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ESTIMATION FOR STOCHASTIC DAMPING HAMILTONIAN
SYSTEMS UNDER PARTIAL OBSERVATION.

I. INVARIANT DENSITY.

PATRICK CATTIAUX ♠ , JOSÉ R. LEÓN ♣ ,
AND CLÉMENTINE PRIEUR ♦

♠ Institut de Mathématiques de Toulouse
♣ Escuela de Matemática UCV, Caracas
♦ Laboratoire Jean Kuntzmann, Grenoble

Abstract. In this paper, we study the non-parametric estimation of the invariant den-
sity of some ergodic hamiltonian systems, using kernel estimators. The main result is a
central limit theorem for such estimators under partial observation (only the positions
are observed). The main tools are mixing estimates and refined covariance inequalities,
the main difficulty being the strong degeneracy of such processes. This is the first pa-
per of a series of at least two, devoted to the estimation of the characteristics of such
processes: invariant density, drift term, volatility ....

MSC 2010 : 62G07, 60H10, 60F05.

Keywords : hypoelliptic diffusion, nonparametric density estimation, partial observa-
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1. INTRODUCTION.

Let
(
Zt := (Xt, Yt) ∈ R2d , t ≥ 0

)
be governed by the following Ito stochastic differential

equation :

dXt = Ytdt

dYt = σ dWt − (c(Xt, Yt)Yt +∇V (Xt))dt. (1.1)

Each component Y i (1 ≤ i ≤ d) is the velocity of a particle i with position X i. Function
c is called the damping force and V the potential, σ is some (non-zero) constant and W
a standard brownian motion.
We shall assume that c and V are regular enough for the existence and uniqueness of a
non explosive solution of (1.1). We shall also assume that the process is ergodic with a
unique invariant probability measure µ, and that the convergence in the ergodic theorem
is quick enough. Some sufficient conditions will be discussed below.
These models are important due to their physical relevance. They have a long history. We
refer to Wu (2001) for a detailed bibliography. We have chosen the terminology “damping
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Hamiltonian systems” in reference to Wu. Such systems are also called “kinetic diffusions”
by several authors.
The long time behavior of such models has been recently deeply studied, in particular in
Villani (2009), since they are the basic examples of hypocoercive models. The Lyapunov
approach of Wu, has been developed in Bakry, Cattiaux and Guillin (2008) in connection
with hypocoercive models. Particular features are, on one hand, that these models are
fully degenerate, but still hypoelliptic, on the other hand, that they still satisfy some
coercivity property, but not in the usual sense, due again to full degeneracy. We shall
explain both previous sentences in the next section.

Once the probabilistic picture is well understood, it is particularly relevant to build
statistical tools for these models. In this paper we are starting a general program of non-
parametric estimation for the characteristics of such processes, more precisely we focus on
the non-parametric estimation of the invariant density. It is worth noticing that, except
for some special situations, an explicit expression for this density is unknown.
This program seems to be new, up to our knowledge. Actually some works have already
been done, in the hypo-elliptic context, but in a parametric framework. We refer to the
recent work by Samson and Thieullen (2012) and the bibliography therein.

The main result of the present paper is contained in Theorem 3.3 in the stationary case
and extended to any initial starting point in Theorem 6.2.

It reads as follows : if ps denotes the invariant density (see the next section for its
existence), then one can find a discretization step hn, bandwidth b1,n and b2,n and kernels
K such that, defining the estimator

p̂s(x, y) :=
1

nb1,nb2,n

n∑
i=1

K

(
x−Xihn

b1,n
,
y − X(i+1)hn−Xihn

hn

b2,n

)
,

corresponding to partial observation, it holds, for all (x, y)√
nbd1,nb

d
2,n (p̂s(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(s, t)dsdt

)
.

We also give explicit examples of allowed choices of hn, b1,n and b2,n (see Remark 3.4 in
the stationary case and the end of section 6 otherwise).

The proof lies on a new version of the Central Limit Theorem for triangular arrays
of mixing sequences stated in Theorem 4.3, which is inspired by previous works by Rio,
Doukhan and the third named author.
In order to apply this result, we need some upper estimates for the transition kernels of
the process, both for small times and for long times. These estimates, as well as several
properties of the process Z, are given in the first section. In particular, the full degeneracy
of the infinitesimal generator, yields a non-usual behavior of the transition kernel recently
obtained by Konakov, Menozzi and Molchanov (2010) and recalled in Theorem 2.10. We
have to slightly extend their result to unbounded coefficients. This is done by using old
ideas of the first named author. The long time behavior is connected, as previously said,
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to hypo-coercivity.
With these two ingredients, the proof is merely standard but technical.

Actually, the conditions on the parameters hn and bi,n obtained in Theorem 3.3 should
be slightly improved, due to the fact that the explosion of the transition kernel holds near
the diagonal, but not on the diagonal.

It is also interesting to notice that the study of coercivity made by Villani (2009) also
uses both small and long time estimates.

We conclude the paper by some simulations on two models. The first one is an harmonic
oscillator subject to noise and positive damping. The second one is a general Duffing
oscillator as described in Wu (2001).

As we said at the beginning, this is the first part of a general program devoted to
non-parametric estimation for these fully degenerate models. Estimation for the diffusion
coefficient (volatility), the drift term, crossings ... will be done elsewhere.

Even if part of the results (the one concerned with the fully observed process) can be
written for more general diffusion processes (see Remark 3.5), we deliberately decided to
write all the main statements for the considered model.

2. THE MODEL AND ITS PROPERTIES.

2.1. Long time behavior, coercivity and mixing. We shall first give some results
about non explosion and long time behavior. In a sense, coercivity can be seen in this
context as some exponential decay to equilibrium.

Let us first introduce some sets of assumptions:

Hypothesis H1 :

(i) the potential V is lower bounded, smooth over Rd, V and ∇V have polynomial
growth at infinity and

+∞ ≥ lim inf
|x|→+∞

x.∇V (x)

|x|
≥ v > 0 ,

the latter being often called “drift condition”,
(ii) the damping coefficient c(x, y) is smooth and bounded, and there exist c, L > 0 so

that cs(x, y) ≥ cId > 0, ∀(|x| > L, y ∈ Rd), where cs(x, y) is the symmetrization
of the matrix c(x, y), given by 1

2
(cij(x, y) + cji(x, y))1≤i,j≤d,

These conditions ensure the existence of a Foster-Lyapunov function Ψ larger than 1 (and
actually growing to infinity at infinity) satisfying

LΨ ≤ −αΨ + b1IK

for some α > 0 and some compact subset K. Here L denotes the infinitesimal generator

L =
σ2

2
∆y + y∇x − (c(x, y)y +∇V ).∇y .

