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Abstract— This work proposes a new tensor-based approach to
solve the problem of blind identification of underdetermined mixtures
of complex sources exploiting the cumulant generating function
(CGF) of the observations. We show that a collection of second-
order derivatives of the CGF of the observations can be stored
in a third-order tensor following a constrained factor (CONFAC)
decomposition with known constrained structure. In order to in-
crease the diversity, we combine three derivative types into an
extended third-order CONFAC decomposition. A detailed uniqueness
study of this decomposition is provided, from which easy-to-check
sufficient conditions ensuring the essential uniqueness ofthe mixing
matrix are obtained. From an algorithmic viewpoint, we develop
a CONFAC-based enhanced line search (CONFAC-ELS) method
to be used with an alternating least squares estimation procedure
for accelerated convergence, and also analyze the numerical com-
plexities of two CONFAC-based algorithms (namely, CONFAC-ALS
and CONFAC-ELS) in comparison with the Leverberg-Marquardt
(LM)-based algorithm recently derived to solve the same problem.
Simulation results compare the proposed approach with somehigher-
order methods. Our results also corroborate the advantagesof the
CONFAC-based approach over the competing LM-based approach
in terms of performance and computational complexity.

Index Terms— Blind identification, second generating function,
complex sources, CONFAC decomposition.

EDICS: SSP-HOSM, SSP-IDEN, SPC-BLND.

I. I NTRODUCTION

Blind identification methods have been successfully applied in
multidisciplinary contexts including radiocommunications, sonar,
radar, biomedical signal processing and data analysis, just to
mention a few. A widespread class of these methods relies on
independent component analysis by means of higher-order statis-
tics [1]. This subject has been at the center of many theoretical
works while related methods and algorithms have been used ina
variety of application fields [2]–[4] (see also [5], [6] for surveys).
A problem that has attracted a particular interest is that ofblind
identification of underdetermined mixtures. Several solutions have
been proposed in the literature to solve this problem (see, e.g.
[6], [7], [14]–[18] and references therein). The proposed solutions
resort to second, fourth or sixth-order statistics of the observations.
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Several solutions to blind identification/source separation prob-
lems have been proposed recently based on multi-way (tensor)
analysis [24]. This is a subject that has gained attention in
numerous application areas involving data analysis such aspsy-
chometrics [19], arithmetic complexity [20] and chemometrics
[21], [22]. In this context, canonical polyadic (CP) decomposition1

[19], [23] is the most popular tensor decomposition. The CP
decomposition has been successfully used as an alternativesolu-
tion to principal component analysis (PCA) when the available
data to be analyzed can be arranged as a meaningful multi-
way array, or a higher-order tensor [24]. Indeed, the widespread
use of the CP decomposition can be attributed to its essential
uniqueness property under mild conditions [25]–[31] as well as
to the existence of several numerical algorithms that can beused
to compute this decomposition [21], [32]–[38].

A first class of the so-called tensor-based methods directly
exploits the trilinear nature of the observed data, and the de-
composition of the data tensor provides a direct estimationof
the sources. These methods have been widely applied in wireless
communications by means of different tensor decompositions (see
e.g. [8]–[13]). However, when the diversity of the observations
is not sufficient, one can resort to a second class of tensor-
based methods that rely on the multilinearity properties ofhigher-
order statistics (HOS) [14], [18], [35]. A large majority ofthese
methods solves the blind identification problem by means of
the CP decomposition of a tensor storing the cumulants of
the observations [7], [14], [39], [41], [42], [45]. This is the
case, for instance, of FOOBI/FOOBI2 [17], [18], and BIOME
[15] algorithms, which capitalize on the triadic decomposition
of fourth- and sixth-order output cumulants, respectively. The
approach presented in [39] relies on the CP decomposition of
third- or fourth-order cross spectra of the observations. The works
[40]–[43] address convolutive mixtures.

A particular class of blind identification methods exploitsthe
second characteristic function of the observations. This idea has
first appeared in [44] and later in a few works [16], [46], [47].
In [16], the authors showed that partial derivatives of the second
characteristic function of the observations taken at different points
of the observation space can be stored in a symmetric tensor,
the CP decomposition of which provides a direct estimation of
the mixing matrix up to trivial scaling and permutation indeter-
minacies. In [16], the alternating least squares (ALS) algorithm
is applied to blindly estimate the mixing matrix from a CP

1This decomposition is sometimes also called Candecomp/Parafac, which can
be referred to with the same acronynm.
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data tensor constructed from third-order derivatives of the output
characteristic function. In a recent work [48], we have considered
a more general scenario where the sources are assumed to be
complex-valued (e.g. 4-PSK or 4-QAM), which is usually the
case in digital communications. Therein, the authors resort to
the cumulant generating function (CGF) of the observationsand
a Levenberg-Marquardt (LM) based algorithm is proposed to
estimate the mixing matrix.

In this work, we show that the CGF-based blind identification
problem can be more efficiently addressed by means of the
constrained factor (CONFAC) decomposition [49]. Under theas-
sumption of complex sources, we show that a collection of second-
order derivatives of the CGFs of the observations can be stored in
a third-order tensor following a third-order CONFAC decompo-
sition with known constraint matrices. The profile of 1’s and0’s
of the constraint matrices captures the linear combinationpatterns
involving real and imaginary components of the CGFs derivatives.
In order to increase the diversity, we combine three derivative
types into an extended CONFAC decomposition of increased
dimensionality. The uniqueness property of this decomposition is
studied and our results establish a set of easy-to-check sufficient
conditions that guarantee the essential uniqueness of the mixing
matrix. From an algorithmic viewpoint, we develop a CONFAC-
based enhanced line search (CONFAC-ELS) method to be used
with an alternating least squares (ALS) estimation procedure for
accelerated convergence. In particular, the numerical complexities
of two CONFAC-based algorithms (namely, CONFAC-ALS and
CONFAC-ELS) is analyzed and compared with the numerical
complexity of with the Leverberg-Marquardt (LM)-based algo-
rithm derived in [48] (therein called LEMACAFC) to solve the
same problem. Our computer simulation results evaluate and
compare the estimation accuracy of the proposed approach with
those of competing higher-order methods. Our results also attest
the efficiency of CONFAC-based solutions over the competing
LM-based approach proposed in [48].

Contributions: The contributions of this paper can be high-
lighted as follows:

• In comparison with [48], which does not rely on a tensor
decomposition approach, we originally formulate the CGF-
based blind identification problem in the case of complex
sources as a constrained tensor decomposition problem with
a priori known structure. From a tensor decomposition per-
spective, this work is a direct generalization of [16] to the
complex case. In the same way as the CP decomposition
fits the case of real mixture of real sources in [16], this
work shows that the CONFAC decomposition (which is more
general than the CP one) fits the case of complex mixtures
of complex sources;

• We provide a detailed uniqueness study of the proposed
CONFAC decomposition. A set of easy-to-check conditions
ensuring the essential uniqueness of the mixing matrix is
provided, guiding the choice of the number of sensors and
number of derivatives points for a given number of sources.
This is in contrast to [48], where the uniqueness issue is not
addressed and no condition for blind identifiability of the
mixing matrix is given;

• Using the fact that second-order derivatives of the CGF of a
Gaussian noise are constant regardless of the point at which
the derivatives are computed, it is possible to “denoise” the

derivative tensor to be decomposed, yielding more robustness
to noise effects;

• We develop an enhanced line search (ELS) optimization
for the CONFAC-based blind identification method and a
numerical complexity analysis of the so-called CONFAC-
ELS algorithm is provided. This analysis corroborates the
efficiency of the proposed algorithm compared to the LM-
based algorithm of [48].

The distinguishing feature of the proposed second-order ap-
proach is its low complexity compared to higher-order methods,
and its capability to deal with underdetermined mixtures without
requiring constraints on the temporal structure of the sources such
as correlation [18] and piece-wise stationarity [50]. Additionally,
the proposed CONFAC-ELS algorithm is more computationally
efficient than the competing LM-based algorithm [48], as canbe
seen from our numerical analysis and simulation results.

This paper is organized as follows. In Section II, a back-
ground on the CONFAC decomposition of a third-order tensor
is provided. In Section III, we formulate the CGF-based blind
identification problem and present the main core equations.The
problem is recast in Section IV using the proposed CONFAC
decomposition approach. In Section V, a uniqueness study ofthe
proposed decomposition is provided, from which a set easy-to-
check conditions ensuring the essential uniqueness of the mixing
matrix is presented. Section VI presents the CONFAC-ELS blind
identification algorithm and discusses its numerical complexity.
Simulation results are given in Section VII and the paper is
concluded in Section VIII.

Notations: In the following, vectors, matrices and tensors are
denoted by lower case boldface(a), upper case boldface(A)
and upper case calligraphic(A) letters respectively.ai is the i-
th coordinate of vectora and ai is the i-th column of matrix
A. The (i, j) entry of matrixA is denotedAij and the(i, j, k)
entry of the third order tensorA is denotedAijk. IK denotes
the identity matrix of sizeK. Real and imaginary parts are
denotedℜ{·} and ℑ{·} respectively. E[.] denotes the expected
value of a random variable.AT andA† stand, respectively, for
the transpose and Moore-Penrose pseudo-inverse ofA. det(A)
denotes the determinant ofA. The operator vec(A) creates a
column vectora ∈ CJI×1 from A ∈ CI×J by stacking itsJ
columns below one another, while unvec(a) = A is the inverse
operator, i.e. unvec(vec(A)) = A. The operatorDi(A) forms a
diagonal matrix out of thei-th row ofA. The outer vector product
is denoted by◦, while ⊡ denotes the Hadamard (element-wide
product). Kronecker and Khatri-Rao products are denoted by⊗
and⊙, respectively.

