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CONFAC Decomposition Approach to Blind
|dentification of Underdetermined Mixtures Based o
Generating Function Derivatives

André L. F. de Almeida, Member IEEE, Xavier Luciani,
Alwin Stegeman, and Pierre Comadrellow, IEEE

Abstract— This work proposes a new tensor-based approach to
solve the problem of blind identification of underdetermined mixtures
of complex sources exploiting the cumulant generating furton
(CGF) of the observations. We show that a collection of secdn
order derivatives of the CGF of the observations can be stock
in a third-order tensor following a constrained factor (CONFAC)
decomposition with known constrained structure. In order to in-
crease the diversity, we combine three derivative types iot an
extended third-order CONFAC decomposition. A detailed ungueness
study of this decomposition is provided, from which easy-techeck
sufficient conditions ensuring the essential uniqueness ¢iie mixing
matrix are obtained. From an algorithmic viewpoint, we devdop
a CONFAC-based enhanced line search (CONFAC-ELS) method
to be used with an alternating least squares estimation pradure
for accelerated convergence, and also analyze the numericeom-
plexities of two CONFAC-based algorithms (namely, CONFACALS
and CONFAC-ELS) in comparison with the Leverberg-Marquardt
(LM)-based algorithm recently derived to solve the same prblem.
Simulation results compare the proposed approach with someigher-
order methods. Our results also corroborate the advantagesf the
CONFAC-based approach over the competing LM-based approdc
in terms of performance and computational complexity.

Index Terms—Blind identification, second generating function,
complex sources, CONFAC decomposition.

EDICS: SSP-HOSM, SSP-IDEN, SPC-BLND.

|. INTRODUCTION

Blind identification methods have been successfully appie
multidisciplinary contexts including radiocommunicatf) sonar,

Several solutions to blind identification/source separatirob-
lems have been proposed recently based on multi-way (fensc
analysis [24]. This is a subject that has gained attention i
numerous application areas involving data analysis sugbsgs
chometrics [19], arithmetic complexity [20] and chemoriostr
[21], [22]. In this context, canonical polyadic (CP) decarajtiont
[19], [23] is the most popular tensor decomposition. The CF
decomposition has been successfully used as an altersaiive
tion to principal component analysis (PCA) when the avédab
data to be analyzed can be arranged as a meaningful mul
way array, or a higher-order tensor [24]. Indeed, the wickssp
use of the CP decomposition can be attributed to its essenti
uniqueness property under mild conditions [25]—[31] asl\asl
to the existence of several numerical algorithms that candeel
to compute this decomposition [21], [32]-[38].

A first class of the so-called tensor-based methods directl
exploits the trilinear nature of the observed data, and tee d
composition of the data tensor provides a direct estimatibn
the sources. These methods have been widely applied ineasrel
communications by means of different tensor decompositisee
e.g. [8]-[13]). However, when the diversity of the obseimas
is not sufficient, one can resort to a second class of tenso
based methods that rely on the multilinearity propertiesigher-
order statistics (HOS) [14], [18], [35]. A large majority tiese
methods solves the blind identification problem by means o
the CP decomposition of a tensor storing the cumulants c
the observations [7], [14], [39], [41], [42], [45]. This iche

radar, biomedical signal processing and data analysis, tjus case, for instance, of FOOBI/FOOBI2 [17], [18], and BIOME
mention a few. A widespread class of these methods relies [3®] algorithms, which capitalize on the triadic decomfiosi
independent component analysis by means of higher-orats-st Of fourth- and sixth-order output cumulants, respectivélpe
tics [1]. This subject has been at the center of many themafetiaPproach presented in [39] relies on the CP decomposition ¢
works while related methods and algorithms have been usad ifird- or fourth-order cross spectra of the observatiohs Works

variety of application fields [2]-[4] (see also [5], [6] fourwveys).
A problem that has attracted a particular interest is thdtlioid
identification of underdetermined mixtures. Several sohg have

[40]-[43] address convolutive mixtures.
A particular class of blind identification methods expldite
second characteristic function of the observations. Tiés ihas

been proposed in the literature to solve this problem (sag, dirst appeared in [44] and later in a few works [16], [46], [47]

[6], [7], [14]-[18] and references therein). The proposeldiions
resort to second, fourth or sixth-order statistics of thesstations.
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In [16], the authors showed that partial derivatives of teeosid
characteristic function of the observations taken at ciffié points
of the observation space can be stored in a symmetric tens
the CP decomposition of which provides a direct estimatibn o
the mixing matrix up to trivial scaling and permutation itele
minacies. In [16], the alternating least squares (ALS) adigm
is applied to blindly estimate the mixing matrix from a CP

1This decomposition is sometimes also called CandecongféRarwhich can
be referred to with the same acronynm.



data tensor constructed from third-order derivatives efdhtput derivative tensor to be decomposed, yielding more robsstne
characteristic function. In a recent work [48], we have ideied to noise effects;

a more general scenario where the sources are assumed to keWe develop an enhanced line search (ELS) optimizatiol
complex-valued (e.g. 4-PSK or 4-QAM), which is usually the for the CONFAC-based blind identification method and a

case in digital communications. Therein, the authors tesor numerical complexity analysis of the so-called CONFAC-
the cumulant generating function (CGF) of the observatmms ELS algorithm is provided. This analysis corroborates the
a Levenberg-Marquardt (LM) based algorithm is proposed to efficiency of the proposed algorithm compared to the LM-
estimate the mixing matrix. based algorithm of [48].

problem can be more efficiently addressed by means of th&ach is its low complexity compared to higher-order metho
constrained factor (CONFAC) decomposition [49]. Under &se and its capability to deal with underdetermined mixturethuiit
sumption of complex sources, we show that a collection afisé€  requiring constraints on the temporal structure of the @esisuch
order derivatives of the CGFs of the observations can bedtor 55 correlation [18] and piece-wise stationarity [50]. Addially,

a third-order tensor following a third-order CONFAC decamp the proposed CONFAC-ELS algorithm is more computationally
sition with known constraint matrices. The profile of 1's &ig  efficient than the competing LM-based algorithm [48], as ban
of the constraint matrices captures the linear combingi&iterns geen from our numerical analysis and simulation results.
involving real and imaginary components of the CGFs deveat  This paper is organized as follows. In Section II, a back-
In order to increase the diversity, we combine three dewatground on the CONFAC decomposition of a third-order tenso
types into an extended CONFAC decomposition of increasgdprovided. In Section IlI, we formulate the CGF-based dlin
dimensionality. The uniqueness property of this decomiuusis jgentification problem and present the main core equatidhs.
studied and our results establish a set of easy-to-cheékisnt problem is recast in Section IV using the proposed CONFAC
conditions that guarantee the essential uniqueness of ikiagn decomposition approach. In Section V, a uniqueness studlyeof
matrix. From an al_gorithmic viewpoint, we develop a CONFACproposed decomposition is provided, from which a set easy-t
based enhanced line search (CONFAC-ELS) method to be uggdck conditions ensuring the essential uniqueness of tkiagn
with an alternating least squares (ALS) estimation prooedor maprix is presented. Section VI presents the CONFAC-ELBdbli

accelerated convergence. In particular, the numericabtexities jjenification algorithm and discusses its numerical caxipy.
of two CONFAC-based algorithms (namely, CONFAC-ALS andjmy|ation results are given in Section VII and the paper is