Hence, there is no explosion according to Khasminski test, and the process is positive
recurrent with a unique invariant probability measure µ. Furthermore, if we denote by



4 P. CATTIAUX, J. LEÓN, AND C. PRIEUR

Ptf(z) = Ez(f(Zt)) which is well defined for all bounded function f , Pt extends as a
contraction semi-group on Lp(µ) for all 1 ≤ p ≤ +∞.
In addition, there exist D > 0 and ρ < 1 such that for all z,∣∣∣∣Ptf(z)−

∫
fdµ

∣∣∣∣ ≤ D sup
a

(∣∣f(a)−
∫
fdµ

∣∣
Ψ(a)

)
Ψ(z) ρt . (2.1)

Since Ψ is µ integrable (see Theorem 3.1 in Wu (2001) but this is a very general result
for such Lyapunov functions), the previous pointwise convergence becomes a convergence
in L1(µ). All these results are contained in Wu (2001) (see in particular Theorem 2.4,
Theorem 3.1 and remark 3.2 therein), and follow from a general approach of recurrence
via the use of Lyapunov functions described, in the diffusion case, in Down, Meyn and
Tweedie (1995).

Notice that, if f is bounded and satisfies
∫
fdµ = 0, we deduce from (2.1)∫

(Ptf)2 dµ ≤ D

(∫
Ψ dµ

)
‖ f ‖2∞ ρt . (2.2)

As explained in Bakry, Cattiaux and Guillin (2008), in particular Theorem 2.1, another
possible way to describe this exponential convergence to equilibrium (under the same
assumptions) is: for all bounded f with

∫
fdµ = 0∫

(P ∗t f)2 dµ ≤ D′
(∫

Ψ dµ

)
‖ f ‖2∞ ρt , (2.3)

where P ∗t denotes the adjoint of Pt in L2(µ). This is a consequence of the convergence in
total variation distance obtained in Down et al. (1995): for all z,

‖ Pt(z, .)− µ ‖TV ≤ D′′Ψ(z) ρt , (2.4)

where Pt(z, .) denotes the law at time t of the process starting from z. If Z0 has distribution
ν, the law at time t of the process is given by P ∗t ν, and exponential convergence in total
variation holds as soon as Ψ is ν integrable.

One can relax some assumptions and still have the same conclusions:
Hypothesis H2 :

(a) One can relax the boundedness assumption on c in H1, assuming that for all
N > 0 : sup|x|≤N,y∈Rd ‖c(x, y)‖H.S. < +∞, where H.S. denotes the Hilbert-Schmidt
norm of matrix; but one has to assume in addition conditions (3.1) and (3.2) in
Wu (2001). An interesting example (the Van der Pol model) in this situation is
described in Wu (2001) subsection 5.3.

(b) The most studied situation is the one when c is a constant matrix. Actually almost
all results obtained in Wu (2001) or Bakry, Cattiaux and Guillin (2008) in this
situation extend to the general bounded case.
Nevertheless we shall assume now that c is a constant matrix.
In this case a very general statement replacing H1 (i) is given in Theorem 6.5 of
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Bakry et al. (2008). Tractable examples are discussed in Example 6.6 of the same
paper. In particular one can replace the drift condition on V by

lim inf
|x|→+∞

|∇V |2(x) > 0 and ‖∇2V ‖H.S. � |∇V | .

Notice that one can relax the repealing strength of the potential, and obtain, no
more exponential but sub-exponential or polynomial decay (see the discussion in
Bakry et al. (2008)).

A still delicate feature is that in many situations, no explicit expression for the invariant
measure µ is known. An important exception is the case when the matrix c is constant, and
for simplicity equal to cId (for some c > 0). Indeed in this case, defining the Hamiltonian
H(x, y) = 1

2
|y|2 +V (x), the unique invariant measure (up to a numerical constant factor)

writes

µ(dx, dy) = exp

(
−2c

σ2
H(x, y)

)
dxdy .

Remark 2.5. Note that the invariant measure is not symmetric, so that Pt and P ∗t do
not coincide. In particular the Dirichlet form

E(f, g) = −
∫
Lf g dµ =

∫
∇yf.∇yg dµ

does not satisfy the usual property in the symmetric ergodic situation(
E(f, f) = 0 and

∫
fdµ = 0

)
⇒ f = 0 .

Hence µ cannot satisfy a Poincaré inequality with energy term given by E(f, f), though
we have some exponential decay to equilibrium.
Still more surprising, under some stronger assumptions on V , Villani has shown that the
exponential decay in (2.2) is still true for L2 functions f , implying that the constant D′

is strictly larger than 1. For a precise statement of Villani’s result see Theorem 6.1 in
Bakry et al. (2008). ♦

Finally, we will need some tail behaviour of µ. Actually a careful look at Wu (2001)
formula (3.3) or Bakry et al. (2008) formula (6.4), show that the Lyapunov function Ψ
satisfies the following property

log(Ψ(x, y)) ≥ C(|y|2 + |x|) as z goes to infinity, for some well chosen C > 0.

It follows that µ admits some exponential moment, in particular all its polynomial mo-
ments are finite.

As remarked in Cattiaux, Chafai and Guillin (2011), a uniform L∞-L2 decay is equiv-
alent to some mixing property. Let us state the result
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Proposition 2.6. Assume that (2.2) and (2.3) are satisfied. Then, there exists some
constant C > 0 such that : ∀ g, f ∈ L∞(µ), ∀ t ≥ 0,

|Covµ (f(Zt), g(Z0))| ≤ C ρt/2
∥∥∥∥g − ∫ gdµ

∥∥∥∥
∞

∥∥∥∥f − ∫ fdµ

∥∥∥∥
∞
. (2.7)

i.e., in the stationary regime, (Zt, t ≥ 0) is α-mixing with exponential rate.

Proof. We give the proof for completeness. Assume that
∫
fdµ =

∫
gdµ = 0. Then

|Covµ (f(Zt), g(Z0))| =

∫
g(z)Ptf(z)µ(dz)

=

∫
P ∗t/2g Pt/2f dµ ,

and it remains to apply Cauchy-Schwartz inequality and both (2.2) and (2.3). Now if F
is measurable w.r.t. the filtration of the future, just take conditional expectation using
the Markov property, to get the statement about mixing. �

Actually this statement admits a converse: an exponential decay of such covariances
implies (2.2) and (2.3) for some ad-hoc ρ < 1 (Cattiaux et al. (2011)).

Remark 2.8. Starting from Inequality (2.1), and noting that the Lyapunov function Ψ is
µ integrable, one can also deduce that the sequence (Zk)k∈N∗ is β-mixing with exponential
rate.

2.2. Local properties, hypoellipticity. We turn to the study of the hypoellipticity
property.

First, since the diffusion coefficient is constant, (1.1) is also written in Stratonovitch
form and the generator L can be written in Hörmander form

L =
σ2

2

d∑
i=1

L2
i + L0

where the vector fields Lj are defined by :

(1) for 1 ≤ i ≤ d, Li = ∂
∂yi

,

(2)

L0 =
d∑

k=1

yk
∂

∂xk
−

d∑
k=1

(
(c(x, y)y)k +

∂V

∂xk

)
∂

∂yk
.