II. PRELIMINARIES: THE CONFAC DECOMPOSITION

Let us consider a third-order tensorX ∈ CP×Q×R, threefactor
matricesA ∈ C

P×F1 , B ∈ C
Q×F2 , C ∈ C

R×F3 , and three
constraint matricesΘ ∈ CF1×F , Ψ ∈ CF2×F , Ω ∈ CF3×F .
The CONFAC decomposition ofX with F factor combinations
is defined in scalar form as:

Xpqr =

F∑

f=1

F1∑

f1=1

F2∑

f2=1

F3∑

f3=1

Apf1Bqf2Crf3Θf1fΨf2fΩf3f , (1)

with F ≥ max(F1, F2, F3),
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whereA,B andC are thefactor matrices, while Θ,Ψ andΩ

are theconstraint matrices. The factor matrices are unknown,
to be determined, while the constraint matrices are known fixed
matrices whose structure satisfies the two following assumptions:

A1 The columns ofΘ (resp.Ψ andΩ) are canonical vectors
possibly multiplied by -1. The canonical vectors composing
these matrices belong, respectively, to the canonical bases
{e

(F1)
1 , . . . , e

(F1)
F1

} ∈ R
F1 , {e

(F2)
1 , . . . , e

(F2)
F2

} ∈ R
F2 , and

{e
(F3)
1 , . . . , e

(F3)
F3

} ∈ RF3 .
A2 Θ, Ψ andΩ are full-row rank matrices with ranks equal to

F1, F2, andF3, respectively.

The CONFAC decomposition can be stated in a different
manner, which sheds light on a different way of interpreting
its constrained structure. By exchanging summations in (1), we
obtain:

Xpqr =

F1∑

f1=1

F2∑

f2=1

F3∑

f3=1

Apf1Bqf2Crf3Wf1f2f3(Θ,Ψ,Ω), (2)

where

Wf1f2f3(Θ,Ψ,Ω) =

F∑

f=1

Θf1fΨf2fΩf3f (3)

is an element of aF1 × F2 × F3 tensor W(Θ,Ψ,Ω) that
follows an F -factor triadic decomposition in terms ofΘ, Ψ

and Ω. We call W(Θ,Ψ,Ω), or simply W , the constrained
core tensorof the CONFAC decomposition. Due to the structure
assumed from the constraint matrices,W contains +/-1 elements at
fixed positions. Figure 1 provides an illustration of the CONFAC
decomposition. Note that the CONFAC decomposition (1) can be
seen as a constrained Tucker3 decomposition [51]–[53] withthe
particular characteristic of having a core tensor with known triadic
decomposition. Moreover, note that the CONFAC decomposition
for which F1 = F2 = F3 = F , andΘ = Ψ = Ω = IF reduces
to theF -factor canonical polyadic (CP) decomposition [19], [23].

Two different matrix representations of the tensorX ∈
CP×Q×R are possible, namely thesliced and unfolded repre-
sentations. Their construction and factorization follow the same
reasoning as that of the CP decomposition [9]. Thus,Xp·· =

BΨDp

(
AΘ

)(
CΩ

)T
∈ CQ×R is the factorization of thep-

th slice of X ∈ CP×Q×R along its first dimension. Simi-
larly, X·q· = CΩDq

(
BΨ

)(
AΘ

)T
∈ CR×P and X··r =

AΘDr

(
CΩ

)(
BΨ

)T
∈ C

P×Q are the factorization of itsq-th
andr-th slices along its second and third dimensions, respectively.
The full information contained in tensorX ∈ CP×Q×R can be
organized in threeunfolded matricesX(1) = [XT

1··, . . . ,X
T
P ··]

T ∈
CPQ×R, X(2) = [XT

·1·, . . . ,X
T
·Q·]

T ∈ CQR×P , and X(3) =

[XT
··R, . . . ,X

T
··R]

T ∈ CRP×Q, which admit, respectively, the
following factorizations:

X(1) =
(
(AΘ)⊙(BΨ)

)(
CΩ

)T
, X(2) =

(
(BΨ)⊙(CΩ)

)(
AΘ

)T
, X(3) =

(
(CΩ)⊙(AΘ)

)(
BΨ

)T
.

(4)
The CONFAC decomposition of a third-order tensor was orig-

inally proposed in [49] in the context of wireless communi-
cations to design multiple-antenna transmission schemes with
blind detection. Therein, it is shown that the three CONFAC
constraint matrices are design parameters of the multiple-antenna
transmission system. The CONFAC decomposition also appears
in related works [54], [55], where the constraint matrices of the

decomposition are restricted to fixed linear combination patterns.
Uniqueness conditions for the third-order CONFAC decomposi-
tion have been studied in a recent work [56].

III. PROBLEM FORMULATION

We consider a noisy linear mixture ofK narrowband sources re-
ceived by an array ofN sensors. LetH = [h1, . . . ,hK ] ∈ C

N×K

be the mixing matrix. Definez(m) = [z1(m), . . . , zN (m)]T ∈
CN , s(m) = [s1(m), . . . , sK(m)]T ∈ CK and e(m) ∈ CN as
the m-th discrete-time realizations of the observations, source
and noise vectors, respectively,m = 1, . . . ,M . According to this
model we have:

z(m) = Hs(m) + e(m). (5)

The sources can be real- or complex-valued and the noise samples
are modeled as zero-mean circularly-symmetric complex Gaussian
random variables.

The problem consists in estimatingH from the only knowledge
of the observations. In this work, we are interested in solving
this problem by resorting to partial derivatives of the CGF of the
observations. Specifically, the problem consists in findingĤ such
that

Ĥ = HΠΛ, (6)

whereΠ is a permutation matrix andΛ is a diagonal matrix. This
means thatH can be identified up to permutation and scaling
of its columns. Column permutation and scaling ambiguitiesare
referred to astrivial ambiguities.

The blind identification of the mixing matrixH relies on the
following assumptions:

H1. The matrix H does not contain pairwise collinear
columns;

H2. The sourcess1, . . . , sK are non-Gaussian and mutually
statistically independent;

H3. The numberK of sources is known.

It has been shown in former studies [61], [62] thatH is theoret-
ically identifiable under these assumptions.

A. Generating function of the observations

We recall from [48] the main steps that formulate the second-
order derivatives of the CGF of the observations in the case of
complex sources. The cumulant generating function (CGF) ofthe
observations,Φz, can be decomposed in a sum of marginal second
generating functions of the sources,ϕk, k = 1 · · ·K. We start by
definingΦz andϕk in the complex field. The second generating
functionϕk of the k-th source taken at the pointx of C defined
R

2 is given by

ϕk(ℜ{x},ℑ{x}) = logE[exp(ℜ{x∗sk})]. (7)

Similarly, the second generating functionΦz of the observations
taken at the pointξ = (u,v) defined inR2N can be written as

Φz(u,v)
def
= logE[exp(xTu+ yTv)],

wherex = ℜ{z} andy = ℑ{z}. DefineA andĀ as the real and
imaginary parts of the mixing matrix so thatH = A+ iĀ. Next,
denoteak (resp.āk) the k-th column ofA (resp.Ā).
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Replacingz by its model and using sources’ mutual statistical
independence hypothesis yields:

Φz(u,v) =
∑

k

ϕk

(
uTak + vTāk,v

Tak − uTāk
)
+Φe(u,v).

(8)
whereΦe(u,v) is the corresponding second generating func-

tion of the Gaussian noise. From these definitions, we can rewrite
(8) as

Φz(ξ) =
∑

k

ϕk (g1(ξ) , g2(ξ)) + Φe(ξ), (9)

whereg1(ξ) =
∑

n Ankun + Ānkvn andg2(ξ) =
∑

n Ankvn −
Ānkun. Defining

g : R
2N −→ R

2

ξ 7−→ g(ξ) = (g1(ξ), g2(ξ)),

yields a compact representation for (9) as

Φz(ξ) =
∑

k

ϕk (g(ξ)) + Φe(ξ). (10)

B. Differentiation ofΦz(ξ)

Following the approach of [16], [48], we compute partial
derivatives ofΦz at R different points ofR2N , denoted here as
ξ(r) = (u(r),v(r)), r = 1, . . . , R.

Let {Φz(ξ
(1)),Φz(ξ

(2)), . . . ,Φz(ξ
(R))} be the set containing

the CGFs of the observations evaluated at theR points. Sim-
ilarly, {Φe(ξ

(1)),Φe(ξ
(2)), . . . ,Φe(ξ

(R))} denotes the CGFs of
the additive Gaussian noise. Define

Gij
rk

def
=

∂2ϕk(g(ξ
(r)))

∂gi(ξ(r))∂gj(ξ(r))
, i = 1, 2, j = 1, 2, (11)

and note thatG12
rk = G21

rk. By successively differentiating (10)
with respect to the variable pairs{u(r)

q , u
(r)
q }, {v

(r)
q , v

(r)
q } and

{u
(r)
q , v

(r)
q } we can obtain the three different second-order deriva-

tive equations, respectively:

XΦ1

pqr =
K∑

k=1

(
ApkAqkG

11
rk −ApkĀqkG

12
rk − ĀpkAqkG

12
rk

+ĀpkĀqkG
22
rk

)
+Υ(1)

pq , (12)

XΦ2

pqr =

K∑

k=1

(
ĀpkĀqkG

11
rk + ĀpkAqkG

12
rk +ApkĀqkG

12
rk

+ApkAqkG
22
rk

)
+Υ(2)

pq , (13)

XΦ3

pqr =

K∑

k=1

(
ApkĀqkG

11
rk +ApkAqkG

12
rk − ĀpkĀqkG

12
rk

−ĀpkAqkG
22
rk

)
+Υ(3)

pq , (14)

where

XΦ1

pqr

def
=

∂2Φz(ξ
(r))

∂u
(r)
p ∂u

(r)
q

, XΦ2

pqr

def
=

∂2Φz(ξ
(r))

∂v
(r)
p ∂v

(r)
q

, XΦ3

pqr

def
=

∂2Φz(ξ
(r))

∂u
(r)
p ∂v

(r)
q

,

(15)
and whereXΦs

pqr is the(p, q, r)-th entry of thes-th “derivative
tensor” XΦs of dimensionsN × N × R, s = 1, 2, 3, while
Υ

(1)
pq = ∂2Φe(ξ

(r))/∂u
(r)
p ∂u

(r)
q , Υ(2)

pq = ∂2Φe(ξ
(r))/∂v

(r)
p ∂v

(r)
q ,

and Υ
(3)
pq = ∂2Φe(ξ

(r))/∂u
(r)
p ∂v

(r)
q , r = 1, . . . , R, are the

corresponding second-order derivatives of the noise term,which
follow the same calculation steps as those of the second-order
derivatives of the signal part of the model. We call attention to
the fact thatΥ(1), Υ(2), andΥ(3) do not depend on the indexr,
since the second-order derivative of the noise is constant and not
affected by the point at which the derivative tensor is calculated.

