\right)\right] & r \ge \sigma \,. \end{cases}$$
(1)

The potential in Eq. (1) is characterized by a purely hard-core repulsion of diameter  $\sigma$  followed by an attractive well of strength and range  $K_1$  and  $1/z_1$ , respectively, and by a repulsive tail at larger distances of strength and range  $K_2$  and  $1/z_2$ , respectively. A short-range attraction followed by a long-range repulsion are obtained through the requirement  $K_1 > K_2 > 0$  and  $z_1 > z_2 > 0$ . For  $K_2 = 0$ , a purely attractive Yukawa interaction is recovered, while assuming  $K_2 = K_1 = 0$  leads to the familiar hard-sphere model. The hard-core diameter  $\sigma$  and the potential well depth  $\varepsilon = (K_1 - K_2)$  provide, respectively, the natural distance and energy scales of the system. The reduced temperature is defined as  $T^* = k_{\rm B}T/\varepsilon$ , where  $k_{\rm B}$  is the Boltzmann constant.

A typical example of previous studies, drawn from our recent paper [36], is reported in Figure 1, where we show a family of 2Y models with  $z_1$ ,  $z_2$  and  $K_1$  held fixed and different  $K_2/K_1$  ratios; as we have alluded to in the Introduction, though  $K_2/K_1$  changes "systematically" between 0.01 and 0.1, the resulting poten-

tials do not vary "systematically", making difficult the interpretation of structural and thermodynamics predictions in terms e.g. of the properties of the attractive well or in terms of the amplitude/decay of the repulsive tail. Here, first we have fixed the minimum of the potential as  $V_{\min} \equiv V(r = \sigma) = -1$ , and the distance  $r_0$  whereupon the potential crosses zero i.e.  $V(r = r_0) = 0$  as  $r_0 = 1.1\sigma$ . Both requirement can be satisfied by means of the two relations:

$$K_1 = \frac{1}{1 - \exp[(z_2 - z_1)(r_0 - \sigma)]}$$
(2)

$$K_2 - K_1 = -1. (3)$$

As visible from Figure 2a (see also the magnification in the inset), this procedure produces almost similar, quite short-range shapes of the 2Y attractive contribution for a variety of different repulsive realizations. We shall discuss more in the Results section the implications of such small differences.

Secondly, we have required that the total interaction strength is fixed, independently on the choice of a particular set of parameters. A natural way to define an "integrated measure" of interactions is provided by the second virial coefficient,

$$B_2(T^*) = B_2^{\rm HS} + B_2^{\rm soft}(T^*) = -\frac{2}{3}\pi\sigma^3 - 2\pi \int_{\sigma}^{\infty} \{\exp[-\beta V(r)] - 1\}r^2 \,\mathrm{d}r\,,\qquad(4)$$

where  $\beta = 1/T^*$  and  $B_2$  has been expressed as a sum of the hard-core and soft contributions. The expression in Eq. (4) depends on the temperature; nevertheless, as visible in Figure 2b, once a particular value of  $z_1$  has been fixed, the same behaviour of  $B_2^{\text{soft}}/B_2^{\text{HS}}$  as a function of  $T^*$  can be enforced on a given temperature interval, with an appropriate choice of  $z_2$  (see also the inset, showing an almost linear scaling of  $B_2$  vs T on a log-log scale). In particular, we have chosen three different  $z_1$  values (i.e.  $z_1 = 19$ , model M1 hereafter;  $z_1 = 13$ , model M2;  $z_1 = 10$ , model M3) and freely fixed  $z_2 = 0.5$  for  $z_1 = 10$ , as in Ref. [36]; then, we have identified the remaining two  $z_2$  values (to within a  $\Delta z_2 = 0.001$  resolution) as those minimizing the variance between the various  $B_2$  in the temperature range [0.4 - 0.8]. Numerical values of all parameters of the three 2Y models, plotted in Figure 2b, are given in Table 1. The models span a reasonably wide interval of the height-to-depth ratio of the 2Y potential, ranging from  $\sim 13\%$  to  $\sim 36\%$  (see the last column in Table 1). The small discrepancies among various  $B_2$  visible in Figure 2b do not influence the system properties around the temperature threshold for the cluster formation. In fact, such discrepancies emerge (by construction) for  $T^* \lesssim 0.4$  and  $T^* \gtrsim 0.8$ , where preliminary calculations have shown that clusters are either already well developed (at low  $T^*$ ) or still completely absent (at high  $T^*$ ). The equivalence of  $B_2$  implies that the increase of the repulsive barrier is tempered at each temperature by a quicker decay of V(r) at long distances.