It immediately follows that the Lie bracket

[Li, L0] = LiL0 − L0Li =
∂

∂xi
−

d∑
k=1

∂((c(x, y)y)k)

∂yi

∂

∂yk
,

so that the vector space spanned by {Li , 1 ≤ i ≤ d ; [Li, L0] , 1 ≤ i ≤ d}(z) is full (i.e.
equal to R2d) at each z.
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According to the famous theorem of the sum of squares of Hörmander, it follows that
∂t + L and its adjoint in the space of Schwartz distributions are hypoelliptic. As a
consequence, for any z and any t > 0, the distribution Pt(z, .) of the process Zt starting
from z (i.e. Z0 = z), has a smooth density pt(z, .) with respect to Lebesgue measure.

Of course the same holds for the invariant measure, i.e.

µ(dz) = ps(z) dz

with some smooth function ps. One can relax the C∞ assumption on the coefficient into
a Ck assumption, for a large enough k, but this is irrelevant.

In the p.d.e. vocabulary, we are in a fully degenerate situation, i.e. brackets with the
drift vector field are necessary to span the whole tangent space.

In the sequel we shall need more information on the density pt(z, .), both for small and
for large t’s. Once again, full degeneracy introduces some trouble.

Example 2.9. To understand what happens, let us consider a very simple gaussian
situation. For d = 1 we consider the case where c and V are equal to 0. Then Zt is a two
dimensional gaussian vector with mean (x0 + y0t, y0) and covariance matrix given via

Var(Xt) =
t3

3
, Var(Yt) = t , Cov(Xt, Yt) =

t2

2
.

In particular pt(z, z) ' c/t2 instead of the usual c/t for the brownian motion for instance.
Of course this example does not enter the framework of this work, since this process is
not positive recurrent.

Actually if we choose V (x) = a|x|2 and c constant, Zt is still a gaussian vector and
one can show that the covariance matrix is similar to the previous one, in particular the
behaviour of each term as t goes to 0 is the same (see e.g. Risken (1989) section 10.2.1).
♦

The previous behaviour is actually true in our very general situation, up to one restric-
tion: it has been shown only for bounded, with bounded derivatives, coefficients. This is
the main result in Konakov, Menozzi and Molchanov (2010):

Theorem 2.10. (Konakov, Menozzi and Molchanov (2010)). Consider the follow-
ing system

dXt = Ytdt

dYt = σ dWt + b(Xt, Yt)dt , (2.11)

where b is assumed to be smooth, bounded with bounded derivatives. Then for any initial
point z = (x, y) and any t > 0, the distribution of Zt = (Xt, Yt) has a smooth density
qt(z, .) with respect to the Lebesgue measure, which satisfies the following gaussian up-
per bound : there exist positive constants C and C ′ depending on b, σ, T > 0 and the
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dimension 2d, such that for 0 < t < T ,

qt(z, z
′) ≤ C ′

1

t2d
exp

−C
 |y − y′|2

4t
+

3
∣∣∣x′ − x− t(y+y′)

2

∣∣∣2
t3


 .

In addition, for some t0 > 0, there exists C ′′ > 0 such that for any 0 < t < t0,

qt ((x, y) , (x+ ty, y)) ≥ C ′′
1

t2d
.

Of course, when the drift b is not bounded one cannot hope to get such a uniform result
(uniform with respect to z), but similar local results.

Corollary 2.12. For the system (1.1) with smooth coefficients c and V , for all z and all
bounded, open neighborhood U of z, the density pt(z, .) can be written

pt(z, .) = qt(z, .) + rt(z, .)

where qt(z, z
′) satisfies the gaussian bound in Theorem 2.10 for z′ ∈ U , with C and C ′

depending in addition on U , and rt satisfies the following: for any bounded f compactly
supported in U , ∫

f(z′) rt(z, z
′) dz′ ≤ D(U) e−

D′(U)
t ‖ f ‖∞ ,

for some ad-hoc positive constants D(U) and D′(U).

Proof. Once again the proof is standard. Consider an enlargement Ua of U , for instance
Ua = {v ; d(v, U) ≤ a}. Let T be the hitting time of U c

a. Now consider a smooth, bounded
with bounded derivatives vector field b(x′, y′), such that

b(x′, y′) = c(x′, y′)y′ +∇V (x′) on Ua.

We also consider Z̄ the diffusion process solution of (2.11). Starting from z ∈ U , both Z.
and Z̄. coincide up to the (common) stopping time T .

If f is compactly supported in U we may write

Ez(f(Zt)) = Ez(f(Zt) 1It>T ) + Ez(f(Zt) 1It≤T )

= Ez(f(Zt) 1It>T ) + Ez(f(Z̄t) 1It≤T )

= Ez(f(Zt) 1It>T )− Ez(f(Z̄t) 1It>T ) + Ez(f(Z̄t))

and the result follows from the previous theorem since it is well known that

Pz(T < t) ≤ C e−C
′ a2/t

where C and C ′ only depend on the bounds of b. �

The proof also furnishes the same lower bound on the diagonal than in Konakov et al.
(2010).

Actually with some little more effort (using the localization method in Cattiaux (1986)),
one can obtain (still with 0 < t < T )

pt(z, z
′) ≤ qt(z, z

′) + c(U) e−
c′(U)

t
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for z′ ∈ U . Also notice that these bounds heavily depend on U , in particular the bigger
U or its enlargement, the worse the constants D(U) and D′(U).
This localization method can be used to get the following result:

Lemma 2.13. Let t0 > 0. Then for all fixed z′, supw pt0(w, z
′) = m(t0, z

′) < +∞.

This result is contained in Cattiaux (1990) Proposition 1.12.(4), once we have observed
that the proof of the latter only requires the boundedness of the coefficients in a neigh-
borhood of z′.
Thanks to the lemma, we have

Proposition 2.14. For all t ≥ 0 and all pair (z, z′),

pt0+t(z, z
′) ≤ sup

w
pt0(w, z

′) < +∞ .

Proof. Since w 7→ pt0(w, z
′) is bounded, we may compute

Pt(pt0(., z
′))(z) =

∫
pt0(w, z

′) pt(z, w) dw = pt0+t(z, z
′)

the latter equality being an immediate consequence of the Chapman-Kolmogorov equa-
tion. The result follows immediately thanks to lemma 2.13 �

From now on in the whole paper we will assume that Hypothesis H1 (or H2) is fulfilled.

3. Estimation of the invariant density in the stationary regime. Main
results

In this section we propose two non-parametric estimators for the invariant density ps.
We also assume that we can simulate the chain in the stationary regime, i.e. we assume
in the whole section that the distribution of Z0 is the invariant measure µ. As it is not
the case in practice, we will see in Section 6 how to overcome this issue.

First we consider that one can observe the whole process Z. at discrete times with
discretization step hn (for typographical reasons we shall use h instead of hn in various
formulae when there is no doubt), i.e we consider

p̃s(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xih

b1,n
,
y − Yih
b2,n

)
. (3.1)

Second we consider the partially observed case, where only the position process X. can
be observed, and we approximate the velocity, i.e. we consider

p̂s(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xih

b1,n
,
y − X(i+1)h−Xih

h

b2,n

)
. (3.2)

In both cases, the kernel K is some C2 function with compact support A such that∫
A
K(x, y)dxdy = 1. We may also assume, without loss of generality that A is a bounded
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ball. Moreover, we assume that there exists m ∈ N∗ such that for all non constant
polynomial P (x, y) with degree less than or equal to m,

∫
P (u, v)K(u, v)dudv = 0.