IV. T HE CONFAC DECOMPOSITION APPROACH

A. Denoised formulation of the tensor decomposition

We use the fact that the CGFs of a Gaussian noise evaluated
at R different points of the observation space have identical
second-order derivatives to eliminate the noise influence from
the derivative tensors in (12), (13) and (14). This is possible by
subtracting from thes-th derivative tensorXΦs

pqr the second-order
CGF derivatives evaluated at the origin. More specifically,the
“denoised” derivative tensors are given by

Y Φs

pqr = XΦs

pqr −XΦs

pq0, s = 1, 2, 3, (16)

whereXΦs

pq0 denotes the second-order derivative of the CGF of the
observations evaluated at the origin, i.e. atξ(0) = 0 in R2N . Note
thatXΦs

pq0 is equal toΥ(s)
pq , s = 1, 2, 3, the noise contribution, since

the signal part of the CGF derivatives vanish at the origin. Thus,
by computing the difference given in (16) allows one to remove
the noise componentΥ(s)

pq so that the resulting tensorY Φs
pqr will

be noise free.
Let A(k) ∈ R

N×2 andG(k) ∈ R
R×3, k = 1, . . . ,K, be defined

as:

A(k) def
=




A1k Ā1k

...
...

ANk ĀNk


 = [ak, āk],

G(k) def
=




G11
1k G12

1k G22
1k

...
...

...
G11

Rk G12
Rk G22

Rk


 = [g1,k, g2,k, g3,k].

Note that two columns ofA(k) correspond to the real and imagi-
nary parts of thek-th column of the mixing matrix, respectively.
Each of the three columns ofG(k) is associated with a second-
order derivative type collected atR points. Using these definitions,
as subsequently shown, we can decompose the denoised derivative
tensorYΦs , s = 1, 2, 3, as follows:

Y Φs

pqr=

K∑

k=1

( 4∑

f=1

2∑

f1=1

2∑

f2=1

3∑

f3=1

A
(k)
pf1

A
(k)
qf2

G
(k)
rf3

Θf1fΨf2fΩ
(s)
f3f

︸ ︷︷ ︸
Y

Φs
pqr(k)

)
(17)

which corresponds to a sum ofK CONFAC tensor blocks
Y Φs
pqr(1), . . . , Y

Φs
pqr(K). Thek-th block is given by a sum of four

outer products involving repeated columns of matricesA(k) and
G(k). The linear combination pattern involving the columns of
A(k) andG(k) is determined by the joint structure ofΘ, Ψ and
Ω(s). By comparing (17) with the general formulation (1), we can
deduce the following correspondences:

(A,B,C) ↔ (A(k),A(k),G(k)),

(Θ,Ψ,Ω) ↔ (Θ,Ψ,Ω(s)),

(F1, F2, F3, F ) ↔ (2, 2, 3, 4),

(P,Q,R) ↔ (N,N,R),
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For each one of the three derivative types, the constraint
matricesΘ(s), Ψ(s) andΩ(s) of the associated CONFAC decom-
position can be identified by comparing respectively (12), (13)
and (14) with (17). A possible choice is given by

Θ =

[
1 1 0 0
0 0 1 1

]
, Ψ =

[
1 0 1 0
0 1 0 1

]
, (18)

Ω(1) =




1 0 0 0
0 −1 −1 0
0 0 0 1


 , Ω(2) =




0 0 0 1
0 1 1 0
1 0 0 0


 ,

Ω(3) =




0 1 0 0
1 0 0 −1
0 0 −1 0


 . (19)

Note that the first- and second-mode constraint matrices do
not depend on the differentiation variables. This dependence is
confined only in the third-mode constraint matrix.

Remark 1:The structures chosen for the constraint matrices in
(18)-(19) are not unique. This can be seen by rewriting (17) as

Y Φs

pqr =

K∑

k=1

2∑

f1=1

2∑

f2=1

3∑

f3=1

A
(k)
pf1

A
(k)
qf2

G
(k)
rf3

W
(s)
f1f2f3

, (20)

where

W
(s)
f1f2f3

=

4∑

f=1

Θf1fΨf2fΩ
(s)
f3f

. (21)

is a triadic decomposition ofW ∈ C2×2×3. Even under assump-
tions A1-A2 of Section II, which must be satisfied byΘ, Ψ

andΩ(s), there is still freedom to permute their columns and/or
change their signs without changing the constrained core tensor
W(s), s = 1, 2, 3. However, these ambiguities are unimportant
in our context since the three constraint matrices are knownby
definition. Any structural choice for these matrices that satisfies
the decomposition could be adopted. Our choice given in (18)-
(19) is motivated by the convenience of having only the third-
mode constraint matrix changing as the differentiation variables
are changed, while the two first constraint matrices are fixed. Most
importantly, such a choice makes possible to easily combinethe
three derivative types into a single CONFAC decomposition as
will be seen in the next section.

Let us define the block matrices

A = [A(1), . . . ,A(K)] ∈ R
N×2K (22)

G = [G(1), . . . ,G(K)] ∈ R
R×3K , (23)

which concatenate the contributions of theK sources. Define also
the block-diagonal constraint matrices

Θ̄ = IK ⊗Θ ∈ R
2K×4K , (24)

Ψ̄ = IK ⊗Ψ ∈ R
2K×4K , (25)

Ω̄(s) = IK ⊗Ω(s) ∈ R
3K×4K . (26)

With these definitions, we can treat (17) simply as an block-
CONFAC decomposition composed ofK blocks, thek-th block
being associated with thek-th source. In this case, the following
correspondences can be obtained by analogy with (1):

(A,B,C) ↔ (A,A,G),

(Θ,Ψ,Ω) ↔ (Θ̄, Ψ̄, Ω̄(s)),

(F1, F2, F3, F ) ↔ (2K, 2K, 3K, 4K),

(P,Q,R) ↔ (N,N,R),

The unfolded matrix representations for the second-order
derivative tensorYΦs ∈ RN×N×R, s = 1, 2, 3, follow those of
(4). For instance, the unfolded representationYΦs

(1) ∈ RN2×R can
be written as:

YΦs

(1) =




YΦs

1..
...

YΦs

N..


 =




AΨ̄D1

(
AΘ̄

)

...
AΨ̄DN

(
AΘ̄

)



(
GΩ̄(s)

)T

=
(
(AΘ̄)⊙ (AΨ̄)

)(
GΩ̄(s)

)T
. (27)

B. Combining all derivatives into an extended CONFAC decom-
position

As shown in (12), (13) and (14), three types of second-order
derivatives can be obtained from the CGF of the observations
depending on the pair of variables with respect to which the
derivatives are computed. Each derivative type yields a CONFAC
decompositionYΦs ∈ RN×N×R with a different constrained
structure, the structural difference being confined in the third-
mode constraint matrix̄Ω(s), s = 1, 2, 3, as we have proposed
in the previous subsection. In order to increase diversity,we take
all the three types of second-order derivatives into account by
constructing an extended CONFAC decomposition, as follows

Ȳ(1) =




YΦ1

(1)

YΦ2

(1)

YΦ3

(1)


 =




(
(AΘ̄)⊙ (AΨ̄)

)(
GΩ̄(1)

)T
(
(AΘ̄)⊙ (AΨ̄)

)(
GΩ̄(2)

)T
(
(AΘ̄)⊙ (AΨ̄)

)(
GΩ̄(3)

)T


 ∈ R

3N2×R.

(28)
This unfolded representation can be rewritten as

Ȳ(1) =
(
I3 ⊗

(
(AΘ̄)⊙ (AΨ̄)

))
(GΩ̃)T , (29)

where

Ω̃ =
[
Ω̄(1), Ω̄(2), Ω̄(3)

]
∈ R

3K×12K . (30)

Likewise, we can also stack row-wise the three derivative types
into the second and third unfolded matricesȲ(2) ∈ R3NR×N and
Ȳ(3) ∈ R3RN×N , as follows

Ȳ(2) =




YΦ1

.1.

YΦ2

.1.

YΦ3

.1.

−−−−−
...

−−−−−

YΦ1

.N.

YΦ2

.N.

YΦ3

.N.




=







GΩ̄(1)

GΩ̄(2)

GΩ̄(3)


D1(AΨ̄)

−−−−−
...

−−−−−


GΩ̄(1)

GΩ̄(2)

GΩ̄(3)


DN (AΨ̄)




(AΘ̄)T ,

(31)
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and

Ȳ(3) =




YΦ1

..1

...
YΦ1

..R

−−− −−
...

−−− −−

YΦ3

..1

...
YΦ3

..R




=




AΘ̄D1(GΩ̄(1))
...

AΘ̄DR(GΩ̄(1))
−−−−−

...
−−−−−

AΘ̄D1(GΩ̄(3))
...

AΘ̄DR(GΩ̄(3))




(AΨ̄)T .