#### 2.2. Liquid state theories

The properties of the 2Y models are calculated in the framework provided by integral equation theories of the liquid state. The starting point is the Ornstein-Zernike equation [41], providing an exact relationship between the total correlation function of the fluid h(r) = g(r) - 1 [where g(r) is the pair distribution function]

$$h(r) = c(r) + \rho \int c(|r - r'|) h(r') \,\mathrm{d}\mathbf{r}' \,, \tag{5}$$

where  $\rho$  is the number density. Eq. (5) must be supplemented by a closure relation, derived from cluster diagrammatic analysis, that reads:

$$g(r) = \exp[-\beta V(r) + \gamma(r) + B(r)], \qquad (6)$$

where  $\gamma(r) = h(r) - c(r)$  is the indirect correlation function; the various "ansatz" proposed to approximate the unknown bridge function B(r) are at the heart of different integral equation approaches [42, 43]. In this work we have applied the MHNC scheme, in which B(r) is approximated by the bridge function of the hard-sphere (HS) system, following a prescription based on the universality in the short-range structure observed in a wide class of model fluids [44]. We have used in particular the Verlet-Weis (VW) parametrization of simulation data [53], i.e.

$$B(r) \equiv B_{\rm HS}^{\rm VW}(r, \sigma_{\rm HS}) \qquad (\rm MHNC)\,, \tag{7}$$

with the hard-core diameter  $\sigma_{\rm HS}$  fixed so to enforce the thermodynamic selfconsistency of the theory, as given by the equality between the isothermal compressibilities calculated from the virial and compressibility routes from structure to thermodynamics [41],

$$\beta \frac{\partial P^{\rm vir}}{\partial \rho} \bigg|_{T,\rho} = 1 - \rho \int c(r) \,\mathrm{d}\mathbf{r} \,, \tag{8}$$

where

$$P^{\rm vir} = \rho k_{\rm B} T - \frac{2}{3} \pi \rho^2 \int r^3 g(r) \frac{dV(r)}{dr} \,\mathrm{d}r \,. \tag{9}$$

An application of a simplified, thermodynamically non-consistent MHNC scheme to 2Y fluids — with B(r) in Eq. (7) given by the Percus-Yevick expression for the hard-sphere fluid bridge function at the same density [42, 43] — is also reported in Ref. [20].

As for the second closure, the bridge function reads [45, 46]:

$$B(r) = \left[1 + 2\gamma(r) + f\gamma^{2}(r)\right]^{1/2} - 1 - \gamma(r) \qquad (BB);$$
(10)

as mentioned in the Introduction, the proposed expression for B(r) interpolates between the basic HNC approximation, B(r) = 0, recovered when the mixing parameter f is set equal to one, and the Martynov-Sarkisov closure [47], obtained when f = 0. It is important to note that neither the HNC nor the Martynov-Sarkisov schemes are thermodynamically consistent, whereas in the BB procedure the mixing parameter f is again determined so to enforce the thermodynamic consistency condition of Eq. (8).

The Gillan [54] and Labik *et al.* [55] numerical iterative algorithms have been used to solve the Ornstein-Zernike equation coupled with the MHNC and BB closures, respectively. We have calculated all correlation functions on an extended and finely resolved grid of  $2^{14}$  points with  $\Delta r = 0.005\sigma$ , covering a spatial range of  $81.92\sigma$ .

We have ensured in this way an accurate treatment of the long-range behaviour of various correlation functions, as well as a precise characterization of the k-space properties via Fourier inversion.