Let us state our main result.

Theorem 3.3. Assume Hypothesis H1 or H2 are fulfilled. Recall that ps denotes the
density of the invariant measure µ. Assume that the bandwidths b1,n, b2,n and the dis-
cretization step hn satisfy assumption H3 :

(i) b1,n, b2,n and hn → 0,
(ii) n bd1,n b

d
2,n → +∞,

(iii) b1,n b2,n
h2n

→ 0 ,

(iv) there exists an integer m > 0 such that n bd1,n b
d
2,n max(b1,n, b2,n)2(m+1) → 0.

Then, in the stationary regime,√
nbd1,nb

d
2,n (p̃s(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(s, t)dsdt

)
.

If in addition

(v) nhn
bd1,n

b2+d
2,n

→ 0,

(vi) there exists 1 < p such that nh2n
b
d(2−p)/p
1,n

b2+d
2,n

→ 0.

Then, in the stationary regime√
nbd1,nb

d
2,n (p̂s(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(s, t)dsdt

)
.

Remark 3.4. In particular, if hn = n−γ, bi,n = n−αi , i = 1, 2 with γ, α1, α2 > 0, then

assumptions (i) to (iv) are equivalent to γ < α1+α2

2
< 1

2d
and m > 1−(α1+α2)d

2(α1∧α2)
. Moreover

assumptions (i) to (v) are equivalent to 1 − α1d + α2(2 + d) < γ < α1+α2

2
< 1

2d
and

m > 1−(α1+α2)d
2(α1∧α2)

. Then (vi) holds with p = 1 + ε for any 0 < ε ≤ γ
2−γ . A necessary

condition is α1 > 2+α2(3+2d)
1+2d

. Hence the optimal rate of convergence, for bandwidths

b1,n , b2,n and discretization step hn satisfying assumptions in Theorem 3.3, is n−η with
η < 1

2(1+2d)
.

Remark 3.5. The first part of the Theorem dealing with the “complete observation”
situation can be extended to much more general settings. Since the whole process is
observed, we can just use one bandwidth bn, the dimension of the state space being
simply d. A quick look at the proof shows that the only required assumptions are

(1) the existence of a locally bounded invariant density ps,
(2) the existence for all t > 0 of a transition density pt(z, z

′) satisfying for each compact
subsets K,K ′,

sup
0<t≤1,z∈K,z′∈K′

pt(z, z
′) ≤ C(K,K ′) t−βd for some β > 0,
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(3) the exponential mixing property (2.7) .

In this situation we just have to replace b1 b2 by b, 2d by d, and (iii) has to be changed
into bn/h

β
n → 0 as n→ +∞.

The situation for partial observation is much more complicated and will heavily depend
on the chosen model.

4. A triangular central limit theorem for a mixing sequence.

In this section we prove a general triangular central limit theorem for a triangular array
(Zn,k)1≤k≤kn,n∈N∗ in R2d, which will be useful for the proof of the main theorem.

Assume that the sequence of integers kn increases to infinity with n. Let Sn = Zn,1+. . .+
Zn,kn , where for each fixed n ∈ N, (Zn,k)k≥1 is a centered stationary sequence. We assume
moreover that there exists a triangular array of positive real numbers (αn(j))n∈N∗, 1≤j≤kn
such that E(Zn,jZn,0) ≤ αn(j).

Now let Sk,n = Zn,1 + . . . + Zn,k for 1 ≤ k ≤ kn, we also assume that there exists a
constant γ such that

lim
n→∞

VarSn = γ2 > 0 and defining vn,k = VarSk,n − VarSk−1,n, (4.1)

it holds ∃n0 ∈ N∗ such that vn,k > 0 ∀n ≥ n0, 1 ≤ k ≤ n.
We shall also set

Mn = sup
1≤k≤kn

‖Zn,k‖∞ , δn = sup
1≤k≤kn

E(|Zn,k|) and for kn ≥ j ≥ 1 ∆n,j = E (|Zn,0Zn,j|) .

(4.2)
We can state Theorem 4.3 below :

Theorem 4.3. Assume that the triangular array (Zn,k)1≤k≤kn defined as before satisfies
assumption (4.1), then if

(knMn + k
2
3
n )Mnδn → 0, k2/3n

kn−1∑
j=1

min(αn(j),∆n,j)→ 0,

and

(1 +Mn)
kn−1∑
j=1

(kn − j) min(αn(j), (∆n,j + δ2n))→ 0 ,

as n→∞, we obtain

Sn
D−−−−→

n→+∞
N (0, γ2) .

Proof. The proof of Theorem 4.3 is a variation on the Lindeberg method. Up to our
knowledge, the Lindeberg method was first used in the setting of kernel density estimation
for weakly dependent stationary sequences in Coulon-Prieur and Doukhan (2000). The
proof in Coulon-Prieur and Doukhan (2000) was based on a variation of the Lindeberg
method proposed by Rio (1995) to prove the central limit theorem for strongly mixing
and possibly non-stationary sequences.
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For the sake of completeness let us write the complete proof of Theorem 4.3.

Consider a bounded three times differentiable function f : R→ R with continuous and
bounded derivatives. Set Cj = ‖f (j)‖∞, for j = 0, 1, 2, 3. Also consider σ2

n = VarSn.
For some standard Gaussian r.v. η, define

∆n(f) = E (f(Sn)− f(σnη)) .

Theorem 4.3 will follow from Assumption (4.1), if we prove that

lim
n→∞

∆n(f) = 0.

Recall that vn,k > 0 for each k and set Nn,k ∼ N (0, vn,k).
The random variables (Nn,k)1≤k≤kn,n≥1 are assumed to be independent and independent
of the sequence (Zk)k≥1.

The idea is to write σn η as the sum of the Nn,k and to replace step by step Zn,k by
Nn,k, writing ∆n(f) as a “cascade”.

More precisely, for 1 ≤ k ≤ kn, we set Tk,n =
∑kn

j=k+1Nn,j, empty sums being as usual
equal to 0, and we use Rio’s decomposition

∆n(f) =
kn∑
k=2

∆k,n(f), (4.4)

with ∆k,n(f) = E (f(Sk−1,n + Zn,k + Tk,n)− f(Sk−1,n +Nn,k + Tk,n)) and S0,n = 0.