(32)
After some algebraic manipulations the unfolded matrices (31)
and (32) can be respectively rewritten in compact form as

Ȳ(2) =
(
AΨ̄⊙ (I3 ⊗G)Ω̄

)
(AΘ̄)T, (33)

Ȳ(3) =
(
(I3 ⊗G)Ω̄⊙AΘ̄

)
(AΨ̄)T, (34)

where

Ω̄ =




Ω̄(1)

Ω̄(2)

Ω̄(3)


 ∈ R

9K×4K . (35)

V. UNIQUENESS STUDY

Recall that the goal of the proposed blind identification problem
is to identify the possibly underdetermined mixtureH (up to
trivial column permutation and scaling ambiguities) from the only
knowledge of the CGF derivatives of the observations. Herein,
this problem is addressed by exploiting the uniqueness property
of the CONFAC decomposition of a tensor that combines the
three derivative types, as shown Section IV-B. In order to study
uniqueness, it is convenient to rewrite the unfolded representation
X̄1 as follows:

X̄1 =




(A⊗A) T(1)

(A⊗A) T(2)

(A⊗A) T(3)


GT = (I3 ⊗A⊗A)




T(1)

T(2)

T(3)


GT

= (I3 ⊗A⊗A) T GT , (36)

with

T(s) = [(IK ⊗Θ)⊙ (IK ⊗Ψ)] (IK ⊗Ω(s))T, s = 1, 2, 3 . (37)

The matricesT(s) have size4K2×3K. The matrix(I3⊗A⊗A) T
has size3N2 × 3K.

The blockAk of the real-valued mixing matrixA contains
the real partak and imaginary part̄ak of the k-th column of the
complex-valuedN×K mixing matrixH, i.e.H = [a1 . . . aK ]+
i [ā1 . . . āK ]. The mixing matrixH is calledessentially unique
if for any alternativeĤ the relationĤ = HΠΛ holds, withΠ a
K×K permutation matrix, andΛ a complex-valued nonsingular
diagonal matrix. Multiplying thek-th column ofH by α + i β
yields(α ak−β āk)+i (β ak+α āk). This motivates the following
definition of essential uniqueness forA.

Definition 1: Matrix A is calledessentially uniqueif for any
alternativeF = [F1 | . . . |FK ], with eachFk of sizeN×2, there
holds

Fk = Aπ(k)

[
αk βk

−βk αk

]
, k = 1, . . . ,K , (38)

with π(·) a permutation of{1, . . . ,K}, andαk andβk not both
zero,k = 1, . . . ,K. 2

The following theorem is concerned with the uniqueness of
the CONFAC decomposition(36) for K = 1. This result is
conveniently presented here as it will be useful later.

Theorem 1:Let (A,G) be a solution to CONFAC decomposi-
tion (36) with K = 1. Suppose that rank(A) = 2 and rank(G) =
3. ThenA is essentially unique as defined in Definition1.
Proof. See Appendix I.

Remark 2:For K > 1, it can be proven thatA is essentially
unique if A andG have full column-rank, i.e. rank(A) = 2K
and rank(G) = 3K. Note that, although the full column-rank
condition forA can be restrictive from the view point of blind
identification, the full column-rank ofG is likely to hold when
the numberR of points at which the derivatives are evaluated is
large enough.

In the remainder of this section, we do not use the assumption
of A having full column rank. Assume instead that(I3 ⊗ A ⊗
A) T has full column rank3K (which impliesN2 ≥ K). This
assumption, together withG having full column rank3K, implies
that we may setG = I3K without loss of generality. A proof of
this is analogous to that derived in [56] (c.f. Lemma 3.4). We
denote alternative component matrices asF (N × 2K) and L

(3K×3K), with F = [F1 | . . . |FK ] andFk = [fk | f̄k]. ForG =
I3K , equating the CONFAC decomposition (36) to its alternative
yields

X̄1 = (I3 ⊗A⊗A) T = (I3 ⊗ F⊗ F) T LT . (39)

The goal is now to prove that both decompositions coincide up
to trivial transformations. By assumption, the left-hand side has
rank3K, and it follows thatL is nonsingular and that(I3 ⊗F⊗
F) T has full column rank3K. We write

(I3 ⊗A⊗A) T L−T = (I3 ⊗ F⊗ F) T . (40)

Next, we consider the structure of(I3 ⊗A⊗A) T. We have

Ȳ(1) = (I3 ⊗A⊗A) T =




(A⊗A) T(1)

(A⊗A) T(2)

(A⊗A) T(3)




=




P
(1)
1 . . . P

(1)
K

P
(2)
1 . . . P

(2)
K

P
(3)
1 . . . P

(3)
K


 , (41)

with, for k = 1, . . . ,K,

P
(1)
k = [ ak ⊗ ak | − ak ⊗ āk − āk ⊗ ak | āk ⊗ āk ]

= (A(k) ⊗A(k)) (Ω(1))T (42)

P
(2)
k = [ āk ⊗ āk | ak ⊗ āk + āk ⊗ ak | ak ⊗ ak ]

= (A(k) ⊗A(k)) (Ω(2))T (43)

P
(3)
k = [ ak ⊗ āk | ak ⊗ ak − āk ⊗ āk | − āk ⊗ ak ]

= (A(k) ⊗A(k)) (Ω(3))T (44)

where the matricesΘ andΨ have vanished becauseΘ⊙Ψ = I4,
from (18). Obviously, the matrix(I3 ⊗ F ⊗ F) T has identical
structure, with A replaced byF. Below, we derive several
constraints onL implied by the equations above. These constraints
are used to obtain uniqueness results for genericA and specific
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values ofN and K. Let L−T = [l1 . . . l3K ]. The structure of
(42)-(44), and (40) imply that

(A⊗A)T(1) l1 = (A⊗A) T(2) l3 , (45)

(A⊗A)T(1) l3 = (A⊗A) T(2) l1 , (46)

(A⊗A)T(1) l2 = −(A⊗A) T(2) l2 , (47)

(A⊗A)T(3) l2 = (A⊗A) T(1) l1 − (A⊗A) T(2) l1 ,(48)

(A⊗A)T(3) l1 = (A⊗A) T(2) l2 + (A⊗A) T(3) l3 .(49)

These equations can be written as



(A⊗A)T(1) O −(A⊗A)T(2)

(A⊗A)T(2) O −(A⊗A)T(1)

O (A⊗A)(T(1) +T(2)) O

(A⊗A)(T(1) −T(2)) −(A⊗A)T(3) O

(A⊗A)T(3) −(A⊗A)T(2) −(A⊗A)T(3)







l1
l2
l3


 = 0 ,

(50)
whereO denotes anN2 × 3K all-zero matrix. The system (50)
should hold not only for(l1, l2, l3), but for all (lt, lt+1, lt+2),
t = 3k + 1, k = 0, 1, . . . ,K − 1. The matrix in (50) has size
5N2×9K. Its first three row blocks contain only columns that are
vectorized symmetricN ×N matrices. This yields3N(N − 1)/2
redundant rows. From definition (37), it can be verified that the
null space of the matrix in (50) has at least dimensionality3K,
and contains the vectors

[l1 l2 l3] =




α1 2α2 α3

α2 α1 − α3 −α2

α3 −2α2 α1

...
...

...
α3K−2 2α3K−1 α3K

α3K−1 α3K−2 − α3K −α3K−1

α3K −2α3K−1 α3K−2




. (51)

If the null space of the matrix in (50) is defined by (51), then
l2 and l3 are completely determined ifl1 is known. The same is
true for all triplets(lt, lt+1, lt+2), t = 3k+1, k = 0, 1, . . . ,K−1.

Next, we derive a second set of constraints onL−T . From the
structure of (42)-(44), it follows that(A⊗A)T(1) l1 = f1 ⊗ f1,
(A ⊗ A)T(2) l1 = f̄1 ⊗ f̄1 and (A ⊗ A)T(3) l1 = f1 ⊗ f̄1 are
vectorized rank-1 matrices. This implies that

[
unvec((A⊗A)T(1) l1) unvec((A⊗A)T(3) l1)

]

and (52)[
unvec((A⊗A)T(2) l1)
unvec((A⊗A)T(3) l1)

]

both have rank 1, whereunvec((A ⊗ A)T(s) l1) =
Adiag(T(s)l1)A

T , which has sizeN ×N , s = 1, 2, 3. This must
hold not only forl1 but for all lt, t = 3k+1, k = 0, 1, . . . ,K−1.
The matrices in (52) have rank 1 if and only if all their second-
order minors are zero. We need the following definition.

Definition 2: For a P × Q matrix X, let theP (P − 1)/2 ×
Q(Q− 1)/2 matrix m(X) have entries

det

(
xig xih

xjg xjh

)
, with 1 ≤ i < j ≤ P and 1 ≤ g < h ≤ Q ,

(53)
where in each row ofm(X) the value of(i, j) is fixed and in
each column ofm(X) the value of(g, h) is fixed. The columns
of m(X) are ordered such that indexg runs slower thanh. The

rows ofm(X) are ordered such that indexi runs slower thanj. 2

We denote the matrices in (52) asM1(l1) (N×2N ) andM2(l1)
(2N × N). We must havem(M1) = O andm(M2) = O. Let
l1 = (α1 . . . α3K)T . Then each entry ofm(M1) andm(M2) is
a homogenous polynomial inα1, . . . , α3K of degree 2. We can
combinem(M1) = O and m(M2) = O and rewrite it as the
system

U




α1α2

...
α3K−1α3K

α2
1
...

α2
3K




= 0 , (54)

where matrixU hasN(N−1)2N(2N−1)/2 rows and3K(3K+
1)/2 columns. Each row ofU corresponds to a second-order
minor of either M1 or M2 and contains the coefficients of
the associated homogenous second degree polynomial. Since
unvec((A⊗A)T(s) l1) is a symmetricN×N matrix fors = 1, 2,
andM1 andM2 both containunvec((A⊗A)T(3) l1), the matrix
U has some redundant rows due to minors being identical. In
particular, [57] has shown that the number of nonredundant minors
for anN×N symmetric matrix (of which the entries are unknown)
is notN2(N−1)2/4 but (N(N−1)/4)(N(N−1)/2+1)−

(
N
4

)
.

If the null space of the matrix in (50) is given by (51), and
(54) implies thatαsαt = 0 for all s and t in different triplets
{1, 2, 3}, . . . , {3K−2, 3K−1, 3K}, then the linear combinations
forming a blockFk of the alternative solution involve only one
block ofA. The nonsingularity ofL−T implies that the block-to-
block correspondence betweenF andA is a permutation. Hence,
the question of essential uniqueness ofA reduces to the question
of essential uniqueness forK = 1 block only, which is ensured
by Theorem 1.

