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Abstract: This paper investigates the properties of DNA translocations signals in a stochastic framework. The considered
signals are relative to the translocation of single strand DNA through natural nanopores, and are obtained
using a planar patch clamp method. The stochastic signal analysis is carried out considering the statistical
distribution of DNA translocation parameters, consideredas random variables including the amplitude, the
duration and the apparition of the DNA translocation eventsas well as the no-translocation signal features.
For each of these variables, a distribution function is proposed and assessed using a Kolmogorov-Smirnov
test, and their features are estimated. The DNA translocation signal stochastic analysis enables to characterize
the detection and/or estimation performances of existing algorithms, such as a breakdown detection algorithm,
in a stochastic framework. Moreover, it opens the way to the design of model based algorithms such as
detection tests using a likelihood ratio or joint detection-estimation algorithms using a maximum likelihood
approach, for an enhanced characterization of DNA translocations.

1 INTRODUCTION

In view of the DNA sequencing, a biochip dedicated
to the DNA translocation through natural nanopores
reconstituted on an artificial biomimetic membrane
was designed in (Osaki et al., 2009). The biochip
consists in a partition between a fluidic chamber and
a channel, made with a thin film of parylen obtained
by chemical vapor deposition, and micromachined
through oxygen plama (see figure 1).

Figure 1: Presentation of the biochip used for DNA translo-
cation detection.

The biomimetic artificial membrane is built up on
this partition, by the successive flow of lipids and
buffers into the channel, as described in (Osaki et al.,
2009) and the nanopore is created thanks to the in-
sertion of anα-hemolysin natural membrane protein.
The application of a voltage on both sides of the mem-
brane induces the movements of ions, and therefore
the apparition of a current through the channel. The
DNA strand crossing through the membrane induces
a current blockade, measured thanks to a patch clamp
amplifier. The amplitude and duration of this block-
ade characterizes the DNA composition and length.
The blockade current constitutes the informative sig-
nal which is sampled and digitalized by the experi-
mental setup. In order to avoid aliasing during the
acquisition process, a so called anti-aliasing low pass
filter is used to process the experimental data.

Getting DNA translocation signals is a delicate ex-
periment, since the obtained signals depend on many
parameters, such as temperature, humidity, sealing of
the artificial membrane or surface conditions of the
electrodes.

In this study, in order to avoid repetitive exper-



iments required to adjust the acquisition parameters
left to the users and the dedicated data processing
techniques, artificial signals are generated. The prop-
erties of these artificial signals are determined through
the statistical investigations of actual biosignals. In
section 2 the statistical properties of the signal are
estimated, including the no-translocation current, the
amplitude and duration of the DNA translocations
events, and the delay between events. In section
3, corresponding artificial signals are generated and
used to optimally design an amplitude-duration char-
acterization algorithm based on a breakdown detec-
tion approach, and used to evaluate the amplitude-
duration characterization performances. In section 4,
thanks to the proposed statistical framework, the rele-
vance of model based approaches is pointed out, in or-
der to develop i) a detection test using likelihood ratio,
and ii) a joint detection-estimation algorithm based on
a maximum likelihood method.
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Figure 2: Examples of current blockades relative to DNA
translocation and translocation attempts.

2 A STATISTICAL DESCRIPTION
OF THE DNA
TRANSLOCATION SIGNAL

In this study, the investigation is carried out
in a stochastic framework for the current flow-
ing through the nanopore. The considered ex-
perimental data are relative to the transloca-
tions of a 41mer ssDNA TTTTTTTTTCACTGAC-
CTGGGGGAGTATTGCGGAGGAAGGT, the con-
centration of which is 45µM in a 1.0 M KCl, 10
mM PBS, 1 mM EDTA buffer featuring pH=7.4. The
DNA translocations are conducted thanks to a 80 mV
voltage applied between both sides of the lipid bi-
layer.

The stochastic characterization of DNA signals
consists in the evaluation of the statistical distribution
of the amplitude, denotedAMP, the duration (DUR),
the delay between translocation (DBT), and the no-
translocation signal (NTS), which are defined in fig-
ure 3.
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Figure 3: Features of the DNA translocation signal

2.1 Properties of the Current Through
Nanopore in Absence of
Translocation

Firstly we examine the statistical properties of the
actual current flowing through an openα-hemolysin
channel nanopore without any DNA stand transloca-
tion. An example of the current flowing through the
nanopore is shown in figure 4.
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Figure 4: Real current variations throughα-hemolysin
channel without any translocation event.

