
HAL Id: hal-00739154
https://hal.science/hal-00739154v1

Submitted on 30 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network Emulator: a Network Virtualization Testbed
for Overlay Experimentations

Vincent Autefage, Damien Magoni

To cite this version:
Vincent Autefage, Damien Magoni. Network Emulator: a Network Virtualization Testbed for Over-
lay Experimentations. Proceedings of the 17th IEEE International Workshop on Computer-Aided
Modeling Analysis and Design of Communication Links and Networks, Sep 2012, Barcelone, Spain.
pp.38-42, �10.1109/CAMAD.2012.6335347�. �hal-00739154�

https://hal.science/hal-00739154v1
https://hal.archives-ouvertes.fr


Network Emulator: a Network Virtualization
Testbed for Overlay Experimentations

Vincent Autefage
University of Bordeaux - LaBRI

autefage@labri.fr

Damien Magoni
University of Bordeaux - LaBRI

magoni@labri.fr

Abstract—Experimentation is typically the last step before
launching a network application in the wild. However, it is
often difficult to gather enough hardware resources for exper-
imenting with a reasonably sized overlay application inside a
controlled environment. Virtualization is thus a handy technique
for creating such an experimentation testbed. We propose a tool
called NEmu designed to create virtual dynamic networks for
testing and evaluating prototypes of overlay applications with a
complete control over the network topology and link bandwidths.
NEmu builds host-based overlay networks by using emulators
such as QEMU. We illustrate the use of NEmu in the context
of a file distribution overlay application. We evaluate the impact
of chained TCP connections on the application performances.
We show that NEmu enables us to obtain performance results
concerning data rates and delays for end hosts depending on the
number of intermediate hosts and the networking parameters of
the overlay.

Index Terms—network virtualization, QEMU, virtual testbed,
chain of TCP connections.

I. INTRODUCTION

Experimentation is important to realistically and accurately
test and evaluate a network application. It can be a difficult
task when trying to experiment with an overlay application
involving dozens of machines or more. Using the Internet as
a testbed is impractical as no parameters can be controlled.
Setting up a hardware testbed is expensive and cumbersome.
Furthermore, overlay applications can have very different ways
of connecting hosts to each others and changing the network
topology and network parameters of a hardware testbed is
time consuming and error prone. Virtualization techniques for
creating such an experimentation testbed can save resources
and ease manipulations. It is a proved method for reducing the
equipment and space costs as well as the energy consumption
of using physical hosts [1]. Our solution to overcome the
above hardware constraints is thus to build a testbed able to
set up virtualized networks. A virtual network uses virtual
machines instead of physical hosts and connects them with
virtual links in order to build a virtual network topology. The
virtual machines of a virtual network can be hosted on one
or several physical hosts depending on the number of virtual
machines needed and the resources capacities of the physical
ones.

We propose a tool designed to create virtual networks for
testing and evaluating prototypes of overlay applications with a
complete control over the network topology and link properties
(bandwidth, delay, bit error rate, etc.). The goal of our tool is

to enable the creation of reasonably sized virtual networks
while minimizing the number of necessary physical hosts and
network equipments needed. It can build host-based overlay
networks by using emulators such as QEMU [2]. We have
called our tool NEmu which stands for network emulator
because it is able to create an emulated network. It is also a
tribute to the name of the QEMU software which is a powerful
machine emulator heavily used by NEmu. The contributions
of our work are as follows:

• A detailed description of our NEmu tool which is able
to manage a distributed set of virtual nodes and links for
emulating any arbitrary network topology (Section II).

• A use case of NEmu illustrating the performance eval-
uation of a file distribution application using an overlay
distribution tree made of TCP connections. We provide
measurements concerning the achievable data rates and
delays depending on the number of intermediate hosts
(Section III).

• A state of the art on related and previous work targeted at
networking emulation and a comparison of the features
provided by NEmu with the ones offered by similar
alternative virtual networking testbeds (Section IV).

II. DESCRIPTION OF NEmu

A. Overall design

NEmu is a 5000-line python program which allows to build
a dynamic and distributed virtual infrastructure network. It is
based on the concept of the Network Virtualization Environ-
ment (NVE) [3]. The main characteristic of a NVE is that it
hosts multiple Virtual Networks (VN) that are firstly not aware
of one another, and that are secondly completely independent
of each other. A VN is a set of virtual nodes connected by
virtual links in order to form a virtual topology. NEmu provides
the possibility of creating several virtual network topologies
with the central property that a VN is strictly disjoint from
another in order to ensure the integrity of each VN.