In order to bound each term, one writes ∆k,n(f) = ∆
(1)
k,n(f)−∆

(2)
k,n(f), with

∆
(1)
k,n(f) = E(f(Sk−1,n+Zn,k+Tk,n))−E(f(Sk−1,n+Tk,n))− vn,k

2
E(f ′′(Sk−1,n+Tk,n)), (4.5)

∆
(2)
k,n(f) = E(f(Sk−1,n+Nn,k+Tk,n))−E(f(Sk−1,n+Tk,n))− vn,k

2
E(f ′′(Sk−1,n+Tk,n)). (4.6)

Notice that the function x→ fk,n(x) = E(f(x+ Tk,n)) has the same regularity properties

as f ; e.g. for 0 ≤ j ≤ 3, = ‖f (j)
k,n‖ ≤ Cj. Using independence (recall the definition of Tk,n)

it is not difficult to see that one can write

∆
(1)
k,n(f) = E(fk,n(Sk−1,n + Zn,k))− E(fk,n(Sk−1,n))− vn,k

2
E(f ′′k,n(Sk−1,n)),

∆
(2)
k,n(f) = E(fk,n(Sk−1,n +Nn,k))− E(fk,n(Sk−1,n))− vn,k

2
E(f ′′k,n(Sk−1,n)) .

• Bound for ∆
(2)
k,n(f). Taylor expansion yields the existence of some random variable

τn,k ∈ (0, 1):

∆
(2)
k,n(f) = E(f ′k,n(Sk−1,n)Nn,k)+

1

2
E(f ′′k,n(Sk−1,n)(N2

n,k−vn,k))+
1

6
E(f

(3)
k,n(Sk−1,n+τn,kNn,k)N

3
n,k) .
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Using independence, we see that the first two terms vanish. In addition since the third

derivative of f is bounded we get |∆(2)
k,n(f)| ≤ C3

6
E(|Nn,k|3), hence

|∆(2)
k,n(f)| ≤

C3v
3/2
n,k

9
√

2π
.

Now vn,k = VarZn,k + 2
∑k−1

j=1 Cov(Zn,j, Zn,k), hence

vn,k ≤Mnδn + 2
k−1∑
j=1

min(αn(k − j),∆n,k−j).

For ∆
(2)
n (f) to go to zero, we thus need

k2/3n

[
Mnδn + 2

kn−1∑
j=1

min(αn(j),∆n,j)

]
→n→∞ 0. (4.7)

• Bound for ∆
(1)
k,n(f). Set ∆

(1)
k,n(f) = E(δ

(1)
k,n(f). Then, using Taylor formula again (with

some random τk,n ∈ (0, 1)), we may write

δ
(1)
k,n(f) = f ′k,n(Sk−1,n)Zn,k + 1

2
f ′′k,n(Sk−1,n)(Z2

n,k − vn,k) + 1
6

(
f
(3)
k,n(Sk−1,n + τk,nZn,k)Z

3
n,k

)
.

We analyze separately the terms in the previous expression. The last term can be bounded
in the following way

|E(f
(3)
k,n(Sk−1,n + τk,nZn,k)Z

3
n,k)| ≤ C3M

2
nδn. (4.8)

The second term can be written as

1

2

(
Cov(f ′′k,n(Sk−1,n), Z2

n,k)− 2E(f ′′k,n(Sk−1,n))
k−1∑
i=1

E(Zn,kZn,i)

)
.

On one hand, as Cov(f ′′k,n(Sk−1,n), Z2
n,k) =

∑k−1
j=1 Cov(f ′′k,n(Sj,n)− f ′′k,n(Sj−1,n), Z2

n,k), using
the mixing property, it holds

|Cov(f ′′k,n(Sk−1,n), Z2
n,k)| ≤ C3Mn

k−1∑
j=1

min(αn(k − j), (∆n,k−j + δ2n)). (4.9)

On the other hand,

E(f ′′k,n(Sk−1,n))
k−1∑
i=1

E(Zn,kZn,i) ≤ C2

k−1∑
i=1

min(αn(k − i),∆n,k−i). (4.10)

Finally, write the first order term f ′k,n(Sk−1,n)Zn,k =
∑k−1

j=1 [f
′

k,n(Sj,n)− f ′k,n(Sj−1,n)]Zn,k.

We have

|Cov
(
f ′k,n(Sj,n)− f ′k,n(Sj−1,n), Zn,k

)
| ≤ C2 min(αn(k − j), (δ2n + ∆n,k−j)). (4.11)
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Then, adding (4.8) to (4.11) one gets :

|∆(1)
k,n(f)| ≤ C

[
M2

nδn + (1 +Mn)
k−1∑
j=1

min(αn(j), (∆n,j + δ2n))

]
. (4.12)

Now we sum up for all k to conclude:∣∣∣∣∣
kn∑
k=2

∆
(1)
k,n(f)

∣∣∣∣∣ ≤ C

[
knM

2
nδn + (1 +Mn)

kn−1∑
j=1

(kn − j) min(αn(j), (∆n,j + δ2n))

]
. (4.13)

It concludes the proof of Theorem 4.3. �

5. Proof of Theorem 3.3

The proof of Theorem 3.3 is decomposed in several steps, as we have to consider the
discretization error as well as the stochastic error.

Step 1 : In this first step, we consider the fully observed discretization (Xkhn , Ykhn),
k = 1, . . . , n of (Zt, t ≥ 0). For simplicity we write h instead of hn in the sequel.

We want to apply the result of Theorem 4.3 to our problem of density estimation, with
kn = n.

We thus define Zn,k = 1√
nbd1,nb

d
2,n

(
K
(
x−Xkh

b1,n
, y−Ykh

b2,n

)
− EK

(
x−X0

b1,n
, y−Y0
b2,n

))
= gn(Zkhn)

with

gn(s, t) :=
1√

nbd1,nb
d
2,n

K

(
x− s
b1,n

,
y − t
b2,n

)
− E

1√
nbd1,nb

d
2,n

K

(
x−X0

b1,n
,
y − Y0
b2,n

)
,

so that

Mn = O

 1√
nbd1,nb

d
2,n

 .

Using the covariance inequality (2.7) one gets αn(j) = O
(
M2

nρ
(jhn)/2

)
.

Writing

vn,k ≥ VarZn,k − 2
k−1∑
j=1

min(αn(k − j),∆n,k−j) ,

to verify (4.1), it is not hard to see (since of course bi,n → 0 as n growths to infinity), that
it suffices to check

n
n∑
j=1

min(αn(j),∆n,j)→ 0 as n→ +∞ .

This condition clearly implies the second one in Theorem 4.3.
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In order to estimate δn, just write the definition

δn = sup
k≤n

E(|Zn,k|) ≤ 2
1√

nbd1,nb
d
2,n

EK
(
x−X0

b1,n
,
y − Y0
b2,n

)
(5.1)

≤ 2√
nbd1,nb

d
2,n

∫
K

(
x− u
b1,n

,
y − v
b2,n

)
ps(u, v) du dv

≤
2 b

d/2
1,n b

d/2
2,n√
n

∫
A

K (u, v) ps(b1,n(x− u), b2,n(y − v)) du dv .

Notice that, if (u, v) ∈ A and bi,n ≤ 1 for i = 1, 2, then (b1,n(x−u), b2,n(y−v)) ∈ (x, y)−A
which is bounded. Hence ps is bounded on the latter set. It follows

δn = O

(
b
d/2
1,n b

d/2
2,n√
n

)
.