An histogram of this no-translocation signal is
shown on figure 5, which seems to exhibit a Gaussian
distribution. The mean and standard deviation param-
eters of the distribution, respectively denotedµ andσ,
are estimated using:

µ=
1
n

n

∑
k=1

x[k] (1)

σ2 =
1

n−1

n

∑
k=1

(x[k]−µ)2 (2)

wherex is the signal andn the number of samples.
Considering the available experimental data, the esti-
mation using eq. (1) and eq. (2) leads toµNTS = 93.7
pA andσNTS= 1 pA.

In order to attest the assumed Gaussian distribu-
tion of the no-translocation signal, a Kolmogorov-
Smirnov (KS) test was implemented. The KS test ac-
tually quantifies the distance between the cumulative
distribution function (CDF) of the considered exper-
imental data, denotedFn(x), and the CDF of a refer-
ence distribution denotedF(x) (Kendall and Stuart,
1979). This KS will be prefered to the Chi-2 test
which is sensitive to a lack of data in the experimental
histogram. The KS distance is expressed by:



Dn =
√

n× sup
x
|F(x)−Fn(x)| (3)

wheren is the number of samples of the exper-
imental data. If this distanceDn is greater than a
predefined threshold, then the hypothesis according
to which the experimental data distribution is close to
the candidate reference distribution is rejected. The
threshold is adjusted for a false reject rate of 1%.

Here, the KS test validates the normal distribution
of the no-translocation current, as shown on figure 6,
which exhibits the CDFFn(x) andF(x).
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Figure 5: Histogram of no-translocation experimental cur-
rent samples (n=1982 samples)
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Figure 6: Cumulative distribution functionsFn(x) (Gaus-
sian)F(x) (experimental data)

2.2 Statistical Properties of
Translocations Events

In this section, we characterize the translocation
events through their duration and amplitude distribu-
tion. Indeed, the translocation event provokes a cur-
rent blockade featured by a duration and an amplitude
which give biological information on the ssDNA. The
amplitude vs time duration graph permits to deter-
mine the length of the DNA, and provides information
about its composition, such as the discrimination be-
tween polyU, polyC or polyA, (Akeson et al., 1999).

As usually admitted (Kasianowicz et al., 1996),
only translocations with a current amplitude decreas-
ing more than 80% of the initial value correspond to
complete translocations. Others are translocation at-
tempts which are not considered here.

2.2.1 Amplitude and Duration of the
Translocation Events

Thanks to equations (1) and (2) the amplitude dis-
tribution mean value and standard deviation of the
translocation amplitudeAMPcan be estimated:µAMP
= 89.2 pA andσAMP = 7.33 pA.

In this study, the translocation current amplitude
AMP is assumed to be normally distributed, and a KS
test implemented has validated this assumption.

In (Meller et al., 2000), the distribution of the
translocation duration was approximated using a mix-
ture of a Gaussian law and an exponentially decaying
law. Here, for tractability purposes, a Rayleigh law
(Eq. 4) seems to be more adequate to fit theDUR
actual distribution law, and will therefore be prefered
(Figure 7). The KS test validates this distribution law.

f (DUR) =
DUR

r2
DUR

exp

(
−DUR2

2r2
DUR

)
(4)

For the duration distribution the Rayleigh param-
eterr is estimated according to equation (5).

rDUR =
1
2n ∑

k∈[1,n]
(DUR[k])2 = 924µsec (5)
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Figure 7: Cumulative distribution functionsFn andF rela-
tive to the Rayleigh distribution ofDUR

2.2.2 Statistics of Delay Between Translocations
Events

The distribution of the delay between translocations
(DBT) is considered in this section and assumed to be
a decreasing exponential, expressed by :

f (DBT) = α exp(−αDBT) (6)

where:

α =
n

n

∑
i=1

DBT(i)
(7)

α = (17.6ms)−1.



2.2.3 Statistical Description of the DNA
Translocation Signal

Finally, the distribution features of the random vari-
ablesAMP, DUR, DBT andNTS, estimated from ex-
perimental DNA translocation signals are gathered in
table 1.

Table 1: Distributions features.

Dist param. 1 param. 2
NTS Gaus. µ= 93.7 pA σ = 1 pA
AMP Gaus. µ= 89.2 pA σ = 7.33 pA
DUR Ray. r = 924µs
DBT Exp. α = (17.6 ms)−1

3 Performances of a no-parametric
amplitude-duration estimation
algorithm

In this section, the DNA translocation signal charac-
terization results are used to evaluate, in a stochas-
tic framework, the performances of an elementary
translocation characterization algorithm. The con-
sidered algorithm is based on a breakdown detec-
tion technique, presented in (Osaki et al., 2010)
which allows to estimate the amplitude and duration
of translocation events, respectively denoted̂AMP
andD̂UR. To evaluate the performances of this char-
acterization algorithm for various signal features, we
build up artificial biomimetic signal considering the
AMP, DUR, DBT andNTSdistributions estimated in
the previous section. Moreover, in order to take the
possible experimental noise variance variations into
account relative to the experimental set-up, we elab-
orate artificial signals featured by various signal to
noise ratios (SNR), defined as:

SNR= 20log|µAMP

σNTS
| (8)

An example of a 319 translocation signal se-
quence featured by a 30 dBSNR is represented in
figure 8, and figure 9 exhibits the detail of a sin-
gle artificial translocation event. The implementation
of the breakdown detection algorithm applied to this
translocation sequence allows theAMPandDURval-
ues of the 319 translocations to be estimated. The cor-
responding amplitude vs duration representation dia-
gram is depicted in figure 10.

In order to quantify the characterization perfor-
mances of the algorithm, we compute the true posi-
tive rate and the false positive rate of the character-
ization algorithm, consideringSNRs ranging from 6

to 46 dB. The true positive rate (TPR) is computed
as the rate of the estimatedAMP-DURvalues of each
considered translocation event which are close to the
actual values whithin a predifined distanceν. On
the other hand, the false positive rate (FPR) is de-
fined as the rate of the estimatedAMP-DUR values
which are wrongly positionned at a distance smaller
than a varying distanceν. Then, the receiver opera-
tional characteristic (ROC) which plots the TPR as a
function of FPR for various values ofν can be con-
sidered to quantify the characterization performances
(Bradley, 1997). ROC curves obtained for the con-
sidered translocations data are presented in figure 11.
One can note for example that a 90 % TPR is reached
at the cost of a 0.01 % FPR considering a transloca-
tion sequence withSNR= 28 dB, and that the same 90
% TPR is reached at the cost of a 1 % FPR when the
SNRfalls down to 18 dB. An other means of quanti-
fying the performance of the amplitude-duration esti-
mation algorithm is to evaluate the mean square error
(MSE) defined in equation (9), of the characterization
as a function of theSNRof the translocation signal.

MSE=
1
n

n

∑
i=1

√√√√
(

ÂMPi −AMPi

µAMP

)2

+

(
D̂URi −DURi

µDUR

)2

(9)

where ÂMP and D̂UR are the estimated values
of AMP and DUR respectively,n is the number of
translocations equal to 319, and where the contribu-
tion of the amplitude and duration errors are normal-
ized by their mean values in order to give them the
same weight in the computation of theMSE. The
MSE computed according to equation (9) and ex-
pressed in percent is represented in figure 12. One can
note that theMSEfalls from 30 % to 0.02 % when the
SNRrises from 6 dB up to 46 dB, respectively.
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Figure 8: Generated artificial signal.
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Figure 9: Single translocation event in the artificial signal.
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Figure 10: Diagram duration vs amplitude for the artificial
translocations.
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Figure 11: ROC of the duration-amplitude characterization.

4 DISCUSSION

We have proposed a statistical characterization of
nanopore DNA translocation current allowing well
known methods of amplitude/duration characteriza-
tions (Basseville and Nikiforov, 1993) to be imple-
mented and evaluated using intensive computer simu-
lations.
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Figure 12: MSE (eq 9) of the amplitude-duration estima-
tion.

More challenging now is the use of this statis-
tical characterization to optimally build new model
based approaches to improve the characterization per-
formances. The proposed modelling of translocation
signals opens this way. As a complete statistical char-
acterisation of a steplike signal is now available, sev-
eral ways of investigation are opened. Let us briefly
point out two of them for further works:

i) a model based segmentation procedure which
detects multiple change points in a steplike signal can
be built on a generalized likelihood ratio test or on
information theoretic criterion such as Akaike infor-
mation criterion like tests. Moreover, since this seg-
mentation technique considers the DNA translocation
signal as a whole sequence, it avoids the well known
drawbacks relative to sliding window data processing
approaches.

ii) a regularized maximum likelihood method can
be built, looking for the unknown parametersθθθ as :

θ̂θθ= argmin
θθθ

{‖s∗ (t)− s(θθθ)‖2
2+ λ‖∇ s(θθθ)‖1} (10)

with
θθθ = [t1, t2...tN,a1,a2...aN]

T whereti are the step
location parameters andai are the step amplitude pa-
rameters.

∇ s(θθθ) is the gradient of the solution. As we are
looking for a steplike signal, for regularization pur-
poses al1 norm will be used for the gradient.

s∗ (t) is the actual recorded signal ands(θθθ) is a
candidate signal. Recent developments in convexe
constraint optimisation open the way to an efficient
optimisation of the criterium expressed in equation
(10). λ is a parameter used to adjust the contribution
of each terms of the regularization criterion.

This provides a statistical framework for DNA
translocation characterisation.
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