Thus, NEmu integrates characteristics that are fundamental
to a NVE: First, the flexibility and heterogeneity allows the
user to construct a customized topology, with custom virtual
nodes and virtual links. The scalability allows different
virtual nodes to be hosted by different physical hosts in
order to avoid limitations of a unique physical machine.
The isolation decouples the different virtual networks which



run on the same infrastructure. The stability ensures that
faults in a virtual network would not affect another one.
The manageability ensures that the virtual network and the
physical infrastructure are completely independent. The legacy
support ensures that the NVE can emulate former devices
and architectures. Finally, the programmability provides some
optional network services to simplify the use of the virtual
network (such as DHCP, DNS, etc.).

In addition, NEmu includes three important extra properties:
• The accessibility which means that NEmu can be fully

executed without any administrative rights on the physical
infrastructure. Indeed, the major part of public infrastruc-
tures, like universities and laboratories, does not provide
administrative access to their users in order to ensure the
security and the integrity of the whole domain. Therefore,
the user execution would allow most people to use NEmu
freely.

• The dynamicity of the topology enables node hot-
connections which means that a virtual node can join
or leave the topology dynamically without perturbing the
overall virtual network.

• The community aspect of the virtual network provides
the possibility for several people to supply virtual sub-
networks in order to build a community network like the
Internet is.

B. Network elements
NEmu is a distributed virtual network environment which

allows users to create arbitrary and dynamic topologies. To
this end NEmu is based on different building blocks. NEmu
uses virtual nodes connected by virtual links in order to create
a virtual network topology. A virtual topology can be hosted by
one or several physical hosts. The part of the virtual topology
laying on a given physical host represents a NEmu session
which is configured by the NEmu manager.

1) Virtual node: A virtual node for NEmu is an emulated
machine that requires a hard disk image to work. This image
is typically provided as a regular file on the physical host
machine. Two types of virtual nodes currently exist in NEmu:

• A VHost is a virtual host machine (i.e., end-user termi-
nal) on which the hardware properties and the operating
system can be fully configured by the user.

• A VRouter is a virtual router directly configured by
NEmu and provides ready-to-use network services.

Each virtual node uses a virtual storage which can be either
a real media (cdrom, hard drive, etc.), a raw file or a host
directory:

• By making a Sparse file which only stores the differences
with its original file,

• By making a Squash file system which is a read-only raw
image,

• By using a FAT16 emulated interface which directly
accesses to a host directory,

• By using a Virtio interface [4] which also directly ac-
cesses to a host directory.

• By using a Network Block Device which enables a virtual
node to remotely access to a block device through the real
IP network [5].

A VHost needs a disk image which must be supplied by
the user. This image can be prepared prior to creating the
virtual network. Furthermore, one image can be used by many
VHosts by using sparse files.

A VRouter is directly configured by NEmu and provides
several services to simplify the virtual network management:
DHCP, DNS, NFS, HTTP, SSH, NTP, Netfilter, dynamic
routing protocols (RIP and OSPF), and QoS management
with Traffic Control [6]. Moreover, it is easily possible to
add some new services through a plugin system available
in NEmu. A router is running a customized image version
of Microcore which is a lightweight and highly configurable
Linux distribution [7]. Such a system typically requires ∼25
MBytes on disk and ∼100 MBytes in memory with all services
running. Services provided by a VRouter are optional and
can be enabled or disabled before or during runtime.

2) Virtual link: A virtual link for NEmu is an emulated
network connection between virtual nodes. This emulated con-
nection can either be performed inside the machine emulator
of a node (the link thus being attached to this node) or be
performed by a dedicated emulation program (not running
any system image in this case). Three types of virtual links
currently exist in NEmu:

• A VLink is a virtual point-to-point link interconnecting
two nodes.

• A VHub is a virtual multi-point hub emulating a physical
Ethernet hub and interconnecting several nodes.

• A VSwitch is a virtual multi-point switch emulating
a physical Ethernet switch and interconnecting several
nodes.