Uniqueness checking procedure:Below, we use the constraints
(50) and (54) to check uniqueness for genericA and several values
of N andK. An outline of our procedure is as follows.

1. Check if rank((I3 ⊗A⊗A) T) = 3K and rank(G) = 3K.
2. Check if the null space of the matrix in (50) is defined by

(51).
3. Check if the null space ofU in (54) implies thatαsαt = 0 for

all s andt in different triplets{1, 2, 3}, . . . , {3K − 2, 3K −
1, 3K}.

As stated above, matrixA is essentially unique if steps 1, 2, and
3 hold. This procedure for checking uniqueness can be easilyper-
formed by a numerical computational routine. Examples of some
values of(N,K) for whichA is essentially unique are:(N,K) =
(3, 2), (3, 3), (4, 3), (4, 4), (5, 4), (4, 5), (5, 5), (5, 6). Note that our
uniqueness checking procedure works forK > N . It worth noting
that these conditions are sufficient but not necessary. Thismeans
that uniqueness may exist for other underdetermined cases where
our conditions are not verified, as it will be pointed out in our
simulations. The development of a more general uniqueness result
is currently under investigation.

VI. B LIND IDENTIFICATION ALGORITHM

Computation of formal CGF partial derivatives and the con-
struction of the derivative tensors are largely detailed insection
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IV-A of [48]. The estimated noise contribution is removed asex-
plained in (16). The algorithm used to estimate the mixing matrix
is based on the alternating least squares (ALS) procedure [51]. In
our case, the algorithm uses the unfolded representations (29), (33)
and (34) to alternates between the estimation of the factor matrices
A andG of the extended CONFAC decomposition. For avoiding
the very slow convergence behavior that is typical in the traditional
ALS algorithm [51], we propose the use of an enhanced line
search (ELS) [36] to be used in conjunction with the ALS stepsfor
accelerating the convergence of the estimates. Exact line search
consists of searching the global minimum along a fixed direction.
Of course, this procedure can be traced back to the origins of
numerical optimization, and in particular to univariate global
minimization; see e.g. [58] and references therein. However, the
first application to CP decomposition appears in the thesis of
Franc [59]. Various implementations of this idea can then be
found in the literature, including [60] and [36]. In the latter
reference, the chosen implementation is called Enhanced Line
Search (ELS). Herein, we derive an ELS implementation of the
CONFAC decomposition.

Let A(n), B(n) andG(n) be the estimated matrices computed
at then-th ALS iteration. The directions∆(n)

A , ∆(n)
B and∆

(n)
G

are defined by:

∆
(n)
A = A(n) −A(n−1), (55)

∆
(n)
B = B(n) −B(n−1), (56)

∆
(n)
G = G(n) −G(n−1). (57)

The ELS method consists in finding an optimal step-size parame-
ter µ to predict the estimated matricesA(n)

ELS , B(n)
ELS andG(n)

ELS

such that

A
(n)
ELS = A(n−1) + µ∆

(n)
A , (58)

B
(n)
ELS = B(n−1) + µ∆

(n)
B , (59)

G
(n)
ELS = G(n−1) + µ∆

(n)
G .. (60)

The optimization method searches for the bestµ that leads to the
global minimum of
∥

∥

∥
Ȳ(1) −

(

I3 ⊗

((

A
(n−1)

+ µ∆
(n)
A

)

Θ̄⊙

(

B
(n−1)

+ µ∆
(n)
B

)

Ψ̄

))

Ω̃
T
(

G
(n−1)T

+ µ∆
(n)
G

T
)
∥

∥

∥

2
,

(61)

which is a polynomial of degree six inµ given byc6µ6+c5µ
5+

c4µ
4 + c3µ

3 + c2µ
2 + c1µ

1 + c0. The mathematical expressions
of the polynomial coefficients are provided in Appendix II. In
practice, ELS step-size can be executed everyP iterations in order
to spare some computations, whereP is called the ELS period.
Therefore, CONFAC-ALS corresponds CONFAC-ELS withP =
0. The CONFAC-ELS algorithm is summarized in Algorithm 1.
After convergence, the final estimatêH of the complex mixing
matrix is obtained by combining real and imaginary parts of the
estimatedA.

Note that, according to [35], steps 14, 15, 16 of Algorithm 1
can be replaced by a “soft constrained iteration”: 14.B = A;
15. UpdateA; 16. UpdateG. The advantage of this variant is
two-fold: a gain in computational complexity, and a termination
necessarily withB = A.

Numerical complexity

We now discuss the numerical complexity of CONFAC-ELS
algorithm, in terms of the numberC of multiplications, with

Algorithm 1 Summary of the CONFAC-ELS estimation algorithm
1: Define a maximal number of iterations or any other stopping

criterion;
2: Define an ELS periodP ;
3: ChooseR differentiation points;
4: for s = 1 to 3 do
5: Compute the denoised derivative tensorsYΦ1 ,YΦ2 , YΦ3 ;
6: Deduce the unfolded matrixYΦs

(1),
7: end for
8: ConstructȲ(1), Ȳ(2) and Ȳ(3) as defined in (28), (31), and

(32), respectively;
9: Construct matrices̄Ψ, Θ̄, Ω̄ andΩ̃;

10: Initialize randomlyA, B andG;
11: while Stopping criterion is not verifieddo
12: ALS steps:
13: Save previous matricesA, B andG;

14: UpdateAT =
[(
BΨ̄⊙ (I3 ⊗G)Ω̄

)
Θ̄T

]†
Ȳ(2);

15: UpdateBT =
[(
(I3 ⊗G)Ω̄⊙AΘ̄

)
Ψ̄T

]†
Ȳ(3);

16: UpdateGT =
[(
I3 ⊗ (AΘ̄⊙BΨ̄)

)
Ω̃T

]†
Ȳ(1);

17: if current iteration number is a multiple ofP then
18: ELS steps:
19: Calculate the three directions∆A, ∆B and∆G using

(55)-(57) and the common step-size parameterµ to
obtain new estimates ofA, B and G using (58)-(60),
respectively;

20: end if
21: end while
22: j = 1;2
23: for k = 1 to K do
24: Computeĥk = aj + iaj+1;
25: j = j + 2;
26: end for

respect to the numbers of sources (K), sensors (N ), samples
(M ), differentiation points (R) and iterations (I). For compar-
ison purposes, we also give the numerical complexities of the
standard CONFAC-ALS algorithm (i.e. without ELS) and that of
the Leverberg-Marquardt (LM)-based algorithm derived in [48]
(therein called LEMACAFC-2) to solve the same problem. First,
note that building the tensor of derivatives is common to all
algorithms and it costs(3(4M +4)N2+NM)R multiplications.
Therefore, this contribution to the overall cost is neglected in the
following analysis.

One CONFAC-ALS iteration consists of building three matrices
KA =

(
BΨ̄⊙ (I3 ⊗G)Ω̄

)
Θ̄T , KB =

(
(I3 ⊗G)Ω̄⊙AΘ̄

)
Ψ̄T

andKG =
(
I3 ⊗ (AΘ̄ ⊙ BΨ̄)

)
Ω̃T and solving overdetermined

linear systems (see lines 14-16 of Algorithm 1). Note that the
later step is done by means of a QR factorization so that one
actually solves complete triangular systems. BuildingKA and
KB each costs approximatelyRK2(108+ 24N) multiplications.
Estimations ofA andB are dominated by a QR factorization and
each one of them costs approximately12K2NR multiplications.
Building KG costs approximately124K2N multiplications. The
QR factorization costs approximately27K2N2 multiplications,
whereas solving the9R triangular systems costs9RK2 additional
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multiplications. After few simplifications, we have:

CCONFAC-ALS ≃ 72RK2(3 +N)ICONFAC-ALS. (62)

When CONFAC-ELS is used, each ELS iteration adds the
computation of the optimal step, which costs approximatively
45N2KR + 1752K3 additional multiplications. Assuming that
the optimal step is computed everyP iterations, we obtain:

CCONFAC-ELS≃

(
72RK2(3 +N) +

45N2KR+ 1752K3

P

)
ICONFAC-ELS.

(63)
Each iteration of LEMACAFC-2 is dominated by the construc-

tion of the Jacobian matrix and a QR factorization, which cost
3RN2(8N2 + 8KN(N − 1) + 4K) and 3R((2N + 3R)KN)2

multiplications respectively. In practice,N andK are negligible
in comparison toM andR. Thereby,

CLEM ≃ 27R3K2N2ILEM. (64)

Figure 2 compares the convergence speed of the three al-
gorithms (LEMACAFC-2, CONFAC-ALS and CONFAC-ELS)
in terms of the number of multiplications. We have chosen a
representative case: 3 sensors, 4 sources, 5000 samples and100
differentiation points. The signal-to-noise ratio (SNR) is set to
20 dB and ELS is run every 4 iterations of CONFAC-ELS.
Plotted lines are median plots of the reconstruction error of the
data tensors obtained from 100 Monte Carlo runs. These results
highlight the efficiency of the CONFAC approach compared to
the LEMACAFC one. This is especially true when one wants
to use a lot of differentiation points in order to improve the
estimation of the mixing matrix. One could think from theses
plots that ELS is not so efficient. Actually, a closer look shows
that CONFAC-ALS requires about 3.4 times more multiplications
than CONFAC-ELS to stop. In addition the median NMSE value
obtained with CONFAC-ALS is7.3 10−3 whereas it is3.7 10−3

with CONFAC-ELS.

VII. S IMULATION RESULTS

The performance of our blind algorithm is evaluated according
to the normalized mean square estimation error (NMSE) of the
mixing matrix estimation:

fH(H, Ĥ) =
vec(H− Ĥ)T vec(H− Ĥ)

vec(H)T vec(H)
,

where the permutation and scaling ambiguities present inĤ are
fixed in the same manner as in [35]. Estimation precision relies
upon several parameters such as the number of sources for a given
number of sensors (under-determinacy level), number of samples,
and SNR. Their respective influences are evaluated by means of
Monte Carlo runs. Hence, our comparison criterion is the median
value of the NMSE computed from 100 of these runs. At each
run, the sources, mixture, noise and initialization conditions are
randomly drawn. Mixture and noise entries are drawn from a
gaussian distribution. Sources are synthesized 4-PSK or 8-PSK
signals.