In order to estimate ∆n,j, as for the estimate of δn, we can come back to the definition
yielding

∆n,j ≤ 3 δ2n + An,j
where

An,j =
1

nbd1,nb
d
2,n

∫
K

(
x− u
b1,n

,
y − v
b2,n

)
K

(
x− u′

b1,n
,
y − v′

b2,n

)
(5.2)

ps(u, v) pjh((u, v), (u′, v′)) du′ dv′ du dv .

Using the same change of variables as in (5.1), the same compactness argument and the
estimate in Corollary 2.12 we obtain that

An,j ≤
C

n

(
bd1,nb

d
2,n

(
1

(jh)2d
+ e−D/jh

))
.

Define now

p̃s(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xih

b1,n
,
y − Yih
b2,n

)
.

Applying Theorem 4.3 we get√
nbd1,nb

d
2,n (p̃s(x, y)− Ep̃s(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫ ∫
K2(s, t)dsdt

)
,

as soon as , when n→ +∞,

(1) nbd1,nb
d
2,n → +∞, implying that Mn → 0, and

(2)
∑n−1

j=1 min
(

ρjh/2

bd1,nb
d
2,n
, Cbd1,nb

d
2,n

(
1

(jh)2d
+ 1
))
→ 0, for some ad-hoc constant C.
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A necessary condition for (2) to hold is that the first term (for j = 1) goes to 0 i.e. that

b1,n b2,n
h2n

→ 0 . (5.3)

It turns out that this condition is also sufficient.
Indeed, using min(a, b+ c) ≤ min(a, b) + min(a, c), we have

n−1∑
j=1

ρjh/2

bd1,nb
d
2,n

∧ Cbd1,nbd2,n
(

1

(jh)2d
+ 1

)
≤
Cbd1,nb

d
2,n

h2d

n−1∑
j=1

1

j2
+

n−1∑
j=1

ρjh/2

bd1,nb
d
2,n

∧ Cbd1,nbd2,n .

If (5.3) holds, the first term in the right hand side goes to 0. For the second one, define
jn = h−2d. If (5.3) is satisfied, it holds b1,n b2,n ≤ C ′ h2n, so that

n−1∑
j=1

ρjh/2

bd1,nb
d
2,n

∧ Cbd1,nbd2,n ≤ Cbd1,nb
d
2,njn +

n−1∑
j=jn

ρjhn/2

bd1,nb
d
2,n

≤
Cbd1,nb

d
2,n

h2dn
+

ρjnhn/2

bd1,nb
d
2,n(1− ρhn/2)

≤
Cbd1,nb

d
2,n

h2dn
+

2 ρjnhn/2

bd1,nb
d
2,nhn log(1/ρ)

≤
Cbd1,nb

d
2,n

h2dn
+

2C ′ exp

(
− log(1/ρ) C′

b
d− 1

2
1,n b

d− 1
2

2,n

)
b
d+ 1

2
1,n b

d+ 1
2

2,n log(1/ρ)
,

and both terms go to 0 when n→ +∞ since bi,n → 0 and ρ < 1.

Step 2 :
If we can only observe the position process, we have to consider instead of Yih its natural

approximation
X(i+1)h−Xih

h
.

Recall our estimator

p̂s(x, y) :=
1

nbd1,nb
d
2,n

n∑
i=1

K

(
x−Xih

b1,n
,
y − X(i+1)h−Xih

h

b2,n

)
.

We want now to evaluate the following difference :√
nbd1,nb

d
2,n (p̂s(x, y)− p̃s(x, y)) (5.4)

=
1√

nbd1,nb
d
2,n

n∑
i=1

(
K

(
x−Xih

b1,n
,
y − X(i+1)h−Xih

h

b2,n

)
−K

(
x−Xih

b1,n
,
y − Yih
b2,n

))
.
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Introduce Mu = 1
h

∫ u
ih

(Ys − Yih)ds, defined for ih ≤ u ≤ (i+ 1)h.
Then we may write

Ai = K

(
x−Xih

b1,n
,
y − X(i+1)h−Xih

h

b2,n

)
−K

(
x−Xih

b1,n
,
y − Yih
b2,n

)
=

−1

hb2,n

∫ (i+1)h

ih

∇yK

(
x−Xih

b1,n
,
y − Yih −Mu

b2,n

)
.(Yu − Yih)du .

Recall that K is compactly supported with bounded derivatives, so that for some well
chosen constants C and D,

|∇yK(a, b)| ≤ C 1I|a|≤D 1I|b|≤D .

Hence

|Ai| ≤
C1I|Xih−x|≤Db1,n

hb2,n

∫ (i+1)h

ih

|Yu − Yih| 1I|Yih−y+Mu|≤Db2,n du . (5.5)

We will estimate the expectation of |Ai|. To this end, first write

Yu − Yih = σ(Wu −Wih)−
∫ u

ih

(c(Xt, Yt)Yt +∇V (Xt)dt .

Hence, using the Markov property and since ∇V (·) increases at infinity with polynomial
rate, there exists some k ∈ N and some M > 0 (that may change from line to line, but
depending only on the coefficients and the dimension) such that

E(|Ai|) ≤
∫ (i+1)h

ih

E
(
C1I|Xih−x|≤Db1,n

hb2,n
EZih

(|Yu−ih − Y0|)
)
du

≤ M

hb2,n

∫ (i+1)h

ih

E
(

1I|Xih−x|≤Db1,n

(
|u− ih|1/2 +

∫ u−ih

0

EZih
(|Zs|k)ds

))
du

≤ M

hb2,n

(
h3/2 bd1,n +

∫ (i+1)h

ih

E
(

1I|Xih−x|≤Db1,n

∫ u−ih

0

EZih
(|Zs|k)ds

))
du ,

where we used that µ has a locally bounded density. In order to control the second term
in the sum, first use Hölder inequality

E
(

1I|Xih−x|≤Db1,n

∫ u−ih

0

EZih
(|Zs|k)ds

)
≤ M b

d/p
1,n E1/q

[(∫ u−ih

0

EZih
(|Zs|k)ds

)q]

≤M b
d/p
1,n (u− ih) E1/q

[∫ u−ih

0

EZih
(|Zs|kq)

ds

u− ih

]
≤M b

d/p
1,n (u− ih)

(∫ u−ih

0

E(|Zs|kq)
ds

u− ih

)1/q

≤M(q) b
d/p
1,n (u− ih) ,
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where we have used the existence of all polynomial moments of µ.
Let us come back to (5.4). We have obtained, for all 1 < p < +∞ with conjugate q,

E
(√

nbd1,nb
d
2,n |p̂s(x, y)− p̃s(x, y)|

)
≤ 1√

nbd1,nb
d
2,n

n∑
i=1

E(|Ai|)

≤
√
n√

bd1,nb
d
2,n

M(q)

hb2,n

(
h3/2 bd1,n + b

d/p
1,n h

2
)
.