Virtual links typically carry Ethernet frames from one virtual
Network Interface Card (NIC) to one or more other virtual
NICs. This Ethernet traffic is tunneled between virtual nodes
by using TCP connections. Each one of those TCP connections
is called a VLink. NEmu can instantiate an emulator with an
empty virtual node (i.e., without any operating system, storage,
etc.) which only plays the role of a hub (VHub). Such an
empty QEMU instance is lightweight with a RAM cost of 7.2
MBytes. Alternatively, NEmu can use our vswitch program to
emulate a network component. The vswitch is a 2500-line C++
program that can emulate a VLink, a VHub or a VSwitch
(defined as modes). The advantages of using a vswitch is that
the user can set the bandwidth, delay and bit error rate on
any interface in any mode whereas QEMU offers no control
over its hub emulation. In addition, a Slirp is a special type
of link whose purpose is to provide an Internet access to the
virtual node. It is an emulation of a NATed access to the real
Internet by using the physical host NIC.

Figure 1 shows an example of a NEmu managed virtual
network. On the left side, two VHosts are connected to a
VRouter through a VSwitch by using TCP tunnels. On the
right side, two VHosts are connected to the above VRouter



vswitch

Switch mode

Debian linux

VHost VSwitch VRouter

Microcore 

linux

Debian linux

QEMU

System 

emulation

QEMU

System 

emulation

QEMU

System 

emulation

TCP between virtual hosts Debian linux

QEMU

System 

emulation

VHost VHost

Ethernet over TCP unicast
Ethernet over 

TCP unicast

nemu managed network elements

Debian linux

VHost

QEMU

System 

emulation

Ethernet over TCP unicast
vswitch

Hub modeEthernet over 

TCP unicast

Ethernet over 

TCP unicast

Ethernet over 

TCP unicast

VHub

Figure 1. Network elements in action

through a VHub by using TCP tunnels. Here, virtual links are
created and managed inside vswitch processes.

C. Management of virtual networks

As already said above, a NEmu session represents a com-
plete configuration of a network topology which lays on a
physical host (storages, virtual nodes configurations and links).
A distributed virtual network on n physical hosts consists in
n NEmu sessions at least. A session is represented by an
auto-generated directory in order to be saved and re-used. A
session can be saved as a sparse archive which compresses
all elements and which is compatible with sparse files unlike
traditional archives.

The NEmu manager is the command line user interface to
manipulate a session. Sessions are independent even if they
are part of the same network topology. The manager can be
used in three ways :

• As a python module to be integrated in another script or
program.

• As a dynamic python interpreter.
• As a python script launcher.
The NEmu manager provides a remote accesses, through

SSH connections, to manipulate NEmu sessions laying on
other distant hosts. The python language is upgraded in order
to interact with other distant sessions.

III. USE CASE

In order to illustrate how NEmu can be used to carry out
a performance evaluation of an overlay network application,
we consider the case of a file distribution application. Such
application typically needs to set up an overlay network
among the participating hosts. An overlay network is created
when hosts maintain open connections between themselves
and streams of data flow along many intermediate hosts before
reaching the destination host using some form of flooding
or routing mechanisms. Whereas in regular P2P applications,
such as file sharing, hosts can be loosely connected, in overlay
applications, hosts must maintain a virtual network topology
called an overlay topology.

A. File distribution application

The goal of this application is to send a big file as a
continuing stream through a tree-shaped overlay and to deliver
the content to several clients placed on the tree’s nodes and

leaves. Packets are sent only once by the source of the tree.
The duplication of packets is done by intermediate nodes
implementing multicast on the application layer with connec-
tions between nodes set by TCP connections. TCP connections
are used to ensure correct data receptions compared to real
multicast connections which are on top of UDP.

ROMA [8] also performs multicast distribution for large file
in a tree-shaped overlay. This technique is based on managing
the size of buffers, at the application layer, in intermediate
nodes in order to control data congestion. Unfortunately,
this solution increases drastically the global processing delay
because as it can drop packets in case of buffer saturation.
MCC [9] introduces a similar congestion control mechanism
of TCP but at the application layer. This technique is more
suitable for unsafe protocols such as UDP.

Our solution consists in only using the back pressure (or
windowing) mechanism of TCP to reduce the global tree
delivery rate in case of data congestion.