We compare performances of the CONFAC-ELS algorithm
with those of FOOBI (Fourth Order Only Blind Identification)
and BIRTH (Blind Identification of mixtures of sources using
Redundancies in the daTa Hexacovariance matrix, also referred to

as 6-BIOME). Both FOOBI and 6-BIOME are reference higher-
order statistics based algorithms that rely, respectively, on fourth
and sixth-order cumulants of the observations. The tolerance of
the joint diagonalization procedure in 6-BIOME and FOOBI isset
to 10−8. CONFAC-ELS is stopped when the absolute difference
between two consecutive values of the cost function is less than
10−10 or when the iteration number reaches 1000. We used 200
differentiation points in the CONFAC-ELS algorithm, and ELS
period is set to 4. ALS/ELS is sensitive to parameter initialization.
Thereby in the most difficult situations, three random starting
points were compared, and the one leading to the smallest value
of the cost function after few iterations was kept. The problem
of choosing optimal differentiation points in the CONFAC-ELS
procedure has not been theoretically investigated yet. However in
practice, we obtained best results by randomly drawing the points
in the ranges[−10; 10]N for SNR values greater than or equal to
20 dB and[−1; 1]N for lower SNR values.

A lot of situations involving complex mixtures for different
sources alphabets and different numbers of sensors, sources and
samples have been investigated. Obviously higher-order algo-
rithms allow to deal with more tricky situations such as low
SNR and high under-determinacy levels. Nevertheless, we have
retained here six scenarios which highlight some strong points of
the CONFAC-ELS algorithm. Results are given according to the
SNR level in the 5-40 dB range.

We first consider three cases of complex mixtures of 4-PSK
sources. The first one involves 4 sources, 3 sensors and 20000
samples. In the following, let us denote this kind of configuration
as the “4PSK-4-3-20000” case. Results are plotted in Figure
3. In this situation, the SNR range is clearly split into two
regions around a critical value: CONFAC-ELS outperforms the
two higher-order algorithms for SNR values above 15 dB whereas
under this value all algorithms exhibit similar performances. For
the second experiment, 4PSK-6-4-50000 case, we increase the
underdeterminacy level and the number of samples. The results are
depicted in Figure 4. One can observe the same global behavior
than in the previous experiment except that the critical SNRvalue
is now 20 dB. For the last experiment involving 4-PSK sources,
the 4PSK-5-3-5000 case, we still increase the underdeterminacy
level but this time we strongly decrease the number of samples.
Figure 5 shows that, as in the first experiment, CONFAC-ELS
clearly provides better results than the higher-order algorithms
for SNR values above 15 dB. However the situation is upturned
for 5 dB and 10 dB.

In the following experiments, 4-PSK sources are replaced by
8-PSK sources. Hence, the fourth experiment considers 8PSK-4-
3-10000 case, while in the fifth experiment, we increase the under-
determinacy level and the number of samples, by consideringthe
8PSK-5-4-10000 case. The results are plotted in Figures 6 and
7, respectively. Both scenarios show degraded performances of
FOOBI and 6-BIOME in comparison to the previous experiments
involving 4-PSK sources. Conversely, CONFAC-ELS is consistent
and provides the best results in the whole SNR range. These
results highlight the stability of the proposed algorithm.

In our last experiment, we consider the 8PSK-4-3-2000 case.
This is another challenging configuration where a small number
of samples are used. Figure 8 points out the same behavior than
the two previous experiments, where CONFAC-ELS outperforms
FOOBI and 6-BIOME in all the considered SNR range. Note that,
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in this case, more satisfying results are obtained for higher SNRs.
It is worth noting that, although the underdetermined cases

(N,K) = (3, 4), (3, 5) and (4, 6) considered in this section
cannot be proven to be unique from the checking procedure
of Section V, no problem with non-uniqueness was encountered
in our simulations. As we have mentioned in Section V, the
generalization of our uniqueness checking procedure is still an
open point that deserves further investigation.

VIII. C ONCLUSION

We have proposed a second-order method for the blind iden-
tification of underdetermined mixtures of complex sources that
relies on a CONFAC decomposition approach. The distinguishing
feature of the proposed approach is its low complexity compared
to higher-order methods and its capability to deal with underde-
termined mixtures without requiring constraints on the temporal
structure of the sources (such as correlation and nonstationarity),
as in previously reported second-order methods. The possibility
of canceling out the noise influence from the second-order CGF
derivatives of the observations makes the proposed method robust
to noise. Our uniqueness study resulted in a set of easy-to-
check sufficient conditions that guarantee the essential uniqueness
of the mixing matrix. According to our numerical results, our
second-order CONFAC-ELS algorithm is fast and able to surpass
higher-order algorithms in various typical situations involving
underdetermined mixtures. This is especially true for SNR values
above 15dB or in the case of 8-PSK sources. Obviously, the price
to pay is that the underdeterminacy level has to be quite low
while higher-order algorithms are less sensitive to this limitation.
Finally, in comparison with the LEMACAFC approach of [48],
the CONFAC approach is less time-consuming and allows to deal
with more sources for a given number of sensors. We conjecture
that even better results would be obtained by extending the
CONFAC approach to the case of third-order CGFs derivative,
so that higher underdeterminacy levels could be handled at the
cost of an increase in the numerical complexity.
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APPENDIX I

Proof of Theorem 1: For K = 1, the CONFAC decompositions
of the second-order derivative tensorsY(s) ∈ CN×N×R, s =
1, 2, 3, can be expanded as a sum of rank-1 terms as follows:

Y(1) = a ◦ a ◦ g1 − a ◦ ā ◦ g2 − ā ◦ a ◦ g2 + ā ◦ ā ◦ g3 , (65)

Y(2) = a ◦ a ◦ g3 + a ◦ ā ◦ g2 + ā ◦ a ◦ g2 + ā ◦ ā ◦ g1 , (66)

Y(3) = a ◦ a ◦ g2 + a ◦ ā ◦ g1 − ā ◦ a ◦ g3 − ā ◦ ā ◦ g2 . (67)

Let (F,L) denote an alternative solution for(A,G). The unique-
ness properties ofA and G do not change if we premultiply
by nonsingular matrices. Since bothA andG have full column

rank, we may setA =

[
I2
O

]
andG =

[
I3
O

]
without loss of

generality.

In the sequel, we will use the following result:

Lemma 1: (i) The matrix((IK⊗Ψ)⊙(IK⊗Ω(s))) (IK⊗Θ)T

has full column rank,s = 1, 2, 3,
(ii) The matrixT(s) has full column rank,s = 1, 2, 3,
(iii) The matrix((IK ⊗Ω(s)) ⊙ (IK ⊗Θ)) (IK ⊗Ψ)T has full

column rank,s = 1, 2, 3.

Proof: First, we prove(i). We have

((IK ⊗Ψ)⊙ (IK ⊗Ω(s))) = Π

[
IK ⊗ (Ψ⊙Ω(s))

O

]
, (68)

for some permutation matrixΠ. Hence,

((IK⊗Ψ)⊙(IK⊗Ω(s))) (IK⊗Θ)T = Π

[
IK ⊗ (Ψ⊙Ω(s))ΘT

O

]
.

(69)

This implies that((IK ⊗Ψ)⊙ (IK ⊗Ω(s))) (IK ⊗Θ)T has full
column rank if and only if(Ψ⊙Ω(s))ΘT has full column rank.
The latter can be verified fors = 1, 2, 3.

The proofs of(ii) and(iii) are completely analogous. We use
the fact that(Θ ⊙ Ψ) (Ω(s))T and (Ω(s) ⊙ Θ)ΨT have full
column rank, respectively, fors = 1, 2, 3. This completes the
proof. 2

Using Lemma 1 forK = 1, together with the result of [56]
(c.f. Lemma 3.4, applied to one of the three decompositions),
implies that the lastN − 2 rows of F and the lastR − 3 rows
of L are all zero. Hence, the uniqueness properties depend only
on the nonzero rows ofA andG. Without loss of generality we
setA = I2 andG = I3. The decompositions (65)-(67) then have
size2× 2× 3 and frontal matrix slices

[
1 0 0 −1 0 0
0 0 −1 0 0 1

]
,

[
0 0 0 1 1 0
0 1 1 0 0 0

]
,

(70)

It follows from [56] (c.f Proposition 3.3, applied to one of the
three decomposition) thatF (2×2) andL (3×3) are nonsingular.
Next, we write out the equations of the three decompositions.
Let M = F−1. Equating the original CONFAC solution to its
alternative yields the following equations for each of the three
frontal slices in the three CONFAC decompositions:
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[

l11 −l12
−l12 l13

]

= M

[

1 0
0 0

]

M
T =

[

m2

11
m11 m21

m11 m21 m2

21

]

(71)

[

l21 −l22
−l22 l23

]

= M

[

0 −1
−1 0

]

M
T

=

[

−2m11 m12 −m11 m22 − m21 m12

−m11 m22 − m21 m12 −2m21 m22

]

(72)

[

l31 −l32
−l32 l33

]

= M

[

0 0
0 1

]

M
T =

[

m2

12
m12 m22

m12 m22 m2

22

]

(73)

[

l13 l12
l12 l11

]

= M

[

0 0
0 1

]

M
T =

[

m2

12
m12 m22

m12 m22 m2

22

]

(74)

[

l23 l22
l22 l21

]

= M

[

0 1
1 0

]

M
T =

[

2m11 m12 m11 m22 + m21 m12

m11 m22 + m21 m12 2m21 m22

]

(75)

[

l33 l32
l32 l31

]

= M

[

1 0
0 0

]

M
T =

[

m2

11
m11 m21

m11 m21 m2

21

]

(76)

[

l12 l11
−l13 −l12

]