## 3. Results and discussion

As a first step, we have verified the accuracy of MHNC structural predictions for the 2Y fluid. To date, in fact, only a simplified, thermodynamically non-consistent version of MHNC was applied in context of 2Y fluids [20], in an attempt to predict the liquid-vapour phase coexistence. In Figure 3 we have compared the MHNC structure factors S(k) with the corresponding Monte Carlo data reported in our previous work [36]. As visible, MHNC gives practically quantitative structural predictions, performing only slightly better than BB in the cluster fluid (see also the inset). The accuracy of MHNC predictions — together with the already known evidences for BB [36] and HMSA [40] — further confirms that refined, self-consistent integral equation theories provide a reliable tool to investigate the properties of models with competing interactions and the properties of the cluster fluids they are able to form [40].

In order to approximately locate a scale of temperatures relevant for the phase behaviour, we have applied the Noro-Frenkel rule of corresponding states [56] to predict the critical temperature of the attractive parts only of the three 2Y models [as obtained for instance by setting  $V(r > r_0) = 0$  in the full potential of Eq. (1)]. The empirical rule determined by Noro and Frenkel in Ref. [56] — well verified by a wide class of central potentials — states a linear relationship between the range of a given interaction potential and the corresponding critical temperature, once (i) the critical temperature is expressed in terms of the depth of the potential well (as in our previous definition of  $T^*$ ) and (ii) the range of the potential is expressed in terms of an equivalent square-well interaction having the same reduced second virial coefficient  $B_2(T^*)/B_2^{\text{HS}}$  [see Eq. (4)] at the same reduced temperature  $T^*$ . The Noro-Frenkel rule predicts critical temperatures for the models at issue around  $T_{\rm cr}^* = 0.30$ ; specifically, due to the small differences in the overall shape of the attractive part discussed in the previous section, we have obtained  $T_{\rm cr}^* = 0.291$ , 0.297, and 0.301 for model M1, M2 and M3, respectively, coherently with the fact that the wider the attractive well (see inset of Figure 2), the higher the liquidvapour critical temperature. The same rule also predicts for all 2Y models of Table 1 that the attractive contribution is short-range enough to result in a liquid-vapour phase separation metastable with respect to the vapour-solid coexistence. We have also tried to calculate the whole liquid-vapour binodal, unfortunately concluding that both MHNC and BB schemes fail to provide a numerical solution in a relatively large region comprising the binodal (a similar conclusion has been drawn also in Ref. [21] for the simpler HNC and MHNC schemes therein adopted); we can only say that as  $T^*$  is lowered towards  $T^*_{cr}$ , the MHNC compressibility becomes progressively structured and exhibits a maximum, as a function of the density, placed around  $\rho\sigma^3 \approx 0.42$ , reasonably providing an approximate indication of the critical density.

As the repulsive part of the 2Y model is switched on, resulting in the whole expression of Eq. (1), the liquid-vapour metastable separation concerning the attractive part is definitely suppressed in favour of the aggregate formation, according to the competition mechanism between microsegregation and condensation already described in the Introduction. In particular, the analytical Mean Spherical Approximation predicts — as the more refined Self-Consistent Ornstein-Zernike Approxi

8

9

10

11 12

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39 40

41

42

43

44

45

46

47

48

49

50 51

52

53

54

55

56

57

58

59 60 Molecular Physics

7

Page 12 of 23

mation equally does [14] — that the liquid-vapour binodal disappears when

$$\frac{K_2}{K_1} > \left(\frac{z_1}{z_2}\right)^2 \left[\frac{z_2 - 2 + (z_2 + 2) e^{-z_2}}{z_1 - 2 + (z_1 + 2) e^{-z_1}}\right]^2,$$
(11)

a condition largely satisfied for all parametrizations of Table 1.

We have generated theoretical predictions concerning the three models of Table 1 at three different packing fractions spanning the fluid regime, namely  $\eta \equiv \pi \rho \sigma^3/6 = 0.10, 0.20$  and 0.25. For opportunity reasons, we have worked on an equally spaced grid in  $\beta$ , i.e. the inverse of the reduced temperature, with a resolution as fine as  $\Delta\beta = 0.01$ . The appearance of the cluster peak has been identified with the development of a local low-k maximum in S(k). The corresponding  $\beta_{\text{cluster}} = 1/T_{\text{cluster}}^*$  has been taken as the one halfway the two sequential  $\beta$  values whereupon such maximum first develops, to within the resolution adopted; we have then estimated the theoretical uncertainty as  $\Delta\beta/2$ .