It follows that
√
nbd1,nb

d
2,n (p̂s(x, y)− p̃s(x, y)) goes to 0 in L1 as soon as

√
nhn

b
d/2
1,n

b
1+(d/2)
2,n

→ 0 and there exists 1 < p such that
√
nhn

b
d( 1

p
− 1

2
)

1,n

b
1+(d/2)
2,n

→ 0 . (5.6)

Step 3 :
It remains to consider the bias term

Bn =
√
nbd1,nb

d
2,n|E(p̃s(x, y))− ps(x, y)|

which is independent of the mixing properties. It can be written

Bn =
√
n bd1,nb

d
2,n

∫
1

bd1,nb
d
2,n

K

(
x− u
b1,n

,
y − v
b2,n

)
(ps(u, v)− ps(x, y)) du dv

=
√
n bd1,nb

d
2,n

∫
K(u, v) (ps(x− b1,nu, y − b2,nv)− ps(x, y)) du dv .

For the latter to go to 0, using Taylor expansion and standard tools, it is enough to assume
that there exists m ∈ N∗ such that for all polynomial P (x, y) with degree less than or
equal to m,

∫
P (u, v)K(u, v)dudv = 0, and nbd1,nb

d
2,n max(b1,n, b2,n)2(m+1) −−−→

n→∞
0.

The proof of Theorem 3.3 is completed. �

6. Non-stationary case

In Section 3 we stated the central limit theorem for the invariant density ps(x, y) in the
case where the process is in the stationary regime. Let us now define the new estimator

pn(x, y) =
1√

nbd1,nb
d
2,n

ln+n∑
k=ln+1

K

(
x−Xihn

b1,n
,
y − X(i+1)hn−Xihn

hn

b2,n

)
. (6.1)

Remark that if Z0 ∼ µ(dz), then pn(x, y)
L
= p̂n(x, y) ∀n ∈ N∗.

Theorem 6.2 below states that we can estimate ps(x, y) by using pn(x, y) with Z0 =
z0 = (x0, y0).
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Theorem 6.2. Assume that assumptions (i) to (vi) in Theorem 3.3 hold true. Then,
starting from any initial point z0 = (x0, y0), and assuming that ln appearing in the defini-
tion (6.1) of pn(x, y) satisfies lnhn −−−−→

n→+∞
+∞, one has√

nbd1,nb
d
2,n (pn(x, y)− ps(x, y))

D−−−−→
n→+∞

N
(

0, ps(x, y)

∫
K2(s, t)dsdt

)
.

Proof of Theorem 6.2 :
Recall that ps : R2d 7→ R+ denote the invariant density of Z and µ the associated invariant
probability measure.

Denote by Cb(R) the set of bounded continuous functions h : R→ R. It is only necessary
to prove that, for any h ∈ Cb(R), the difference

∆n(h) = E
[
h(
√
nbd1,nb

d
2,np̂s(x, y)|Z0 ∼ µ)− h(

√
nbd1,nb

d
2,npn(x, y)|Z0 = z0)

]
= E

[
h(
√
nbd1,nb

d
2,npn(x, y)|Z0 ∼ µ)− h(

√
nbd1,nb

d
2,npn(x, y)|Z0 = z0)

]
goes to zero as n tends to infinity. Let h ∈ Cb(R) and denote θ = ‖h‖∞.

To evaluate E (h(pn(x, y))|Z0 ∼ µ) − E (h(pn(x, y))|Z0 = z0). Let us fix n ∈ N∗. We
first make the computations conditionally to Zjhn , j ≥ ln + 2.

Define hZjhn , j≥ln+2(z
′) by

h

 1√
nbd1,nb

d
2,n

[
K

(
x− x′

b1,n
,
y − X(ln+2)hn−x

′

hn

b2,n

)
+

ln+n∑
k=ln+2

K

(
x−Xihn

b1,n
,
y − X(i+1)hn−Xihn

hn

b2,n

)] .

Now, conditionally to Zjhn , j ≥ l + 2, one has :

|E (h(pn(x, y))|Z0 ∼ µ)− E (h(pn(x, y))|Z0 = z0)|

=

∣∣∣∣∫ hZjhn , j≥ln+2(z
′)
(
ps(z

′)− q(ln+1)hn(z0, z
′)
)
dz′
∣∣∣∣

≤ θDρ(ln+1)hnΨ(z0) (6.3)

using Inequality (2.1).

Finally, since 0 < ρ < 1, we can conclude that ∆n(h) goes to zero as n tends to infinity
as soon as lnhn −−−−→

n→+∞
+∞, which concludes the proof of Theorem 6.2. �
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7. Simulation study

We consider two models for simulations. The first one has been proposed by Pokern et
al. (2009). It corresponds to a linear oscillator subject to noise and damping with γ > 0.
The second example is one example of generalized Duffing oscillators described in Wu
(2001) subsection 5.2. Both models are of type (1.1) and satisfy assumptions needed to
apply our estimation results.

7.1. Model I: harmonic oscillator. Consider an harmonic oscillator that is driven by
a white noise forcing:

dXt = Ytdt

dYt = σ dWt − (κYt +DXt)dt. (7.1)

with σ > 0, κ > 0 and D > 0. In the following we choose D = 2, κ = 2 and σ = 1. For
this model we know that the stationary distribution is gaussian, with mean zero and an
explicit variance matrix given in Gardiner (1985), e.g. With our choice of parameters, the
gaussian invariant density is

ps(x, y) =
2
√

2

π
exp

(
−4x2 − 2y2

)
.

In the following we make use of the explicit Euler scheme to simulate an approximated

discrete sampling (X̃i, Ỹi)i∈N of (Xt, Yt)t∈R+ . For a given step δ > 0, the scheme is defined
as

X̃i+1 − X̃i = Ỹiδ

Ỹ(i+1) − Ỹi = σ (W(i+1)δ −Wiδ)− (κỸi +DX̃i)δ (7.2)

(X̃0, Ỹ0) = (0, 0).
We now estimate the invariant density ps on a grid (zl)l=1,...,L = (xl, yl)l=1,...,L. More

precisely, for l = 1, . . . , L we consider the estimate

p̂s(xl, yl) =
1

nb1,nb2,n

n∑
i=1

K

(
x− Ui
b1,n

,
y − Ui+1−Ui

hn

b2,n

)
with K the Epanechnikov kernel defined by K(u, v) = Ke(u) × Ke(v) with Ke(w) =
3
4
(1−w2)I|w|≤1, b1,n = n−α1 , b2,n = n−α2 , hn = n−γ. The sampling (Ui)i=1,...,n is simulated

using, as in Pokern et al. (2009), the explicit Euler scheme described above with a step

δ = (1/30)hn, and then considering Ui = X̃30i, i = 1, . . . , n.
To measure the performance of the method, we estimate on M = 30 samplings the

relative mean integrated squared error by

1
M

∑M
m=1

1
L

∑L
l=1

(
p̂
(m)
s (zl)− ps(zl)

)2
1
L

∑L
l=1 ps(zl)

2
.
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In the following, we take α1 = 0.2, α2 = 0.2, γ = 0.15. We take a grid of size L = 100.
We obtain the following results (see Table 1 below) :

n 100 1000 10000

relative error 0.09 0.03 0.01

Table 1. Evolution of the relative mean integrated squared error for α1 =
0.2, α2 = 0.2, γ = 0.15, L = 100 and M = 30 and different sizes of
sampling

As expected, the relative error decreases with n.
We obtain for a sample size of n = 104 the following graphics for the discretized

theoretical bivariate invariant density (see Figure 1), its estimated version (see Figure 2),
and the estimation of the marginal invariant density for the position (see Figure 3) and
of the marginal invariant density for the velocity (see Figure 4) when only the position is
observed.