CONFAC-ELS) is analyzed and compared with the numericghnciuded in Section VIII.

complexity of with the Leverberg-Marquardt (LM)-based @g  notations In the following, vectors, matrices and tensors are
rithm derived in [48] (therein callgd LEMACAFC) to solve theganoted by lower case boldfada), upper case boldfacéA)
same problem. _Our_ computer simulation results evaluate aé\ﬁ’d upper case calligraphicd) letters respectivelya; is the i-
compare the estimation accuracy of the proposed approdth W, coordinate of vecton and a; is the i-th column of matrix
those (_)f_ competing higher-order metho_ds. Our results atl:asta_ A. The (i, ) entry of matrixA is denotedA;; and the(i, j, k)
the efficiency of CONFAC-bas_ed solutions over the competiRgiry of the third order tensad is denoted A, ;.. I denotes
LM-based approach proposed in [48]. _the identity matrix of sizeX. Real and imaginary parts are
- Contributions The contributions of this paper can be h'ghdenoted%{-} and 3{-} respectively. E] denotes the expected
lighted as f0”°‘_’V3: _ _ value of a random variableA” and Af stand, respectively, for
« In comparison with [48], which does not rely on a tensahe transpose and Moore-Penrose pseudo-inverst.ode(A)
decomposition approach, we originally formulate the CGhktenotes the determinant &f. The operator vea\) creates a
based blind identification problem in the case of compleolumn vectora € C7/*! from A € C!*/ by stacking its.J
sources as a constrained tensor decomposition problem vglumns below one another, while unyag = A is the inverse
a priori known structure. From a tensor decomposition pesperator, i.e. unvégeqA)) = A. The operatoD;(A) forms a
spective, this work is a direct generalization of [16] to theiagonal matrix out of thé-th row of A.. The outer vector product
complex case. In the same way as the CP decompositigndenoted byo, while [J denotes the Hadamard (element-wide

fits the case of real mixture of real sources in [16], thisroduct). Kronecker and Khatri-Rao products are denotedbby
work shows that the CONFAC decomposition (which is morgnd o, respectively.

general than the CP one) fits the case of complex mixtures
of complex sources;

o We provide a detailed uniqueness study of the proposed
CONFAC decomposition. A set of easy-to-check conditions Let us consider a third-order tensdre CP*@* 1 threefactor
ensuring the essential uniqueness of the mixing matrix nsatrices A € CP*f1, B € Coxf2 C e CE*Fs  and three
provided, guiding the choice of the number of sensors aednstraint matrices® € CH*F ¥ e CP2xF Q e CFxF,
number of derivatives points for a given number of sourceshe CONFAC decomposition ok’ with F' factor combinations
This is in contrast to [48], where the uniqueness issue is nistdefined in scalar form as:
addressed and no condition for blind identifiability of the FoR PR P
mixing matrix is given; _

« Using the fact that second-order derivatives of the CGF of aquT fz::l flz::l ;1 fgz::l Ao Baps Cr1s O Lot Qpr. ()
Gaussian noise are constant regardless of the point at which
the derivatives are computed, it is possible to “denoise” th with F' > max(Fy, Fy, F3),

II. PRELIMINARIES: THE CONFAC DECOMPOSITION



where A, B and C are thefactor matrices while ®, ¥ and 2 decomposition are restricted to fixed linear combinatiottepas.
are theconstraint matrices The factor matrices are unknown,Uniqueness conditions for the third-order CONFAC decompos
to be determined, while the constraint matrices are knowedfixtion have been studied in a recent work [56].

matrices whose structure satisfies the two following assiomg

Al The columns of® (resp.¥ and ) are canonical vectors 1. PROBLEM FORMULATION
possibly multiplied by -1. The canonical vectors composing

these matrlces belong, respectively, to the canonlcalsbasewe consider a noisy linear mixture &f narrowband sources re-

(™ el F1 } c RP, (™). e F22} c R™, and bzlvterz](ib%/lilr:]arrayod\fsensors LeIi [hi,..., hg] G(CNTXK
(Fy) ” g matrix. Define(m) = [z1(m),...,2n(m)]? €
{er .. }E R, CN, s(m) = [s1(m),...,sx(m)]T € CK and e(m) e CN as

A2 ©, ¥ andﬂ are full-row rank matrices with ranks equal e m-th discrete-time realizations of the observations, seurc
£y, Fy, and F3, respectively. and noise vectors, respectively,= 1, ..., M. According to this

The CONFAC decomposition can be stated in a differefgiodel we have:
manner, which sheds light on a different way of interpreting
its constrained structure. By exchanging summations in &) z(m) = Hs(m) + e(m). (5)

obtain: .
The sources can be real- or complex-valued and the noiseeamp

Fy  F> F3 . .
are modeled as zero-mean circularly-symmetric complexs&ian
Xpar = Z Z Z At Bapa Crps Wi 121:(©, %, 82), - (2) random variables.

h=1f2=1f=1 The problem consists in estimatiiifj from the only knowledge
where » of the observations. In this work, we are interested in sgvi
- this problem by resorting to partial derivatives of the CGRie
Wri1.55(©, ¥, 2) = le OV s ) observations. Specifically, the problem consists in findihguch
h that
is an element of aFy x F» x F3 tensor W(O, ¥, Q) that H = HIIA, (6)

follows an F-factor triadic decomposition in terms @, ¥

and Q. We call W(©,¥,Q), or simply W, the constrained wherelIl is a permutation matrix and is a diagonal matrix. This
core tensorof the CONFAC decomposition. Due to the structurgreans thaftl can be identified up to permutation and scaling
assumed from the constraint matrickg contains +/-1 elements atof its columns. Column permutation and scaling ambiguiéies
fixed positions. Figure 1 provides an illustration of the CFN@  referred to agrivial ambiguities

decomposition. Note that the CONFAC decomposition (1) can b The blind identification of the mixing matri¥I relies on the
seen as a constrained Tucker3 decomposition [51]-[53] thith following assumptions:

particular characteristic of having a core tensor with kndriadic H1. The matrix H does not contain pairwise collinear
decomposition. Moreover, note that the CONFAC decompmsiti columns;
for which Iy = F, = F3 = F, and® = ¥ = Q = I reduces H2. The sources,...,sx are non-Gaussian and mutually
to the F-factor canonical polyadic (CP) decomposition [19], [23].  statistically independent;

Two different matrix representations of the tensar < H3. The numberk of sources is known.