In figure 4 we have reported the MHNC and BB S(k) for all 2Y models, at fixed  $\eta = 0.20$ , starting from low  $\beta$  values, passing across the cluster formation threshold up to  $\beta$  regimes where the cluster fluid definitely sets in. As visible, MHNC and BB theories agree in the normal fluid regime, whereas BB predicts slightly enhanced cluster-cluster correlations as the temperature is lowered, resulting in slightly higher  $T^*_{\text{cluster}}$  in comparison with the MHNC ones. The cluster formation involves a shift of the main peak toward higher k values, signalling the onset of a shorter characteristic length scale of monomer-monomer correlations, in comparison with the normal fluid phase. In particular, as already observed in our previous work [36], this indicates that clusters become more compact as the temperature is reduced; at the same time the cluster peak develops significantly with decreasing the temperature and slightly shifts to lower wavevectors. The cluster peak in Figure 4 moves towards higher wavevectors as the barrier height increases, consistently with earlier evidence reported in Ref. [38]. The way in which our 2Y models are built implies that higher barriers correspond to quicker decays of the repulsive interactions (see Figure 2a). In this sense, we interpret the above mentioned shift as signalling that a larger characteristic intercluster correlation distance sets in the fluid, as the overall repulsive background becomes progressively broader and longer-ranged, i.e. in passing from Model 3 to Model 1. As visible from Figure 4, while the lower temperatures at which the structure factor is studied are close to or even lower than the critical temperatures of the purely attractive fluid estimated by the Noro-Frenkel rule, the  $k \to 0$  limit of the structure factor, directly related to the isothermal compressibility, always remains much lower than unity. This evidence (together with the fact that the second virial coefficient is always positive, see Figure 2b), further corroborates our previous statement about the absence of a liquid-vapour phase separation. On the other hand, since our models have a long-range repulsive contribution (non negligible up to  $r \sim 4\sigma$ ), the system is expected to form [29], for low enough temperatures, a Wigner glass of clusters, i.e. a disordered state of polydisperse clusters that do not percolate to give a gel. The investigation of this regime is substantially out of the scope of the theoretical framework employed in this work; moreover, as shown in Ref. [36], the BB algorithms ceases to numerically converge for temperatures approximately around  $T^* = 0.30$  (i.e. close to the lowest temperatures reported in Figure 4), and test calculations (not reported here) demonstrate that the same limiting temperature range holds for the MHNC approximation.

In Figure 5, the MHNC and BB predictions for  $T^*_{\text{cluster}}$  are reported as a function of  $V_{\text{max}}/\varepsilon$ , i.e. the ratio between the height of the repulsive barrier and the

Page 13 of 23

D. Costa et al.

potential well depth (see Table 1). The dependence of  $T^*_{\text{cluster}}$  on such ratio appears almost linear, with a close agreement emerging between the two theories. Moreover, the higher is the potential barrier, the higher is the threshold temperature (at fixed packing fraction) for the cluster formation. This proportionality suggests that the onset of the microsegregation process sensitively depends on the competition between thermal energy and potential barrier: as the temperature decreases they become comparable to each other, the cluster seeds (constituted by a central particle and its first neighbours sensing the potential attractive well) are progressively stabilized against the thermal motion, and the aggregate formation can take place. The increase of  $T^*_{\text{cluster}}$  with the barrier height is at variance with the opposite trend emerged in Ref. [36]; we note in this instance that the 2Y parametrization adopted in [36] did not have a unique attractive potential well, as we have deliberately constructed in the present work. Indeed, in that case, the highest potential barrier was associated to the narrowest attractive well (see Figure 1, reproducing the models adopted in Ref. [36]); it then possibly turned out necessary to emphasize attractions, that is to reduce the temperature, in order to promote the cluster formation.