[ Fig. 1, 2, 3 and 4 about here. ]

To measure the influence of the explicit Euler scheme used to simulate the data, we
also simulated with an exact scheme the stationary distribution (which is gaussian in this
case) as it is done in Samson and Thieullen (2012). We do not show all the results of
these simulations here as they were quite similar to the ones obtained with an explicit
Euler scheme. We just show on Figure 5 below the estimated bivariate invariant density
for a sample of size n = 104.

[ Fig. 5 about here. ]

We now want to evaluate the sharpness of assumptions (ii) to (iv) in Theorem 3.3.
Assumption (ii) on the bandwidths b1,n and b2,n is usual in kernel density estimation.
Assumption (iv) is needed if one wants that the bias term in the central limit theorem
vanishes as n tends to infinity. Let us now focus on assumption (iii) which links the
bandwidths terms with the discretization step. In order to understand the meaning of
this assumption, we consider the convergence of p̃s(x, y) to ps(x, y). We thus work with
the sample (Xihn , Yihn)i=1,...,n. The mixing property of this sequence may be lost if the
step hn tends too quickly to zero. In that case the convergence in Theorem 3.3, even
when working with p̃s instead of p̂s may fail.

To illustrate this point, we now use the exact scheme to simulate under the stationary
distribution. To draw Figures 6 and 7, we chose α1 = α2 = 0.2, γ = 0.15, and n = 104,
thus assumptions (ii) to (iv) are satisfied.

[ Fig. 6, 7 about here. ]
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We then consider n = 104, α1 = α2 = 0.22 and γ = 0.30, thus assumption (iii) in
Theorem 3.3 is not satisfied. We see on Figures 8 and 9 that the quality of the estimation
is lower than previously.

[ Fig. 8, 9 about here. ]

The deterioration of the convergence in Theorem 3.3 in case assumption (iii) is not
satisfied was observed on a large set of simulations, thus strengthening the sharpness of
this assumption.

7.2. Model II: Kramers oscillator. We consider the noisy Duffing oscillator known as
Kramers oscillator. The system (1.1) writes now

dXt = Ytdt

dYt = σ dWt − (κYt + αX3
t − βXt)dt (7.3)

with σ, κ, α and β > 0. The potential is then V (x) = αx
4

4
− β x2

2
.

For nonlinear oscillators with cubic restoring force, the stability of the explicit Euler
scheme may fail (see e.g., Talay (2002)). Therefore we used the implicit Euler scheme (see
Talay (2002) for its definition) to simulate the data. The invariant density is in that case

ps(x, y) =

√
κ√

πσC
exp

(
−2κ

σ2
(
αx4

4
− β x2

2
+
y2

2
)

)
,

with C the normalizing constant. In the following, we take σ = κ = α = β = 1. We use
the same estimation procedure as for the preceding example. For this model, contrarily
to the previous example, we do not have any exact simulation scheme for the invariant
distribution. Simulations are slower as at each step one has to solve a fixed point problem,
but such a scheme is stable for our model.

In the following, we choose the Epanechnikov kernel and we take α1 = 0.2, α2 = 0.2,
γ = 0.15. We take a grid of size L = 100.

We obtain for a sample size of n = 104 the following graphics for the discretized
theoretical bivariate invariant density (see Figure 10), its estimated version (see Figure
11), and the estimation of the marginal invariant density for the position (see Figure
12) and of the marginal invariant density for the velocity (see Figure 13) when only the
position is observed.

[ Fig. 10, 11, 12 and 13 about here. ]
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Résolvantes, théorème de Hörmander et applications. Bull. Sc. Math. 114 p. 421-462.

P. Cattiaux, D. Chafai, and A. Guillin (2011). Central limit theorems for additive
functionals of ergodic Markov diffusions processes. ALEA, Lat. Am. J. Probab. Math.
Stat. 9(2), p. 337-382, (2012).

C. Coulon-Prieur and P. Doukhan (2000). A CLT for triangular arrays of weakly
dependent sequences. Statist. Probab. Letters 47, p. 61-68 (2000).

P. Doukhan (1994). Mixing: Properties and examples. Lecture Notes in Statistics 85.
Springer-Verlag.

N. Down, S. P. Meyn, and R. L. Tweedie (1995). Exponential and uniform ergodicity of
Markov processes. Ann. Prob., 23(4), p. 1671-1691.

C. Gardiner (1985). Handbook of Stochastic Methods. Springer Verlag, New York.

V. Konakov, S. Menozzi and S. Molchanov (2010). Explicit parametrix and local limit
theorems for some degenerate diffusion processes. Ann. Institut Henri Poincaré 46
(4), p. 908-923.

Y. Pokern, A. Stuart and P. Wiberg (2009). Parameter estimation for partially observed
hypoelliptic diffusions. J. Roy. Stat. Soc. B 71, p. 49-73.

E. Rio (1995). About the Lindeberg method for strongly mixing sequences. ESAIM,
Probabilitiés et Statistiques 1, p. 35-61.



24 P. CATTIAUX, J. LEÓN, AND C. PRIEUR
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Figure 1. Harmonic oscillator, discretized theoretical bivariate invariant density.
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Figure 2. Harmonic oscillator, estimated bivariate invariant density.
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Figure 3. Harmonic oscillator, invariant density for the position
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Figure 4. Harmonic oscillator, invariant density for the velocity
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Figure 5. Harmonic oscillator, estimated bivariate invariant density, Ex-
act scheme.



ESTIMATION FOR HAMILTONIAN SYSTEMS. 29

−2
−1

0
1

2

−2
−1

0
1

2
0

0.2

0.4

0.6

0.8

1

Position

Estimation Invariant Density, Exact Scheme

Velocity

es
tim

at
ed

 in
va

ria
nt

 d
en

si
ty

Figure 6. Harmonic oscillator, assumptions (ii) to (iv) in Theorem 3.3
satisfied, estimated bivariate stationary density
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Figure 7. Harmonic oscillator, (ii) to (iv) in Theorem 3.3 satisfied, esti-
mated marginals of the stationary density, position (left), velocity (right)
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Figure 8. Harmonic oscillator, assumption (iii) in Theorem 3.3 not satis-
fied, estimated bivariate stationary density
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Figure 9. Harmonic oscillator, assump. (iii) in Theorem 3.3 not satisfied,
estimated marginals of the stationary density, position (left), velocity (right)
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Figure 10. Duffing oscillator, discretized theoretical bivariate invariant density.
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Figure 11. Duffing oscillator, estimated bivariate invariant density.
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Figure 12. Duffing oscillator, invariant density for the position
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Figure 13. Duffing oscillator, invariant density for the velocity.