= M

[

0 1
0 0

]

M
T

=

[

m11 m12 m11 m22

m21 m12 m21 m22

]

(77)

[

l22 l21
−l23 −l22

]

= M

[

1 0
0 −1

]

M
T =

[

m2

11
− m2

12
m11 m21 − m12 m22

m11 m21 − m12 m22 m2

21
− m2

22

]

(78)

[

l32 l31
−l33 −l32

]

= M

[

0 0
−1 0

]

M
T =

[

−m11 m12 −m12 m21

−m11 m22 −m21 m22

]

. (79)

Here, (71)-(73) correspond to the first decomposition (65),(74)-
(76) correspond to the second decomposition (66), and (77)-
(79) correspond to the third decomposition (67). We should find
nonsingularM andL satisfying (71)-(79). For each entry ofL,
we have three expressions in terms of entries ofM. Equating each
triplet of expressions yields 18 equations. Additionally,(77)-(79)
give two expressions forl12, l22, l32, which yields another three
equations. All equations together are as follows:

m2
11 = m2

22 = m11 m22 , (80)
−m11 m21 = m12 m22 = m11 m12 = −m21 m22 , (81)

m2
21 = m2

12 = −m21 m12 , (82)
−2m11m12 = 2m21m22 = m11 m21 −m12 m22 , (83)

m11 m22 +m21 m12 = m2
11 −m2

12 = m2
22 −m2

21 ,(84)
−2m21m22 = 2m11m12 = m12 m22 −m11 m21 , (85)

m2
12 = m2

21 = −m12 m21 , (86)
−m12 m22 = m11 m21 = −m11 m12 = m21 m22 , (87)

m2
22 = m2

11 = m11 m22 . (88)

Supposem11 = 0. Then m22 = 0 follows from (80), and
m21 m12 6= 0 follows from the nonsingularity ofM. Then (82)
implies m12 = −m21, and all equations are satisfied. Next,
supposem11 6= 0. Then m11 = m22 follows from (80), and
m12 = −m21 follows from (81). Again, all equations are satisfied.
We have

M =

[
α −β
β α

]
, F = M−1 = (α2+β2)−1

[
α β
−β α

]
,

(89)
with α and β not both zero. Hence, forK = 1, the mixing
matrix A = [a | ā] allows only alternatives of the form
F = [α a− β ā |β a+ α ā]. 2

APPENDIX II

We present the mathematical expressions for the coefficients of
the sixth-degree polynomialc6µ6 + c5µ

5+ c4µ
4+ c3µ

3+ c2µ
2 +

c1µ
1+c0 used in the calculation of the CONFAC-ELS step. Note

that c0 is not useful for the optimization.
Define Ā = A(n−1)Θ̄, B̄ = B(n−1)Ψ̄, ∆̄A = ∆

(n)
A Θ̄,

∆̄B = ∆
(n)
B Ψ̄, ω̃ = vec{Ω̃},x1 = vec{X̄1}, P = ∆̄A ⊙ B̄ +

Ā ⊙ ∆̄B, Q = Ā ⊙ B̄,R = ∆̄A ⊙ ∆̄B, S1 = ĀTĀ ⊡ B̄TB̄,
S2 = ĀTĀ ⊡

(
B̄T∆̄B + ∆̄B

TB̄
)
, S3 = ĀTĀ ⊡ ∆̄B

T∆̄B,
S4 =

(
ĀT∆̄A + ∆̄A

TĀ
)
⊡ B̄TB̄, S5 =

(
ĀT∆̄A + ∆̄A

TĀ
)
⊡

(
B̄T∆̄B + ∆̄B

TB̄
)
, S6 =

(
ĀT∆̄A + ∆̄A

TĀ
)
⊡ ∆̄B

T∆̄B,
S7 = ∆̄A

T∆̄A ⊡ B̄TB̄, S8 = ∆̄A
T∆̄A ⊡

(
B̄T∆̄B + ∆̄B

TB̄
)
,

S9 = ∆̄A
T∆̄A⊡ ∆̄B

T∆̄B, S10 = S2+S4, S11 = S3+S5+S7,
S12 = S6 + S8. Then, we have:

c1 =− 2x1
T (G⊗ I3 ⊗P+∆G ⊗ I3 ⊗Q) ω̃+

ω̃
T
(

2
(

∆G
T
G
)

⊗ I3 ⊗ S1 +
(

G
T
G
)

⊗ I3 ⊗ S10

)

ω̃,

c2 =− 2x1
T (G⊗ I3 ⊗R+∆G ⊗ I3 ⊗P) ω̃+

ω̃
T
(

2
(

∆G
T
G
)

⊗ I3 ⊗ S10 +
(

∆G
T
∆G

)

⊗ I3 ⊗ S1 +
(

G
T
G
)

⊗ I3

c3 =− 2x1
T (∆G ⊗ I3 ⊗R) ω̃+

ω̃
T
(

2
(

∆G
T
G
)

⊗ I3 ⊗ S11 +
(

∆G
T
∆G

)

⊗ I3 ⊗ S10 +
(

G
T
G
)

⊗ I

c4 = ω̃
T
(

2
(

∆G
T
G
)

⊗ I3 ⊗ S12 +
(

∆G
T
∆G

)

⊗ I3 ⊗ S11 +
(

G
T
G
)

⊗ I

c5 = ω̃
T
(

2
(

∆G
T
G
)

⊗ I3 ⊗ S9 +
(

∆G
T
∆G

)

⊗ I3 ⊗ S12

)

ω̃,

c6 = ω̃
T
((

∆G
T
∆G

)

⊗ I3 ⊗ S9

)

ω̃.

REFERENCES

[1] P. Comon, “Independent Component Analysis,” InHigher Order Statistics,
J-L. Lacoume, editor, pp. 29–38. Elsevier, Amsterdam, London, 1992.

[2] F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, “Combined
approach of array processing and independent component analysis for blind
separation of acoustic signals,”IEEE Transactions On Speech and Audio
Processing, vol. 11, no. 3, pp. 204–215, 2003.

[3] A. Kachenoura, L. Albera, L. Senhadji, and P. Comon, “ICA: a potential
tool for BCI systems,”IEEE Signal Processing Magazine, special issue on
Brain-Computer Interfaces, vol. 25, no. 3, pp. 57–68, 2008.

[4] L. De Lathauwer, D. Callaerts, B. De Moor, and J. Vandewalle, “Fetal
electrocardiogram extraction by source subspace separation,” in IEEE
Workshop on Higher Order Statistics, Girona, Spain, pp. 134-138, 1995.

[5] A. Cichocki and S.-I. Amari,Adaptive Blind Signal and Image Processing.
New York: Wiley, 2002.

[6] P. Comon and C. Jutten,Handbook of Blind Source Separation, Independent
Component Analysis and Applications. Academic Press, 2010.

[7] J. F. Cardoso, “Super-symmetric decomposition of the fourth-order cumu-
lant tensor. Blind identification of more sources than sensors,” in Proc.
ICASSP’91, Toronto, 1991, pp. 3109–3112.

[8] N. D. Sidiropoulos, R. Bro, and G. B. Giannakis. Parallelfactor analysis
in sensor array processing.IEEE Trans. Signal Process., 48(8):2377–2388,
Aug. 2000.

[9] N. D. Sidiropoulos, G. B. Giannakis, and R. Bro, “Blind PARAFAC
Receivers for DS-CDMA Systems,”Trans. on Sig. Proc., vol. 48, no. 3,
pp. 810–823, 2000.

[10] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “PARAFAC-based
unified tensor modeling for wireless communication systemswith application
to blind multiuser equalization,”Signal Processing, vol. 87, no. 2, pp. 337-
351, 2007.

[11] A. L. F. de Almeida, “Tensor modeling and signal processing for wireless
communication systems,” PhD thesis, University of Nice-Sophia Antipolis,
2007.

[12] L. De Lathauwer, A. de Baynast, ‘Blind deconvolution ofDS-CDMA
signals by means of decomposition in rank-(1,L,L) terms,”IEEE Trans.
Signal Process., vol. 56, no. 4, pp. 1562–1571, April 2008. pp. 5567–5579,
November 2008.

[13] D. Nion and L. De Lathauwer, “A Block Component Model-Based Blind
DS-CDMA Receiver,” IEEE Trans. Signal Process., vol. 56, no. 11, pp.
5567–5579, November 2008.

[14] P. Comon, “Blind identification and source separation in 2x3 under-
determined mixtures,”IEEE Trans. Signal Process., pp. 11–22, Jan. 2004.

[15] L. Albera, A. Ferreol, P. Comon, and P. Chevalier, “Blind identification
of overcomplete mixtures of sources (BIOME),”Linear Algebra and its
Applications, vol. 391, pp. 1–30, Nov. 2004.

[16] P. Comon and M. Rajih, “Blind identification of under-determined mixtures
based on the characteristic function,”Signal Processing, vol. 86, n. 9, pp.
2271–2281, 2006.

[17] L. De Lathauwer, J. Castaing, and J-. F. Cardoso, “Fourth-order cumulant-
based blind identification of underdetermined mixtures,”IEEE Trans. Signal
Process., vol. 55, no. 2, pp. 2965–2973, Feb. 2007.

[18] L. De Lathauwer and J. Castaing, “Blind identification of underdetermined
mixtures by simultaneous matrix diagonalization,”IEEE Trans. Signal
Process., vol. 56, no. 3, pp. 1096–1105, Mar. 2008.



12

[19] J. D. Carroll and J. J. Chang, “Analysis of Individual Differences in
Multidimensional Scaling via N-Way Generalization of Eckart-Young De-
composition,” Psychometrika, vol. 35, n. 3, pp. 283–319, 1970.

[20] P. Bürgisser, M. Clausen, and M. A. Shokrollahi,Algebraic Complexity
Theory, 315. Springer, 1997.

[21] R. Bro, “PARAFAC, Tutorial and Applications,”Chemom. Intel. Lab. Syst.,
vol. 38, pp. 149–171, 1997.