In Figure 6 the temperature  $T^*_{\text{cluster}}$  for all models is shown as a function of the packing fraction  $\eta$ . The observed decrease of  $T^*_{\text{cluster}}$  vs  $\eta$  has already been signalled in Refs. [36, 37]. A plausible explanation is that at higher packings the formation of clusters is hampered by the strong repulsion, with the system dominated by single-particle dynamics [37], so that attractive potential effects must be emphasized, as it happens when  $T^*$  is lowered.

All numerical values of  $\beta_{\text{cluster}}$  are conclusively reported in Table 2. As can be deduced also from previous Figures 5 and 6, MHNC and BB predictions are discrepant from each other by no more than 3%. As for the achievement of very accurate thermodynamic consistency conditions, the BB solution algorithm appears more successful than the MHNC one. In fact the thermodynamic consistency in Eq. (8) must be enforced with different degrees of accuracy, in order to ensure the convergence of the numerical schemes. It turns out that, while for the BB closure a very accurate 0.05% consistency can be achieved for all system and densities investigated, a less stringent 1% requirement is generally needed for the MHNC, rising to 2-3% for the lowest temperatures investigated, specifically those concerning Model 1.

## 4. Conclusions

We have applied two accurate integral equation theories of the liquid state to characterize the cluster formation threshold — as a function of the temperature and for three densities spanning the fluid phase — in two-Yukawa fluids exhibiting microscopic competing interactions. Specifically, we have used the MHNC theory and another closure to the Ornstein-Zernike equation proposed by two of the authors (named BB in the text), interpolating in a thermodynamically self-consistent way between the simpler HNC and Martynov-Sarkisov approximations. We have studied a family of 2Y models characterized by almost the same attractive well, and in which the overall interaction strength (as exemplified by the second virial coefficient) scales in the same way with the temperature over a range comprising the cluster temperature for all models, independently on the choice of potential parameters. In this way, we have related the onset of microsegregation with few fixed general features of the microscopic interactions as e.g. height and decay of the potential barrier. By contrast, most of previous studies were based on a systematic variation of potential parameters, not necessarily reflecting into a corresponding

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18 19

20

21

22

23

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

Page 14 of 23

systematic variation of the properties of the 2Y interaction. We have profited from

using the theoretical approach to study the various 2Y models over a considerable spatial extension and a finely resolved temperature grid; we have in this way accurately predicted the temperatures whereupon the 2Y fluid transforms into a "cluster fluid" with almost negligible theoretical uncertainties.

We have initially verified that, in substantial agreement with BB predictions, the MHNC theory accurately reproduces the Monte Carlo structural correlation calculated in a previous work. We have then approximately calculated the liquidvapour critical point of the common attractive part of all models. Due to the short-range nature of attractive interactions, the liquid-vapour coexistence is only metastable with respect to the fluid-solid phase separation, and completely disappears in favour of the microsegregation once the full 2Y interaction is taken into account. We have found that the cluster temperature scales almost linearly with the height of the repulsive interactions, over a variety of different model realizations and fluid densities. Specifically, the temperature threshold moves toward higher temperatures as the height of the barrier increases. Once the cluster fluid is stabilized, the position of the cluster peak in the structure factor corresponds to correlation distances in r-space that increase as the interaction range increases, with a correspondingly lower repulsive barrier. Works trying to better elucidate the interplay between the features of the competing interactions and properties of the cluster fluid are currently in progress.