B. Pipelining TCP connections

The goal of this use case is to obtain preliminary results
on overlay connections built by pipelining TCP connections.
Indeed, if the stream consists in a video, the data rate is very
important to ensure the smoothness of the playback. In the case
of a video-conference, the delay is primordial to communicate
fluently. To do so, we conduct two different scenarios:

• We firstly want to check that a chain of TCP connections,
even with an important number of intermediate nodes,
will not degrade the receiving stream of a client. There-
fore, we create a branch of the tree in NEmu and measure
data rate and delay on the receiver interface which is
located at the leaf of the branch. We perform the test
on only one edge to the extent that we only want to
check network performance impacts of a chain of TCP
connections.

• Then, we perform another experimentation in where we
emulate the complete tree-shaped overlay in order to
include the tree outdegree parameter.

A small overlay software which only forwards packets, at
the application layer, runs on each node of the experimentation
as illustrated by Figure 2.

SOURCE
INTERMEDIATE 

NODE END NODE

HOST 
(virtual)

TCP/ IP

stack

OVERLAY 
middleware

File distribution 
APPLICATION

HOST 
(virtual)

TCP/ IP

stack

OVERLAY 
middleware

File distribution 
APPLICATION

HOST 
(virtual)

TCP/ IP

stack

OVERLAY 
middleware

File distribution 
APPLICATION

TCP TCPD
A

T
A

 F
L

O
W

D
A

T
A

 F
L

O
W

D
A

T
A

 F
L

O
W

Figure 2. Forwarding mechanism of the overlay by joining two TCP
connections



C. Experimentation settings

We have configured each virtual node as follows: Intel Core
2 Duo Processor, 256 MBytes of RAM, 1 or 2 Realtek rtl8139
NICs, Debian Squeeze 32bits. The simulation was carried out
on a single server with 48 CPU cores and 64 GBytes of
RAM. Simulation was done several times with different virtual
connection bandwidths: respectively 1.25, 2.5, 5, 10 and 20
Mbits/s to verify if the quality of the connection between links
have an impact on delay or data rate. These bandwidths were
adjusted by using our vswitch program.

D. Chain results

For the chain, we carried out simulations for 2, 4, 8 and
16 nodes in the chain. According to [10]–[12], the average
size of the packets is about 500 Bytes but the recent increase
in the MTU has led to double the average packet size. Thus,
we chose to perform the experimentations with packets of 500
and 1024 Bytes of data.

a) Data rates: Results for data rates are presented in
Figure 3 and Figure 4. The x-axis represents the number of
nodes in the chain and the y-axis represents the client reception
data rate in Kbits/sec.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

2 4 8 16

R
a

te
 (

K
b

it
s
/s

e
c
)

Number of Nodes

Receiver data rates with packets of 500 Bytes

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 3. Receiver data rates with
packets of 500 Bytes

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

2 4 8 16

R
a

te
 (

K
b

it
s
/s

e
c
)

Number of Nodes

Receiver data rates with packets of 1024 Bytes

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 4. Receiver data rates with
packets of 1024 Bytes

We can see that the data rate is not degraded by increasing
the number of intermediate nodes. Also, we find that the size
of packets has not any impact on the data rate. The small loss
compared to the set bandwidth is due to the vswitch parameters
approximation. Those results ensure that a stream rate will
be maintained even if the chain is composed of an important
number of intermediate nodes. Consequently, we can assert
that rateclient ' bandwith.

b) Delays: Results for delays are presented in Figure 5
and Figure 6. The x-axis represents the number of nodes in
the chain and the y-axis represents the client reception delay
in ms.

 0

 500

 1000

 1500

 2000

2 4 8 16

D
e

la
y
 (

m
s
)

Number of Nodes

Receiver delays with packets of 500 Bytes

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 5. Receiver delays with pack-
ets of 500 Bytes

 0

 500

 1000

 1500

 2000

2 4 8 16

D
e

la
y
 (

m
s
)

Number of Nodes

Receiver delays with packets of 1024 Bytes

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 6. Receiver delays with pack-
ets of 1024 Bytes

We can see that the delay increases when the size of the
chain grows up. Also, we can see that the phenomenon is more
important with a small bandwidth. The reason is that a small
bandwidth is more likely to queue some packets due to a lack
of available bandwidth. Moreover, the size of packets seems
to have negligible impacts on results.

With the help of NEmu, we have observed that chaining TCP
connections maintains data rate but has an impact on delays.
Consequently, chaining TCP connections is not suitable for a
real time application especially with a small bandwidth.