[22] C. A. Stedmon, S. Markager, and R. Bro, “Tracing dissolved organic matter
in aquatic environments using a new approach to fluorescencespectroscopy,”
Marine Chemistry, vol. 82, no. 3-4, pp. 239–254, 2003.

[23] R. A. Harshman, “Foundations of the Parafac procedure:Models and
conditions for an explanatory multimodal factor analysis,” UCLA Working
Papers in Phonetics, vol. 16, pp. 1–84, 1970.

[24] A. Smilde, R. Bro, and P. Geladi, ”Multi-Way Analysis,”Wiley, 2004
[25] R. A. Harshman, “Determination and proof of minimum uniqueness

conditions for PARAFAC-1,”UCLA Working Papers in Phonetics, vol. 22,
pp. 111–117, 1972.

[26] J. B. Kruskal, “Three-Way Arrays: Rank and Uniqueness of Trilinear
Decompositions,” Linear Algebra and its Applications, vol. 18, 95–138,
1977.

[27] J. M. F. Ten Berge and N. D. Sidiropoulos, “On uniquenessin CANDE-
COMP/PARAFAC,” Psychometrika, vol. 67, pp. 399–409, 2002.

[28] T. Jiang and N. D. Sidiropoulos, “Kruskal’s permutation lemma and
the identification of CANDECOMP/PARAFAC and bilinear models with
constant modulus constraints,”IEEE Trans. Signal Process., vol. 52, no.
9, pp. 2625–2636, 2004.

[29] L. De Lathauwer, “A Link between Canonical Decomposition in Multilinear
Algebra and Simultaneous Matrix Diagonalization,”SIAM Journal on Matrix
Analysis and Applications, vol. 28, no. 3, pp. 642–666, 2006.

[30] A. Stegeman and N. D. Sidiropoulos, “On Kruskal’s uniqueness condition
for the Candecomp/Parafac decomposition,”Linear Algebra and its Appli-
cations, vol. 420, pp. 540–552, 2007.

[31] A. Stegeman, “On uniqueness of then-th order tensor decomposition into
rank-1 terms with linear independence in one mode,”SIAM Journal on
Matrix Analysis and Applications, vol. 420, pp. 540–552, 2007.

[32] P. Paatero, ”The Multilinear Engine: A table-driven, least squares program
for solving multilinear problems, including the n-way parallel factor analysis
model,” Journal of Computational and Graphical Statistics, vol. 8, no. 4,
Dec. 1999, pp. 854–888.

[33] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Computation of the
canonical decomposition by means of a simultaneous generalized schur
decomposition,” SIAM Journal on Matrix Analysis and Applications, vol.
26, no. 2, pp. 295-327, 2004.

[34] G. Tomasi and R. Bro, “A comparison of algorithms for fitting the parafac
model,” Comp. Stat. Data Anal., vol. 50, pp. 1700–1734, 2006.

[35] P. Comon, X. Luciani, and A. L. F. de Almeida, “Tensor decompositions,
alternating least squares and other tales,”Journal of Chemometrics, vol. 23,
no. 9, pp. 393–405, Sept. 2009.

[36] M. Rajih, P. Comon and R. Harshman, “Enhanced Line Search : A Novel
Method to Accelerate PARAFAC,”SIAM Journal on Matrix Analysis Appl.,
vol. 30, no. 3, pp. 1148–1171, 2008.

[37] D. Nion and L. De Lathauwer “An Enhanced Line Search Scheme
for Complex-Valued Tensor Decompositions. Application inDS-CDMA,”
Signal Processing, vol. 88, no. 3, pp. 749–755, 2008.

[38] E. Acar, D. M. Dunlavy, T. G. Kolda, “A scalable optimization approach
for fitting canonical tensor decompositions,”Journal of Chemometrics, vol.
25, no. 2, pp. 67–86, Feb. 2011.

[39] T. Acar, and Y. Yuanning, and A. P. Petropulu, “Blind MIMO System
Estimation Based on PARAFAC Decomposition of Higher Order Output
Tensors,”IEEE Trans. Signal Process., vol. 54, no.11, pp. 4156–4168, 2006.

[40] B. Chen, and A. P. Petropulu, “Frequency Domain Blind MIMO System
Identification Based on Second and Higher Order Statistics,” IEEE Trans.
Signal Process., vol. 49, no. 8, pp. 1677-1688, Aug. 2001.

[41] C. E. R. Fernandes, G. Favier, and J. C. M. Mota, “Blind channel
identification algorithms based on the PARAFAC decomposition of cumulant
tensors: the single and multiuser cases,”Signal Processing, vol. 88, no. 6,
pp. 1382–1401, 2008.

[42] Y. Yuanning, and A. P. Petropulu, “PARAFAC-Based BlindEstimation Of
Possibly Underdetermined Convolutive MIMO Systems,”IEEE Trans. Signal
Process., vol. 56, no. 1, pp. 111–124, 2008.

[43] D. Nion, K. Mokios, N.D. Sidiropoulos, and A. Potamianos, “Batch
and Adaptive PARAFAC-Based Blind Separation of Convolutive Speech
Mixtures,” IEEE Trans. on Audio, Speech and Language Process., vol. 18,
no. 6, pp. 1193-1207, Aug. 2010.

[44] A. Yeredor, “Blind source separation via the second characteristic function,”
Signal Processing, vol. 80, no. 5, pp. 897–902, 2000.

[45] A. L. F. de Almeida, X. Luciani, and P. Comon, “Blind identification of
underdetermined mixtures based on the hexacovariance and higher-order
cyclostationarity,” Proc. SSP’09, Cardiff, 2009, pp. 669–672.

[46] A. Taleb, “An algorithm for the blind identification ofn idependent signals
with 2 sensors,”Proc. ISSPA’01, Kuala Lumpur, 2001, vol. 1, pp. 5–8.

[47] P. Comon, and M. Rajih, “Blind identification of complexunderdetermined
mixtures,” Proc. ICA Conference, Granada, 2004, pp. 105–112.

[48] X. Luciani, A. L. F. de Almeida, P. Comon “Blind identification of
underdetermined mixtures based on the characteristic function: the complex
case,” Trans. Signal Process., vol. 59, n. 2, pp. 540–553, 2011.

[49] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “A constrained factor
decomposition with application to MIMO antenna systems,”IEEE Trans.
Signal Process., vol. 56, no.6, pp. 2429–2442, June 2008.

[50] P. Tichavsky and Z. Koldovsky, “Weight adjusted tensormethod for blind
separation of underdetermined mixtures of nonstationary sources,” IEEE
Trans. Signal Process., vol. 59, no. 3, pp. 1037-1047, Mar. 2011.

[51] R. Bro, “Multi-way analysis in the food industry: Models, algorithms and
applications,” Ph.D. dissertation, University of Amsterdam, 1998.

[52] H. A. Kiers and A. K. Smilde, “Constrained three-mode factor analysis as a
tool for parameter estimation with second-order instrumental data,” Journal
of Chemometrics, vol. 12, no. 2, pp. 125–147, Dec. 1998.

[53] J. M. F. ten Berge and A. K. Smilde, “Non-triviality and identification of a
constrained Tucker3 analysis,”Journal of Chemometrics, vol. 16, pp. 609–
612, 2002.

[54] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “Space-time multiplexing
codes: A tensor modeling approach,” inProc. IEEE SPAWC, Cannes, France,
pp.1–5, 2006.

[55] A. L. F. de Almeida, G. Favier, and J. C. M. Mota, “Constrained tensor
modeling approach to blind multiple-antenna CDMA schemes,” IEEE Trans.
Signal Process., vol. 56, no.6, pp. 2417–2428, June 2008.

[56] A. Stegeman, A. L. F. de Almeida, “Uniqueness conditions for constrained
three-way factor decompositions with linearly dependent loadings,” SIAM
Journal on Matrix Analysis and Applications, vol. 31, no. 3, pp. 1469–1490,
December 2009.

[57] A. Stegeman, “On uniqueness of the canonical tensor decomposition
with some form of symmetry,” SIAM Journal on Matrix Analysis and
Applications, vol. 32, no. 2, pp. 561–583, 2011.

[58] H. Curry, “The method of steepest descent for nonlinearminimization
problems,” Quarterly of Applied Mathematics, vol. 2, pp. 258–261, 1944.

[59] A. Franc, “Etude algebrique des multitableaux: apports de l’algebre ten-
sorielle,” Ph.D. thesis, Univ. Montpellier II, 1992.

[60] G. Tomasi, “Practical and computational aspects in chemometric data
analysis,” Ph.D. thesis, The Royal Veterinary and Agricultural University,
Frederiksberg, DK, 2006.

[61] A. M. Kagan, Y. V. Linnik, and C. R. Rao,Characterization Problems in
Mathematical Statistics, Probability and Mathematical Statistics, Wiley, New
York, 1973

[62] W. Feller, An Introduction to Probability Theory and its Applications, Wiley,
vol.II, 1966



13

X

A B=

C

2F

�
=

F

f 1 f•�

f•�

f•�

=

P

QR

W

W

2F3F

1F

1F

3F

P
Q

R

Fig. 1. Visualization of the CONFAC decomposition of a third-order
tensor.
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Fig. 3. NMSE vs. SNR in the 4PSK-4-3-20000 case.
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Fig. 4. NMSE vs. SNR in the 4PSK-6-4-50000 case.



14

5 10 15 20 25 30 35 40 45 50
10

−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

N
M

S
E

 (
lo

g)

 

 
FOOBI
CONFAC−ELS
6−BIOME

Fig. 5. NMSE vs. SNR in the 4PSK-5-3-5000 case.

5 10 15 20 25 30 35 40
10

−3

10
−2

10
−1

SNR (dB)

N
M

S
E

 (
lo

g)

 

 
FOOBI
CONFAC−ELS
6−BIOME

Fig. 6. NMSE vs. SNR in the 8PSK-4-3-10000 case.
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Fig. 7. NMSE vs. SNR in the 8PSK-5-4-10000 case.
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Fig. 8. NMSE vs. SNR in the 8PSK-4-3-2000 case.