#### References

- [1]A. Stradner, H. Sedgwick, F. Cardinaux, W. C. Poon, S. U. Egelhaaf, and P. Schurtenberger, Nature (London) 432, 492 (2004).
- [2]Y. Liu, É. Fratini, P. Baglioni, W. R. Chen, and S.-H. Chen, Phys. Rev. Lett. 95, 118102 (2005).
- [3]F. Cardinaux, A. Stradner, P. Schurtenberger, F. Sciortino, and E. Zaccarelli, Europhys. Lett. 77, 48004 (2007).
- [4]A. Shukla, E. Mylonas, E. Di Cola, S. Finet, P. Timmins, T. Narayanan, and D. I. Svergun, Proc. Natl. Acad. Sci. (USA) 105, 5075 (2008).
- [5]Y. Liu, L. Porcar, J. Chen, W.-R. Chen, P. Falus, A. Faraone, E. Fratini, K. Hong, and P. Baglioni, J. Phys. Chem. B 115, 7238 (2011).
- [6] J. Groenewold and W. K. Kegel, J. Phys.: Condens. Matter 16, S4877 (2004).
- [7]A. I. Campbell, V. J. Anderson, J. S. van Duijneveldt, and P. Bartlett, Phys. Rev. Lett. 94, 208301 (2005).
- [8]F. Lo Verso, C. N. Likos, and L. Reatto, Prog. Colloid Polym. Sci. 133, 78 (2006).
- 9 J.-L. Barrat and J.-P. Hansen, Basic Concepts for Simple and Complex Liquids (Cambridge University Press, Cambridge, 2003).
- [10] A. Tardieu, S. Finet, and F. Bonneté, J. Cryst. Growth 232, 1 (2001).
- [11]A. A. Louis, E. Allahyarov, H. Löwen, and R. Roth, Phys. Rev. E 65, 061407 (2002).
- [12]D. Bonn, J. Otwinowski, S. Sacanna, H. Guo, G. Wegdam, and P. Schall, Phys. Rev. Lett. 103, 156101 (2009).
- [13]M. Seul and D. Andelman, Science 267, 476 (1995).
- [14]D. Pini, G. Jialin, A. Parola, and L. Reatto, Chem. Phys. Lett. **327**, 209 (2000).
- 15 D. Pini, A. Parola, and L. Reatto, J. Phys.: Condens. Matter 18, S2305 (2006).
- 16]A. J. Archer, C. Ionescu, D. Pini, and L. Reatto, J. Phys.: Condens. Matter 20, 415106 (2008).
- [17] A. Imperio and L. Reatto, J. Phys.: Condens. Matter 16, S3769 (2004).
- [18] A. Imperio, L. Reatto, and S. Zapperi, Phys. Rev. E 78, 021402 (2008)
- 19 A. J. Archer, D. Pini, R. Evans, and L. Reatto, J. Chem. Phys. 126, 014104 (2007).
- [20] A. J. Archer and N. B. Wilding, Phys. Rev. E 76, 031501 (2007).
- [21] A. J. Archer, Phys. Rev. E 78, 031402 (2008).
- [22] M. Tarzia and A. Coniglio, Phys. Rev. Lett. 96, 075702 (2006).
- [23]M. Tarzia and A. Coniglio, Phys. Rev. E **75**, 011410 (2007).
- 24]A. Ciach, Phys. Rev. E 78, 061505 (2008)
- 25 A. Ciach and W. T. Góźdź Cond. Matt. Phys. 13, 23603 (2010).
- 26 A. Ciach, Molec. Phys. **109**, 1101 (2011)
- [27] P. Baglioni, E. Fratini, B. Lonetti, and S.-H. Chen, J. Phys.: Condens. Matter 16, S5003 (2004).
- [28] J. Wu, Y. Liu, W. R. Chen, J. Cao, and S.-H. Chen, Phys. Rev. E **70**, 050401 (2004).
- 29]F. Sciortino, S. Mossa, E. Zaccarelli, and P. Tartaglia, Phys. Rev. Lett. 93, 055701 (2004) 30 B. Lonetti, E. Fratini, S.-H. Chen, and P. Baglioni, Phys. Chem. Chem. Phys. 6, 1388 (2004).
- [31]F. Sciortino, P. Tartaglia, and E. Zaccarelli, J. Phys. Chem. B 109, 21942 (2005).
  [32]P. J. Lu, J. C. Conrad, H. M. Wyss, A. B. Schofield, and D. A. Weitz, Phys. Rev. Lett. 96, 028306 (2006).