CP*@xE gre possible, namely thsliced and unfolded repre-
sentations. Their construction and factorization folldve tsame
reasoning as that of the CP decomposition [9]. ThXs,.
B¥D,(A®) (CQ) € CO*F s the factorization of thq;—
th sllce of ¥ € CPxQxR along its first dimension. Simi- A- Generating function of the observations

larly, X.,. = CQD,(B¥) (A@) € CP*P and X., = We recall from [48] the main steps that formulate the second
A@DT(CQ) (B\I,)T € CP*Q are the factorization of itg-th order derivatives of the CGF of the observations in the cdse c

andr-th slices along its second and third dimensions, respsgtiv complex sources. The cumulant generating function (CGRef
The full information contained in tensot € CP*Q@xR can pe Observationsp., can be decomposed in a sum of marginal secon

organized in threenfolded matriceX ;) = (X7 ,..., X% ]7 ¢ generating functions of the sources,, k = 1--- K. We start by
CPOXE Xy = X4, X5]" € CQRxP, and X(:a) — defining®. and, in the complex field. The second generating

XTh,... . X7 € CHEPxQ which admit, respectively, the function ¢, of the k-th source taken at the pointof C defined
following factorizations: R” is given by

X = (A®)O(BW)) (CQ)", X = (B¥)0(CN)) (AB)", X5 = ((CRIB(AISTY (i Tog Elexp(R{x"s:})]. 7
The CONFAC decomposition of a third-order tensor was orlg%I Ir(rél Lag}[/’t:]hee s(,)elr(]:gnd (gens):rzg:gggr:gtﬁ% zgahte)eo\t,)\,srﬁtr\eﬁtsgs
inally proposed in [49] in the context of wireless communi- P i
cations to design multiple-antenna transmission schemés w 3. (u,v) def
blind detection. Therein, it is shown that the three CONFAC

constraint matrices are design parameters of the multiptenna wherex = R{z} andy = 3{z}. Define A and A as the real and
transmission system. The CONFAC decomposition also appe@mnaginary parts of the mixing matrix so thEE = A +iA. Next,
in related works [54], [55], where the constraint matricéthe denotea;, (resp.ay,) the k-th column of A (resp.A).

It has been shown in former studies [61], [62] ti&tis theoret-
ically identifiable under these assumptions.

log Elexp(x"u+y'v)],



Replacingz by its model and using sources’ mutual statisticalorresponding second-order derivatives of the noise tarnich
independence hypothesis yields: follow the same calculation steps as those of the seconerord
To derivatives of the signal part of the model. We call attemtio
ap —u'ag) + (W, V). e fact thaty™, T2 andY®) do not depend on the index
g) since the second-order derivative of the noise is constahinat
where ®.(u, v) is the corresponding second generating funéffected by the point at which the derivative tensor is dal@d.
tion of the Gaussian noise. From these definitions, we canteew
(8) as IV. THE CONFAC DECOMPOSITION APPROACH

Z‘p’“ 9i(& (£)) + 2 (&), ©) A. Denoised formulation of the tensor decomposition

We use the fact that the CGFs of a Gaussian noise evaluat
at R different points of the observation space have identica
second-order derivatives to eliminate the noise influemmoenf

D,(u,v) = Z o (u'ay + viag, v’

k

Wheregl (S) = Zn Apgtn + Ankvn ande(S) = Zn Apkvn —
Apkuy,. Defining

R?Y 5 R? the derivative tensors in (12), (13) and (14). This is pdesiy
_ subtracting from the-th derivative tenso®’®:. the second-order
— = qr

_ ¢ g(_@ (91(8), 92(8)) CGF derivatives evaluated at the origin. More specificalhg

yields a compact representation for (9) as “denoised” derivative tensors are given by
= o (9(8) + (&) (10) Yoor = Xpiw = Xpuoy - 5=1,2,3, (16)

k
WhereXZ‘,I’qS0 denotes the second-order derivative of the CGF of the

B. Differentiation of®. (£) observations evaluated at the origin, i.e£&0 = 0 in R?V. Note

hatX‘I’0 is equal toqu), s = 1,2, 3, the noise contribution, since
he S|gnal part of the CGF derivatives vanish at the origimug;
by computing the difference given in (16) allows one to remov
the noise componeﬁfz(ﬁz) so that the resulting tensafyy:. will

be noise free.

Let A®) ¢ RN*2 andG(*) € RE*3 Lk =1,..., K, be defined

Following the approach of [16], [48], we compute parti
derivatives of®, at R different points ofR?Y, denoted here as
£ = (™, v(), r=1,... R

Let {®.(¢W), @, (£@)),...,0.(¢1))} be the set containing
the CGFs of the observations evaluated at thepoints. Sim-
ilarly, {®.(€M), ®.(£@),..., . (£"))} denotes the CGFs of
the additive Gaussian noise. Defme as. _

' Ay Agg
gt Polg€™) . | A A )
S g EMagEmy b i=hh () AWy g,

A A
and note thaiGl} = G?}. By successwely dlfferentlatmg (10) - Gllvlk Gjlvj a2
Wlth respect to the variable pairs!”, u{"}, {v”,v{"} and (k) def the Tk Tk
{uq ,vq } we can obtain the three different second-order deriva- G = : : : = [81.k> B2k, 83,k
tive equations, respectively: Gy, G¥ G%

Note that two columns oA (%) correspond to the real and imagi-
nary parts of thé:-th column of the mixing matrix, respectively.
Each of the three columns @ *) is associated with a second-
order derivative type collected &t points. Using these definitions,

+ApkAquzi) +78), (12) as subsequently shown, we can decompose the denoisediseriva
K tensor)®s, s = 1, 2, 3, as follows:

)(q>2 = Z (ApkAqu k + ApkAqurk =+ APkAqu

- 4 2 3
= Yfé?*Z(Z Z Z > Al Al cB e vl ) an

K
X;I; = Z (ApkAquvl-llc - ApkAqu}-i - ApkAquvl-i
k=1

+ApkAqu3i) +T1()2q)5 (13) k=1 f=1h=1/fa=1fa=1
K YP%ST("’)
X = Z( ok AgrGr + Apk A G — Apk A G which corresponds to a sum ok CONFAC tensor blocks
k=1 Yoor(1), ..., Y 2:(K). The k-th block is given by a sum of four

(14) outer products involving repeated columns of matridg$) and
G®) . The linear combination pattern involving the columns of

where A®) and G® is determined by the joint structure &, ¥ and
o, def PP(EM) g et 2P(ED) g, aer 02.(€T)) Q). By comparing (17) with the general formulation (1), we can

pqr auz()r)au((]r)’ par 51)1()7“)(%((;)’ pqr au;”avg’“)’ deduce the following correspondences:
(15) (A,B,C) & (AW, A® Gk
and whereX > is the (p, ¢,7)-th entry of thes-th “derivative ' (S)’ ’
tensor” X®s of dimensionsN x N x R, s = 1,2,3, while (0,¥,02) < (0,¥,0),
T4 = 020,(6M)/oulou”, T = 82®,(£™)/ovS v, (F1, P2, F3, F) ¢ (2,2,3,4),
and Y = 920.(6M)/ou o0, r = 1,...,R, are the (P,Q,R) ++ (N,N, R),

_Apk Aqgk Gii) +1g)

pq >’



For each one of the three derivative types, the constraintThe unfolded matrix representations for the second-orde
matrices®®), ¥(s) andQ(®) of the associated CONFAC decom-derivative tenso)®: ¢ RN*NxE ¢ — 1 2 3, follow those of
position can be identified by comparing respectively (128)( (4). For instance, the unfolded representaﬁbﬁs) € RN XR can

and (14) with (17). A possible choice is given by be written as:
1 100 1 010
9_[0 0 1 1]’ ‘I’_[o 10 1]’ (18) Y A¥D,(AO)
1 0 0 0 00 0 1 Y& — : = : (GQ(S))T
Q=10 -1 -1 0|, Q=101 1 0|, v v A\ilD.(AC:))
0 0 0 1 1000 N do v
01 0 0 = ((A®) 0 (AD))(GQ™)", (27)
Q¥ =110 0 -1 |. (19)
00 -1 0

Note that the first- and second-mode constraint matrices do
not depend on the differentiation variables. This depecelda B. Combining all derivatives into an extended CONFAC decom
confined only in the third-mode constraint matrix. position
Remark 1:The structures chosen for the constraint matrices in
(18)-(19) are not unique. This can be seen by rewriting (57) a As shown in (12), (13) and (14), three types of second-orde
K 2 2 3 derivatives can be obtained from the CGF of the observation
Yo _ AR AR R p(s) - 20) depending on the pair of variables with respect to which the
ar ,; flz_l ]52_1 fsz_l itz s 2] (20) derivatives are computed. Each derivative type yields a EAN

where decomposition)®s € RN*NXE with a different constrained

4 structure, the structural difference being confined in thiedt
W}f}m = Z ®f1f\I/f2fQ§fS)f. (21) mode cons_traint matrix_](s), s =1, 2,3,_ as we ha_ve p_roposed
f=1 in the previous subsection. In order to increase diversitytake

is a triadic decomposition OfV € C2%2%3, Even under assump- all the three types of second-order derivatives into actduyn
tions A1-A2 of Section Il, which must be satisfied b, ¥ constructing an extended CONFAC decomposition, as follows

and Q)| there is still freedom to permute their columns and/or

change their signs without changing the constrained carsote v = = 5T
W), s = 1,2,3. However, these ambiguities are unimportar]st[ B YSI’IQ) B ((A(j)) © (A?»(G?@))T RIN?XR
in our context since the three constraint matrices are knoyn = (1) — W | = | (A8) e (AR))(GQ®) < :

definition. Any structural choice for these matrices thatsfias Y3 (A®) ® (A®)) (GO®)"
the decomposition could be adopted. Our choice given in-(18) ) .

(19) is motivated by the convenience of having only the t_hird)h'S unfolded representation can be rewritten as
mode constraint matrix changing as the differentiatiorialdes

are changed, while the two first constraint matrices are filkabt S = = NT
importantly, such a choice makes possible to easily comthiae Yo = (13 © ((AG) © (A\m))(GQ) ’ (29)
three derivative types into a single CONFAC decompositien a

(28)

will be seen in the next section. where
Let us define the block matrices
A=[AD, . A e RNV*2K (22) 2= [0, 00,00 e RH1K, (30)
G =[GW,... GF)] e RF*3K, (23)
which concatenate the contributions of tResources. Define also  Likewise, we can also stack row-wise the three derivatipesy
the block-diagonal constraint matrices into the second and third unfolded matric€s,) € R3V**N and
O =Ty 20O c R2KXK (24) Y5 € R3ENXN a5 follows
U =TI @W¥ c RZEXIK (25)
Q6 = I, @ Q) ¢ RIKXIK (26) R i el t)) T
. i . Y% GQ® | D;(A®)
With these definitions, we can treat (17) simply as an block- Y:‘%‘ ca®

CONFAC decomposition composed &f blocks, thek-th block
being associated with thie-th source. In this case, the following .
correspondences can be obtained by analogy with (1): Y = : = : (A©®)",
(A,B,C) + (AA,G),
(©,%,0) < (0,%,00),
(Fy,Fy, F5,F) + (2K,2K,3K,4K), vos GcO®
.N.
(P,Q,R) +» (N,N,R), B B (32)




and
[ Y% ] [ AOD(GOW) T
Y* AODx(GOW)
Y3 = = (Aw)"
Y AGD,(GO®)
oY L AODR(GOQ®)) |
(32)

After some algebraic manipulations the unfolded matricgb) (
and (32) can be respectively rewritten in compact form as

Yo = (A%0(I;0G)0Q)(AO)T, (33)
Ys = (12G)Q0AO)(AD)T, (34)
where _
QM
Q=| QF | e RYK (35)
Q®)

V. UNIQUENESS STUDY

Recall that the goal of the proposed blind identificationgbem
is to identify the possibly underdetermined mixtuke (up to

with 7(-) a permutation of1,..., K}, anday and 3, not both
zero,k=1,..., K. O

The following theorem is concerned with the uniqueness o
the CONFAC decompositiori36) for K = 1. This result is
conveniently presented here as it will be useful later.