E. Tree results

For the complete tree-shaped overlay, we have carried
out the simulations for several depths (1, 2, 4 and 6) and
outdegrees (2 to 7) in the tree. We only performed the
experimentations with packets of 1024 Bytes due to the fact
that this parameter does not have any impacts on results as
explained in Section III-D. Results represent the average of
data rate and delay between all the clients (i.e. the tree leaves).

c) Data rates: Results for data rates are presented in
Figure 7 and Figure 8. The x-axis respectively represents the
depth and the outdegree of the tree and the y-axis represents
the client reception data rate in Kbits/sec.

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 6

R
a

te
 (

K
b

it
s
/s

e
c
)

Tree depth

Receiver data rates as a function of tree depth and with a tree a degree 7

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 7. Receiver data rates vs tree
depth with an outdegree of 7

 0

 2000

 4000

 6000

 8000

 10000

2 3 4 5 6 7

R
a

te
 (

K
b

it
s
/s

e
c
)

Tree node degree

Receiver data rates as a function of tree degree and with a tree of depth 6

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 8. Receiver data rates vs tree
outdegree with a depth of 6

First, we can see that the data rate is not degraded by
increasing the number of intermediate nodes even with a high
arity in the tree. Secondly, we can see that the data rate
decreases logarithmically when the tree outdegree increases.
We can assert that rateclient ' bandwith

tree outdegree .
d) Delays: Results for delays are presented in Figure 9

and Figure 10. The x-axis respectively represents the depth
and the outdegree of the tree and the y-axis represents the
client reception delay in ms.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

1 2 3 4 5 6

D
e

la
y
 (

m
s
)

Tree depth

Receiver delays as a function of tree depth and with a tree of degree 7

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 9. Receiver delays vs tree
depth with an outdegree of 7

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

2 3 4 5 6 7

D
e

la
y
 (

m
s
)

Tree node degree

Receiver delays as a function of tree degree and with a tree of depth 6

Bandwidth : 1.25 Mbits/Sec
Bandwidth : 2.5 Mbits/Sec

Bandwidth : 5 Mbits/Sec
Bandwidth : 10 Mbits/Sec
Bandwidth : 20 Mbits/Sec

Figure 10. Receiver delays vs tree
outdegree with a depth of 6

Delays are more unstable especially for small bandwidths.
Indeed, we performed 6 experimentations and obtained differ-
ent random values at each run. This phenomenon is heavily



reflected by the the standard deviation on Figure 9 and Figure
10. It appears in the network trace that no TCP retransmission
occurs during the file transfer. Random latencies may reflect
artefacts in guests operating system (i.e., system calls, context
switches, etc.) and requires further investigations. With NEmu,
we have observed that a tree-shaped overlay of TCP connec-
tions has predictable data rates but unpredictable delays.

IV. RELATED WORK

GNS [13] is an open source software which allows to build
a virtualized network topology. However, it is really close
to CISCO systems because it manages dynamips emulators
[14]. It can manage some QEMU virtual machines but with
an alternative version of QEMU. GNS does not provide the
possibility to build a community network. Finally GNS is
hardly usable without any graphical interface making difficult
the creation of a complex network. Velnet [15] is a virtual
environment dedicated to teaching which uses VMware virtual
machines. The complete topology can only run on a single
host which implies strong limitations on the size of the virtual
network. ModelNet [16] emulates a distributed virtual network
but this one remains static at runtime. Thus, the dynamicity
is not ensured with ModelNet. Further, the management of
this system is fully centralized on an unique physical machine
which disables the community aspect. Vagrant [17] uses Vir-
tualBox virtual machines in order to emulate virtual network.
The topology is hosted on a single physical machine and
remains static at runtime. Vnet [18] is a distributed system
which allows to connect several virtual machines hosted on
different physical machine through the IP network. Even if
it allows to create a distributed virtual network, this system
only provides the interconnections. Therefore, no router or
internal services are provided contrary to NEmu. Worldwide
research testbeds such as PlanetLab, GENI and FEDERICA
are quite different from NEmu because they are providing
virtual infrastructures defined as slices of third parties owned
hardware. Thus, the user needs a specific account, must
comply to a use policy and has to use the tools, services and
APIs of these testbeds.

Table I exhibits several properties of those previous solu-
tions compared to NEmu. We see that NEmu can cover all
usages (test and proof, performance evaluation as well as learn
and teach). It can achieve a high realism as a research tool
by managing dynamic virtual networks and by being able to
be distributed over several physical machines. Furthermore,
it can be easily used and deployed as no special rights are
required on the physical machines. Finally, it offers a new
feature called community aspect that enables several users to
merge their virtual networks together in order to build a single
larger network.