#### dcosta-molphys-rev1 Molecular Physics

# Page 15 of 23

### Author 1 et al.

- [33] P. J. Lu, E. Zaccarelli, F. Ciulla, A. B. Schofield, F. Sciortino, and D. A. Weitz, Nature (London) 453, 499 (2008).
- [34] J. C. F. Toledano, F. Sciortino, and E. Zaccarelli, Soft Matter 5, 2390 (2009).
- [35] R. P. Sear and W. M. Gelbart, J. Chem. Phys. 110, 4582 (1999).
- [36] J.-M. Bomont, J.-L. Bretonnet, and D. Costa, J. Chem. Phys. **132**, 184508 (2010). [37] Y. Liu, W.-R. Chen, and S.-H. Chen, J. Chem. Phys. **122**, 044507 (2005).
- [38] M. Broccio, D. Costa, Y. Liu, and S.-H. Chen, J. Chem. Phys. 124, 084501 (2006).
- [39]L. L. Lee, M. C. Hara, S. J. Simon, F. S. Ramos, A. J. Winkle, and J.-M. Bomont, J. Chem. Phys. , 074505 (2010).
- [40] J.M. Kim, R. Castaĕda-Priego, Y. Liu, and N. J. Wagner, J. Chem. Phys. **134**, 064904 (2011). [41] J.-P. Hansen and I. R. McDonald, *Theory of Simple Liquids*, 2nd ed. (Academic Press, London, 1986).
- [42]C. Caccamo, Phys. Rep. **274**, 1 (1996).
  - 43]J.-M. Bomont, Adv. Chem. Phys. 39, 1 (2008).
  - 44 Y. Rosenfeld and N. W. Ashcroft, Phys. Rev. A 20, 1208 (1979).
- 45]J.-M. Bomont, J. Chem. Phys. **119**, 11484 (2003).
  - 46]J.-M. Bomont and J.-L. Bretonnet, J. Chem. Phys. 121, 1548 (2004).
- 47]G. A. Martynov and G. N. Sarkisov, Mol. Phys. 49, 1495 (1983).
- 48 A. Parola and L. Reatto, Adv. Phys. 44, 211 (1995).
  - [49] A. Parola, D. Pini, and L. Reatto, Phys. Rev. Lett. 100, 165704 (2008).
- 50]D. Pini, F. Lo Verso, M. Tau, A. Parola, and L. Reatto, Phys. Rev. Lett. 100, 055703 (2008). <sup>6</sup> Jhe. 3. 100, (1972). a) Phys. 56, 705 Phys. 113, 2941 (200
- [51]S. M. Foiles, N. W. Ashcroft, and L. Reatto, J. Chem. Phys. 80, 4441 (1984).
- [52] D. Pini, A. Parola, and L. Reatto, Molec. Phys. 100, 1507 (2002).
  [53] L. Verlet and J. J. Weis, Phys. Rev. 45, 939 (1972).
- 54 M. J. Gillan, Mol. Phys. 38, 1781 (1979).
- 55]S. Labik, A. Malijevski, and P. Vonka, Mol. Phys. 56, 709 (1985).
- [56] M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941 (2000).

## TABLES

Table 1. Parameters of the three 2Y potentials shown in Figure 2a.  $r_{\rm max}$  and  $v_{\rm max}$  are, respectively, the position and height of the (finite) maximum of the potential.

| Model | $z_1$ | $z_2$ | $K_1$  | $K_2$  | $r_{\rm max}/\sigma$ | $V_{\rm max}/\varepsilon$ |
|-------|-------|-------|--------|--------|----------------------|---------------------------|
| M1    | 19    | 0.257 | 1.1813 | 0.1813 | 1.256                | 0.128                     |
| M2    | 13    | 0.390 | 1.3954 | 0.3954 | 1.297                | 0.249                     |
| M3    | 10    | 0.500 | 1.6306 | 0.6306 | 1.326                | 0.357                     |

Table 2. MHNC and BB  $\beta_{\text{cluster}}$ . The error bars amount to 0.005, i.e. half the mesh size in  $\beta$ . The attainable thermodynamic consistency for each model and each packing fraction is indicated by the superscripts:  $\ddagger = 0.05\%$ ;  $\dagger = 1\%; \ \S = 2\% \ \P = 3\%.$ 

| Model |                   | MHNC              |                   |                    | BB                 |                    |
|-------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|
|       | $\eta = 0.10$     | $\eta = 0.20$     | $\eta = 0.25$     | $\eta = 0.10$      | $\eta = 0.20$      | $\eta = 0.25$      |
| M1    | $2.395^{\S}$      | $2.545^{\P}$      | $2.615^{\P}$      | $2.355^{\ddagger}$ | $2.505^{\ddagger}$ | $2.595^{\ddagger}$ |
| M2    | $1.875^{\dagger}$ | $1.985^\dagger$   | $2.085^{\dagger}$ | $1.865^{\ddagger}$ | $1.965^{\ddagger}$ | $2.035^{\ddagger}$ |
| M3    | $1.515^{\dagger}$ | $1.645^{\dagger}$ | $1.735^\dagger$   | $1.485^{\ddagger}$ | $1.595^{\ddagger}$ | $1.695^{\ddagger}$ |