Theorem 1:Let (A, G) be a solution to CONFAC decomposi-
tion (36) with K = 1. Suppose that raffld) = 2 and rankG) =
3. Then A is essentially unique as defined in Definitibn
Proof. See Appendix .

Remark 2:For K > 1, it can be proven thaf is essentially
unique if A and G have full column-rank, i.e. raffld) = 2K
and rankG) = 3K. Note that, although the full column-rank
condition for A can be restrictive from the view point of blind
identification, the full column-rank o& is likely to hold when
the numberR of points at which the derivatives are evaluated is
large enough.

In the remainder of this section, we do not use the assumptic
of A having full column rank. Assume instead thdt ® A ®
A) T has full column rankK3K (which implies N? > K). This
assumption, together witk having full column ranB K, implies
that we may seG = I3k without loss of generality. A proof of
this is analogous to that derived in [56] (c.f. Lemma 3.4). We
denote alternative component matricesl AN x 2K) and L
(3K x3K),withF = [F | ... |Fx] andFy = [f | fx]. FOrG =
I3k, equating the CONFAC decomposition (36) to its alternative
yields

X =I30A®A)T

trivial column permutation and scaling ambiguities) frame bnly = (I3eFeF)TLT.
knowledge of the CGF derivatives of the observations. Herei ) - o
this problem is addressed by exploiting the uniquenesseptpp | Ne goal is now to prove that both decompositions coincide u
of the CONFAC decomposition of a tensor that combines tfi@ trivial transformations. By assumption, the left-handeshas
three derivative types, as shown Section IV-B. In order talgt '@nk3K, and it follows thatL is nonsingular and thafls © F @

uniqueness, it is convenient to rewrite the unfolded remegion ¥) T has full column rankB K. We write

(39)

X, as follows:

(A®A)TM T
X, = | (AA)T® |GT=LzeA®A) | T® | GT
(A®A) TG TG
= LeA®A)TGT, (36)
with

TE) = [Ix 2 0) 60 (Ix @ ¥)] (Ixg QN s =1,2,3. (37)

The matricesT'*) have sizet K2x3K . The matrix(I; 0 A®A) T
has size3N? x 3K.

The block A, of the real-valued mixing matrixA contains
the real parta;, and imaginary paré;, of the k-th column of the
complex-valuedV x K mixing matrixH, i.e. H=[a; ... ax|+
i]a; ... ak]. The mixing matrixH is called essentially unique
if for any alternativeH the relationH = HII A holds, withII a
K x K permutation matrix, and a complex-valued nonsingular
diagonal matrix. Multiplying thek-th column ofH by o + i 3
yields(« a,— S ai)+i (8 ap+a ay). This motivates the following
definition of essential uniqueness far.

Definition 1: Matrix A is calledessentially uniquéf for any
alternativeF = [Fy | ... | Fg], with eachF, of size N x 2, there
holds

Fr=Am { P

ak

Qg

By K

k=1,....K,  (38)

LoARA)TLT

I,oFQF)T. (40)

Next, we consider the structure (f; ® A ® A) T. We have

(A®A)TM
Yy = eA®A)T = | (A®A)TO®
(A®A) TG
PO Pl
p PY |, (41)
SO
with, for k =1,..., K,
PS) = [ap®ar| —ay®@a; —a,®a; | a; ®ay |
= (A 5 A®) (@) 42)
ng) = [y @a; |apy®@ay+a,®a; | apQay |
(A® @ AW) ()7 (43)
PEE) = [ay@a; |ay®@ay—a,®a, | —ay®ay |
— (A(k) ® A(k)) (Q(3))T (44)

where the matrice® andW¥ have vanished becau&o ¥ = 1,4,
from (18). Obviously, the matriXIs ® F ® F) T has identical
structure, with A replaced byF. Below, we derive several
constraints o, implied by the equations above. These constraint:
are used to obtain uniqueness results for gen&riand specific



values of N and K. Let L=7 = [I; ... 13x]. The structure of rows ofm(X) are ordered such that indéxuns slower thap. O

(42)-(44), and (40) imply that We denote the matrices in (52) &&; (1;) (N x2N) andMy(1;)
A9A) TV = (AgA) TP, (45) (2N x N). We must haven(M;) = O andm(Ms) = O. L(?t
AeA)TOl, — (AoA) T (46) l; = (a1 ... azx)T. Then each entry ofn(M;) andm(Ms) is

W 3 (2)1’ a homogenous polynomial iny, ..., asx of degree 2. We can
(ARA)T V]l = —(A®A) TV, (47)  combinem(M,;) = O andm(M,) = O and rewrite it as the
A2A)TP1L, = (AA)TYL - (A®A) T?148) system
AA)TOL = (A2A) TP, + (A A) TO 1(49) 102
These equations can be written as
A3K—-103K
(A®A)TO o) ~(A®A)T® u o2 =0, (54)
(A®A)T® o) ~(A®A)TW L .
() (A @A) (T 4 TO) o) L, | =0, ;
(A A)(TM —T®) —(A®A)TO o I ¥3K
(A A)T® -(A®A)T® —(A®A)T® | \where matrixU hasN (N —1)2N (2N —1)/2 rows and3K (3K +

) ) 1)/2 columns. Each row ofU corresponds to a second-order
whereO denotes anV® x 3K all-zero matrix. The system (50) pinor of either M; or M, and contains the coefficients of
should hold not only for(l;, Iz, 13), but for all (I;,1i11,1:+2), the associated homogenous second degree polynomial. Sin
t=3k+1, k=01, K-L The matrix in (50) has size unvec((A®A) T®) 1) is a symmetricV x N matrix fors = 1,2,
5N?2x9K. Its first three row blocks contain only columns that ar'gndM; andMS, both containmvec((A®A) T® 1), the matrix
vectorized symmetrieV x N matrices. This yieldSN(N —1)/2 5 has some redundant rows due to minors being identical. |
redundant rows. From_dgﬂmtlon (37), it can b_e ver|f_|ed thneet t particular, [57] has shown that the number of nonredundamors
null space of the matrix in (50) has at least dimension@#§, o an v N symmetric matrix (of which the entries are unknown)

and contains the vectors is NOtN2(N —1)2/4 but (N(N —1)/4)(N(N —1)/2+1) — (JZ)
[ @ 2 ag ] If the null space of the matrix in (50) is given by (51), and

(63 a1 — a3 —0 (54) implies thatas;a; = 0 for all s and ¢ in different triplets
a3 —2ay (51 {1,2,3},...,{3K—2,3K —1,3K}, then the linear combinations
M 1 1s] = : : : . (51) forming a blockF of the alternative solution involve only one

block of A. The nonsingularity oL.=7 implies that the block-to-

Qs — 2 a3k — a . .
3K=2 3K=1 3K block correspondence betweBnand A is a permutation. Hence,
(6% — (6% 2 — — — . . . .
SK—1 C83K=2 7 (8K 3K-1 the question of essential uniquenessdofeduces to the question
Q3K —2a3x-1 Q3K —2

- of essential uniqueness féf = 1 block only, which is ensured

If the null space of the matrix in (50) is defined by (51), theby Theorem 1.