V. CONCLUSION

NEmu is a tool for the creation and management of dynamic
and heterogeneous virtual networks. Such virtual networks can
be distributed over several physical hosts and be controlled
without any administrative rights. We have shown how NEmu

can be used to emulate, test and evaluate a host-based overlay
network. The experimentation results of a file distribution
application have shown that a media distribution tree made
of TCP connections between the hosts can be used efficiently
for non real-time applications but not for real-time ones
thus confirming the results of previous studies [8] [9] and
the validity of our testbed. These results demonstrate that
NEmu is well suited for carrying out relevant performance
evaluations upon overlay applications. Several next steps are
already planned for our future work on NEmu. They consist
in the following tasks by order of priority:

• The integration of migration capabilities for virtual nodes
in order to handle load balancing,

• The integration of new VRouter services,
• The implementation of a GUI front-end.

REFERENCES

[1] B. Yamini and D. Selvi, “Cloud virtualization: A potential way to reduce
global warming,” in RSTSCC, nov. 2010, pp. 55–57.

[2] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc. of
the USENIX Annual Technical Conference, 2005, pp. 41–46.

[3] N. Chowdhury and R. Boutaba, “Network virtualization: state of the
art and research challenges,” Communications Magazine, IEEE, vol. 47,
no. 7, pp. 20–26, 2009.

[4] KVM, Virtio, http://www.linux-kvm.org/page/Virtio.
[5] NBD, Network Block Device, http://nbd.sourceforge.net.
[6] B. Hubert, G. Maxwell, R. Van Mook, M. Van Oosterhout, P. Schroeder,

and J. Spaans, “Linux advanced routing & traffic control,” in Ottawa
Linux Symposium, 2003, pp. 213–222.

[7] R. Shingledecker, TinyCore Linux, http://distro.ibiblio.org/tinycorelinux.
[8] G. Kwon, J. Byers et al., “Roma: Reliable overlay multicast with loosely

coupled tcp connections,” in Proc. of the 23th IEEE INFOCOM, 2004.
[9] G. Urvoy-Keller and E. Biersack, “A congestion control model for

multicast overlay networks and its performance,” in Proc. of the 4th
International Workshop on NGC, 2002.

[10] P. Borgnat, G. Dewaele, K. Fukuda, P. Abry, and K. Cho, “Seven Years
and One Day: Sketching the Evolution of Internet Traffic,” in Proc. of
the 28th IEEE INFOCOM 2009, April 2009, pp. 711–719.

[11] G. Dewaele, Y. Himura, P. Borgnat, K. Fukuda, P. Abry, O. Michel, J.J.,
R. Fontugne, K. Cho, and H. Esaki, “Unsupervised host behavior clas-
sification from connection patterns,” International Journal of Network
Management, vol. 20, pp. 317–337, 2010.

[12] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow clustering using
machine learning techniques,” ACM PAM, pp. 205–214, 2004.

[13] GNS3, Graphical Network Simulator, http://www.gns3.net.
[14] C. Fillot, Dynamips, http://www.ipflow.utc.fr/dynamips/.
[15] B. Kneale, A. Y. De Horta, and I. Box, “Velnet: virtual environment for

learning networking,” in Proc. of the 6th Australasian Conference on
Computing Education, vol. 30, 2004, pp. 161–168.

[16] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kostić, J. Chase, and
D. Becker, “Scalability and accuracy in a large-scale network emulator,”
in The 5th OSDI, 2002, pp. 271–284.

[17] M. Hashimoto and J. Bender, Vagrant, http://vagrantup.com.
[18] A. I. Sundararaj, A. Gupta, and P. A. Dinda, “Dynamic topology

adaptation of virtual networks of virtual machines,” in Proc. of the 7th
LCR Workshop, 2004, pp. 1–8.

Table I
COMPARISON OF NETWORK VIRTUALIZATION TOOLS

Tool Test & Perf. Learn & Dyn. Distri- Com- Spec.
proof eval. teach net. buted munity rights

GNS3 yes no yes no yes no no
ModelNet yes yes no no yes no no
NEmu yes yes yes yes yes yes no
PlanetLab yes yes no yes yes yes yes
Vagrant yes no no no no no no
Velnet no no yes no no no no