.16 i ndicats .0 1 0 0 1 i .15 2.355 2.i 2.085 1.865 1.90 1.735 1.485 1.59

## Author 1 et al.

## FIGURE CAPTIONS

Figure 1. The 2Y models studied in Ref. [36] with  $z_1 = 10$ ,  $z_2 = 0.5$  and  $[1/K_1; K_2/K_1] = [0.9; 0.1]$  (full line); [0.95; 0.05] (dashed line); [0.99; 0.01] (dotted line). The inset contains a magnification of the region around the repulsive barrier.

**Figure 2.** (a) The family of 2Y potentials deduced according to the requirements described in the text (inset: magnification of the attractive part) and (b) corresponding second virial coefficients as a function of the reduced temperature (inset: same plot on a log-log scale). See Table 1 for numerical values of  $K_1, K_2, z_1$  and  $z_2$ .

Figure 3. Comparison between MHNC predictions and MC data [36] for a 2Y model with  $1/K_1 = 0.9$ ,  $K_2/K_1 = 0.10$ ,  $z_1 = 10$  and  $z_2 = 0.5$  at a packing fraction  $\eta \equiv \pi \rho \sigma^3/6 = 0.15$  and different temperatures across the cluster formation threshold. BB predictions [36] are also reported for completeness. Inset: magnification of the cluster peak region.

Figure 4. Structure factors of the three models investigated in this work at various temperature and fixed packing fraction  $\eta = 0.20$ . Model M1 (top panel):  $\beta = 0.10, 2.54, 2.55$  and 3.0 for MHNC and  $\beta = 0.10, 2.50, 2.51$  and 3.0 for BB. Model M2 (central panel):  $\beta = 1.2, 1.98, 1.99, \text{ and } 2.5$  for MHNC and  $\beta = 1.2, \beta = 1.2$ 1.96, 1.97, and 2.5 for BB. Model M3 (bottom panel):  $\beta = 0.10, 1.64, 1.65$  and 2.0 for MHNC and  $\beta = 0.10, 1.59, 1.60, 2.0$  for BB.  $\beta$  increases (i.e. T<sup>\*</sup> decreases) in the direction of the arrows. Insets: magnification of the cluster peak region.

**Figure 5.**  $T^*_{\text{cluster}}$  as a function of the height-to-depth ratio of 2Y potentials (see Table 1) and packing fractions  $\eta = 0.10, 0.20$  and 0.25. Full symbols and full lines: MHNC predictions and corresponding linear bestfits. Open symbols and dashed lines: BB predictions and corresponding linear bestfits. Error bars on  $T^*_{\text{cluster}}$  are of the order of the size of the symbols.

**Figure 6.**  $T^*_{\text{cluster}}$  as a function of the packing fraction  $\eta$  for all models investigated in this work. The estimated critical point of the attractive part only is also displayed (cross). BB and MHNC predictions are indistinguishable on the scale of the figure.

#### dcosta-molphys-rev1**Molecular Physics**



dcosta-molphys-rev1





dcosta-molphys-rev1 Molecular Physics



3 4

7 8

Molecular Physics

dcosta-molphys-rev1**Molecular Physics** 

Page 21 of 23 



Figure 4.

#### dcosta-molphys-rev1 Molecular Physics

• η=0.10, MHNC

0.65

Molecular Physics



**η**=0.20 Model 2 **▲** η=0.25 0.60 η=0.10, BB **η=0.20** 0.55 **△** η=0.25 Model 3 <sup>r</sup> cluster 0.50 Model 1 0.45 0.40 0.35 L 0.1 0.25 0.15 0.2 0.3 0.35 0.4  $V_{max}/\epsilon$ 