1, andl; are completely determined If is known. The same is  Uniqueness checking procedurBelow, we use the constraints

true for all triplets(l;,1;11,1;42), t = 3k+1,k =0,1,..., K —1. (50) and (54) to check uniqueness for gendriand several values
Next, we derive a second set of constraintslorf . From the of N and K. An outline of our procedure is as follows.

structure of (42)-(44), it follows thatA ® A) TW 1y = fy ©fi, 1 Check if rank(I; ® A ® A) T) = 3K and rankG) = 3K.

(A® AT =fiof and(A® A)TOL = fi @f, are 5 check if the null space of the matrix in (50) is defined by

vectorized rank-1 matrices. This implies that (51).

3. Check if the null space df in (54) implies thatv,a; = 0 for

1) 3)
[unvec((A ®A)TV L) unvec((A®A)T 11)} all s andt in different triplets{1,2,3},...,{3K — 2,3K —

and (52) 1,3K}.
[ unvec((A ® A) Tg; L) As stated above, matriA is essentially unique if steps 1, 2, and
unvec((A ®@ A) T 1) 3 hold. This procedure for checking uniqueness can be egasily
both have rank 1, whereunvec((A ® A)T®1) = formed by a numerical computational routine. Examples ofieso

Adiag(T®)1,)AT, which has sizeV x N, s — 1,2, 3. This must values of(N, K) for which A is essentially unique aréN, K) =
hold not only forl; butforalll;, t =3k+1,k=0,1,..., K —1. (3,2),(3,3),(4,3), (4,4), (5,4), (4,5), (5,5), (5, 6). Note that our

The matrices in (52) have rank 1 if and only if all their secondJniolueness che_c!<ing procedu_rg worksfor- V. It worth not_ing
order minors are zero. We need the following definition. that these conditions are sufficient but not necessary. mieisns

Definition 2: For a P x Q matrix X, let the P(P — 1)/2 x that uniqueness may exist for other underdetermined calsesew

Q(Q — 1)/2 matrix m(X) have entries our conditions are not verified, as it will be pointed out inrou
simulations. The development of a more general uniqueessstr
det< Tig  Tin > 7 with 1<i<j<P and 1<g< hiigy,rrently under investigation.
Ljg  Tjh
(53)

where in each row oin(X) the value of(i, j) is fixed and in VI. BLIND IDENTIFICATION ALGORITHM

each column ofn(X) the value of(g, h) is fixed. The columns  Computation of formal CGF partial derivatives and the con-
of m(X) are ordered such that indexruns slower thark. The struction of the derivative tensors are largely detailecdeation



IV-A of [48]. The estimated noise contribution is removedeas Algorithm 1 Summary of the CONFAC-ELS estimation algorithm
plained in (16). The algorithm used to estimate the mixingrina 1: Define a maximal number of iterations or any other stopping
is based on the alternating least squares (ALS) proceddielfb criterion;

our case, the algorithm uses the unfolded representa9)s(83)  2: Define an ELS period’;

and (34) to alternates between the estimation of the factrices  3: ChooseR differentiation points;

A andG of the extended CONFAC decomposition. For avoiding4: for s =1 to 3 do

the very slow convergence behavior that is typical in theitiegnal  5:  Compute the denoised derivative tenspi®,)®z, Y¥s;

ALS algorithm [51], we propose the use of an enhanced liné: Deduce the unfolded matrD((l),

search (ELS) [36] to be used in conjunction with the ALS sfeps  7: end for B B

accelerating the convergence of the estimates. Exact émeck  8: ConstructY ), Y (o) andY 3y as defined in (28), (31), and
consists of searching the global minimum along a fixed divect (32), respectively; y

Of course, this procedure can be traced back to the origins ¢f Construct matrice¥, ©, 2 and (;
numerical optimization, and in particular to univariateolghl 10: Initialize randomlyA, B and G;
minimization; see e.g. [58] and references therein. Howabe 11: while Stopping criterion is not verifiedo
first application to CP decomposition appears in the thefis ©: ALS steps:

Franc [59]. Various implementations of this idea can then bs: Save previous matrices, B andG
found in the literature, including [60] and [36]. In the kxtt ,. Update AT — [B\If@ (I, © G)Q }T

. . - . 2)
reference, the chosen implementation is called Enhanced Li T Yo

Search (ELS). Herein, we derive an ELS implementation of thes: UpdateB” =
CONFAC decomposition. o T
Let A®™, B( and G be the estimated matrices computed® ~ UpdateG { (Is © (A® © BY))Q2 } Y(l)*
at then-th ALS iteration. The directionsk(:), Ag) and A(c?) 17: if current iteration number is a multiple ¢t then

I3®G Q@A@ \IIT

are defined by: 18 ELS steps: o .
(n) . 19: Calculate the three directiom& 4, Ag and Ag using
Ay = AP Al (55) (55)-(57) and the common step-size paramgieto
Agl) — B _Br-D, (56) obtain new estimates oA, B and G using (58)-(60),
n) () (v(n—1) respectively;
Ag = G -G 57 2. endif

The ELS method consists in finding an optimal step-size paran®l: end while
ter 4 to predict the estimated matricee); ¢, BV, andGU) o 22 j =1;2

such that 23: for k=1to K do
(n)  _ n— () 24:  Computehy, = a; +iaj41;
Arrs = AUV Ay (58) 25 =42
BgL)s = B D4 MA(H) (59) 26: end for
Gils = G4 pad). (60)

The optimization method searches for the heshat leads to the

global' minimum of respect to the numbers of sources)( sensors ), samples

HY“) _ (13 ® ((A(nm + uAX”> =Yo! (B(nﬂ) T uAg‘)) @)) ar gGWGMDrFq;KégéhﬂPtmn points R) and iterations {). For compar-

(6 ) ison purposés, we also give the numerical complexities ef th
which is a polynomial of degree six jm given bycsu® +cs°+  standard CONFAC-ALS algorithm (i.e. without ELS) and thét o
cap + cap® + cap® + cipt + co. The mathematical expressionghe Leverberg-Marquardt (LM)-based algorithm derived 48][
of the polynomial coefficients are provided in Appendix Ih | (therein called LEMACAFC-2) to solve the same problem. tFirs
practice, ELS step-size can be executed eveiterations in order note that building the tensor of derivatives is common to all
to spare some computations, whePreis called the ELS period. algorithms and it cost§3(4M +4)N? + N M)R multiplications.
Therefore, CONFAC-ALS corresponds CONFAC-ELS with=  Therefore, this contribution to the overall cost is negélcn the
0. The CONFAC-ELS algorithm is summarized in Algorithm 1following analysis.

After convergence, the final estimal# of the complex mixing One CONFAC-ALS iteration consists of building three matsc
matrix is obtained by combining real and imaginary partshef t K., (B\Il oI G)Q)@T Ky = ((13 2 GO A@)\I,T
estimatedA. = =N\ ST : ;
. . ndKg = (Is ® (A® © B¥))Q' and solving overdetermined
Note that, accordlng“to [35], step_s 14’.15’ ;6 ,(,)_f Algorlthm near systéms (éee lines 12)—16 of AIgorithr% 1). Note tha th
can be replaf:ed by a “soft constrained iteration . Bd":.A’ . later step is done by means of a QR factorization so that on
15. UpdateA,_lE_B. UpdateG._ The advantage of this vangnt ISactually solves complete triangular systems. BuildiKg, and
two-fold: a gain in computational complexity, and a terntioa K each costs approximately K ?(108 + 24 N) multiplications.
necessarily witts = A. Estimations ofA andB are dominated by a QR factorization and
) ) each one of them costs approximate/ 2N R multiplications.
Numerical complexity Building K costs approximately24K 2N multiplications. The
We now discuss the numerical complexity of CONFAC-EL®R factorization costs approximate®f K2N? multiplications,
algorithm, in terms of the numbef of multiplications, with whereas solving theR triangular systems cosfs K2 additional



multiplications. After few simplifications, we have: as 6-BIOME). Both FOOBI and 6-BIOME are reference higher-
5 order statistics based algorithms that rely, respectiwiyfourth
Ceonrac-as = T2RE(3 + N) Iconrac-aLs. (62)  and sixth-order cumulants of the observations. The toterasf

When CONFAC-ELS is used, each ELS iteration adds tﬁ@ejoigtdiagonalization_procedurein 6-BIOME and FOOB#&3
computation of the optimal step, which costs approximﬁtiveto 10~°. CONFAC-ELS is stopped when the absolute difference

45N?K R + 1752K3 additional multiplications. Assuming thatbetween two consecutive values of the cost function is lean t
the optimal step is computed eveRyiterations, we obtain: 1019 or when the iteration number reaches 1000. We used 2C

IN?KR 4 17595 differentiation points in the CONFAC-ELS algorithm, and &L
~ 2 period is set to 4. ALS/ELS is sensitive to parameter iri&tlon.
Ceonrac-eLs ™ (72RK (3+N)+ P )ICONFAC'JIEh%reby in the most difficult situations, three random sigrt
(63) points were compared, and the one leading to the smallese val
Each iteration of LEMACAFC-2 is dominated by the construcyf the cost function after few iterations was kept. The peabl
tion of the Jacobian matrix and a QR factorization, whichtcog¢ choosing optimal differentiation points in the CONFAC-E
BRN?(8N? + 8K N(N — 1) + 4K) and 3R((2N + 3R)KN)*  procedure has not been theoretically investigated yet.gewin
_multiplications respectively. In practicdy and K are negligible practice, we obtained best results by randomly drawing tietg
in comparison taV/ and i2. Thereby, in the range$—10; 10]" for SNR values greater than or equal to
Clem ~ 2TRBK2N2I ey, (64) 20 dB and[-1; 1]_N for lower SNR values. - .
A lot of situations involving complex mixtures for differen
Figure 2 compares the convergence speed of the three salurces alphabets and different numbers of sensors, soante
gorithms (LEMACAFC-2, CONFAC-ALS and CONFAC-ELS)samples have been investigated. Obviously higher-ordgo-al
in terms of the number of multiplications. We have chosenrghms allow to deal with more tricky situations such as low
representative case: 3 sensors, 4 sources, 5000 sampld®@ndSNR and high under-determinacy levels. Nevertheless, we ha
differentiation points. The signal-to-noise ratio (SNR)det to retained here six scenarios which highlight some strongtpaif
20 dB and ELS is run every 4 iterations of CONFAC-ELSthe CONFAC-ELS algorithm. Results are given according ® th
Plotted lines are median plots of the reconstruction erfahe SNR level in the 5-40 dB range.
data tensors obtained from 100 Monte Carlo runs. Thesetsesul We first consider three cases of complex mixtures of 4-PSk
highlight the efficiency of the CONFAC approach compared tources. The first one involves 4 sources, 3 sensors and 200
the LEMACAFC one. This is especially true when one wantsamples. In the following, let us denote this kind of confagiom
to use a lot of differentiation points in order to improve thas the “4PSK-4-3-20000” case. Results are plotted in Figur
estimation of the mixing matrix. One could think from theseS. In this situation, the SNR range is clearly split into two
plots that ELS is not so efficient. Actually, a closer look w80 regions around a critical value: CONFAC-ELS outperforms th
that CONFAC-ALS requires about 3.4 times more multiplica two higher-order algorithms for SNR values above 15 dB waere
than CONFAC-ELS to stop. In addition the median NMSE valuender this value all algorithms exhibit similar performaacFor
obtained with CONFAC-ALS ig.3 10~2 whereas it is3.7 1073 the second experiment, 4PSK-6-4-50000 case, we increase t

with CONFAC-ELS. underdeterminacy level and the number of samples. Thetsemel
depicted in Figure 4. One can observe the same global behavi
VII. SIMULATION RESULTS than in the previous experiment except that the critical SidRe

) ) i _is now 20 dB. For the last experiment involving 4-PSK souyrces
The performance of our blind algorithm is evaluated acewdi y . 4psK-5-3-5000 case, we still increase the underdetenyi

to_t_he norm_alizeq mean square estimation error (NMSE) of %?/el but this time we strongly decrease the number of sasnple
mixing matrix estimation: Figure 5 shows that, as in the first experiment, CONFAC-ELS

_ veqH — H)TveqH — H) clearly provides better results than the higher-order rittyms
fu(H,H) = veoH)Tved H) : for SNR values above 15 dB. However the situation is upturne
for 5 dB and 10 dB.
where the permutation and scaling ambiguities preselﬁ iare In the following experiments, 4-PSK sources are replaced b

fixed in the same manner as in [35]. Estimation precisioreseli8-PSK sources. Hence, the fourth experiment considers 8RSK
upon several parameters such as the number of sources faera gB-10000 case, while in the fifth experiment, we increase tiiew
number of sensors (under-determinacy level), number opszsn determinacy level and the number of samples, by considéhniag
and SNR. Their respective influences are evaluated by mdan8BSK-5-4-10000 case. The results are plotted in Figuresdé ar
Monte Carlo runs. Hence, our comparison criterion is theiemed 7, respectively. Both scenarios show degraded perfornsaate
value of the NMSE computed from 100 of these runs. At ea¢fDOBI and 6-BIOME in comparison to the previous experiment:
run, the sources, mixture, noise and initialization cdodi are involving 4-PSK sources. Conversely, CONFAC-ELS is caesit
randomly drawn. Mixture and noise entries are drawn fromand provides the best results in the whole SNR range. The:
gaussian distribution. Sources are synthesized 4-PSK R&I8- results highlight the stability of the proposed algorithm.
signals. In our last experiment, we consider the 8PSK-4-3-2000 cast
We compare performances of the CONFAC-ELS algorithifhis is another challenging configuration where a small nermb
with those of FOOBI (Fourth Order Only Blind Identification)of samples are used. Figure 8 points out the same behavior th
and BIRTH (Blind Identification of mixtures of sources usinghe two previous experiments, where CONFAC-ELS outperform
Redundancies in the daTa Hexacovariance matrix, alsoregféeo FOOBI and 6-BIOME in all the considered SNR range. Note that
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in this case, more satisfying results are obtained for igRs. Let (F, L) denote an alternative solution foA, G). The unique-
It is worth noting that, although the underdetermined casesss properties oA and G do not change if we premultiply
(N,K) = (3,4),(3,5) and (4,6) considered in this section by nonsingular matrices. Since bath and G have full column
cannot_be proven to be u_nique from the checking proced%ﬁ]k, we may sefA — I and G — I3
of Section V, no problem with non-uniqueness was encoudtere ) O O
in our simulations. As we have mentioned in Section V, trgenerality.
generalization of our uniqueness checking procedure lisasti
open point that deserves further investigation.

without loss of

In the sequel, we will use the following result:

Lemma 1: (i) The matrix(Ix@¥)o(Ix20Q®))) Ix20)T"
has full column ranks = 1,2, 3,

~ (ii) The matrixT®) has full column ranks = 1,2,3,
We have proposed a second-order method for the blind idgf) The matrix((Ix ® Q) © (Ix ® ©)) (Ix ® )7 has full
tification of underdetermined mixtures of complex sourdest t column rank,s = 1,2, 3.

relies on a CONFAC decomposition approach. The distinguish

feature of the proposed approach is its low complexity caegba Proof: First, we prove(i). We have
to higher-order methods and its capability to deal with udde
termined mixtures without requiring constraints on the pienal
structure of the sources (such as correlation and nonstatip),

as in previously reported second-order methods. The phigsib
of canceling out the noise influence from the second-ordefF CG
derivatives of the observations makes the proposed metingt

to noise. Our uniqueness study resulted in a set of easy-to-

check sufficient conditions that guarantee the essentigleness

of the mixing matrix. According to our numerical results,rou

second-order CONFAC-ELS algorithm is fast and able to sgpd0or some permutation matrikl. Hence,

higher-order algorithms in various typical situations diwing

underdetermined mixtures. This is especially true for SHRI&s

above 15dB or in the case of 8-PSK sources. Obviously, thoe pri

to pay is that the underdeterminacy level has to be quite | s T Ix @ (¥ o Q)eT’
while higher-order algorithms are less sensitive to thisithtion. Mow)oden®) (xee) = ( 0] )
Finally, in comparison with the LEMACAE approach of [48], (69)

the CONFAC approach is less time-consuming and allows tb dei%is implies that((Tx ® ¥) © (Ix ® Q))) (Ix © ©)7 has full
with more sources for a given number of sensors. We conjectur . . NQT

; . olumn rank if and only if ¥ © Q())®7 has full column rank.
that even better results would be obtained by extending tﬁlﬁe latter can be verified fof — 1.2.3
CONFAC approach to the case of third-order CGFs derivative, oo

so that higher underdeterminacy levels could be handletieat t The proofs of(ii) and (iii) are completely analogous. We use

VIIl. CONCLUSION

Ix ® (T oQ®)

(Ix@¥) o (Ix QW) =11 o

, (68)

cost of an increase in the numerical complexity. the fact that(® © ¥) ()7 and () © ©)®T have full
column rank, respectively, fos = 1,2,3. This completes the
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APPENDIX | [ 1

00 ] { 00 ‘ 0 1 ‘ 10
Proof of Theorem 1For K = 1, the CONFAC decompositions 0 1]° 0 1j1 0j0 0 1 ,
of the second-order derivative tens@®®) € CNVXNxE 5 — 70)
1,2,3, can be expanded as a sum of rank-1 terms as follows: |t follows from [56] (c.f Proposition 3.3, applied to one diet
three decomposition) th&t (2 x 2) andL (3 x 3) are nonsingular.
Next, we write out the equations of the three decompositions
Let M = F~!. Equating the original CONFAC solution to its
alternative yields the following equations for each of theee
VB —aocaogy+acaog, —acaogs—aoaog,. (67) frontalslices in the three CONFAC decompositions:

YU —aocaog; —aoaog, —aoaog,+aoaogs, (65)

V? —acaogs+aocaog,+aoaog, +aoaog,, (66)



(BTAp+A3'B ), S¢ =

11

(ATAA +A4TA ) 0 ApTAg,

[ b —he } :M[ Lo ]MT — [ mi, mai1 may } S = _AAT_AA BTB_, Sg = A4TAL O (BTAB +Az™B ),
—l12 l13 0 0 mi1 mai ma Sg = AATAA hBTAB,hS10 =So+Sy4, S11 = S3+S5+S7,
i =l ] _pg[ 0 <1 ] 2 myy ma _,S13,= 8¢ + Ss. Then, we have:
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