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Abstract

In this paper, we present a global state feedback tracking controller for underactuated surface marine
vessels. This controller is based on saturated control inputs and, under an assumption on the reference
trajectory, the closed-loop system is globally asymptotically stable (GAS). It has been designed using
a 3 Degree of Freedom benchmark vessel model used in marine engineering. The main feature of our
controller is the boundedness of the control inputs, which is an essential consideration in real life. In
absence of velocity measurements, the controller works and remains stable with observers and can be
used as an output feedback controller. Simulation results demonstrate the effectiveness of this method.

Index Terms

Global tracking, bounded feedback, Lyapunov function, underactuated surface marine vessels.

I. INTRODUCTION

Precise tracking control of surface marine vessels (ships and boats) is often required in critical
operations such as support around off-shore oil rigs [1]. This problem is of particular interest as
marine vessels are often underactuated, i.e. the number of independent actuators is less than the
degrees of freedom (DOF) to be controlled. In this paper, we consider the problem of tracking
control of a 3-DOF vessel model (surge, sway and yaw [2]), working under two independent
actuators capable of generating surge force and yaw moment only. It has been shown in [3],
[4], [5] that under Brockett’s necessary condition [3], stabilization of this system is impossible
with continuous or discontinuous time-invariant state feedback. This can be seen in [6] where the
authors developed a continuous time-invariant controller that achieved global exponential position
tracking but the vessel orientation could not be controlled. In addition, it is shown in [7] that the
underactuated ship can not be transformed into a driftless chained system; which means that the
control techniques used for the similar problem of nonholonomic mobile robot control cannot be
applied directly to the underactuated ship control. Accordingly, control of underactuated vessels
in this configuration has been studied rigorously by contemporary researchers, examples of which
are [8], [9], [10], [11], [12].

In [7], the author showed that under discontinuous time-varying feedback, the underactuated
vessel is strongly accessible and small-time locally controllable at any equilibrium. A discon-
tinuous time-invariant controller was proposed which showed exponential convergence of the
vessel towards a desired equilibrium point, under certain hypotheses imposed on the initial
conditions. In [1], a continuous periodic time-varying feedback controller was presented that
locally exponentially stabilizes the system on the desired equilibrium point by using a global
coordinate transformation to render the vessel’s model homogenous. In [8], a combined integrator
backstepping and averaging approach was used for tracking control, together with the continuous
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time-varying feedback controller for position and orientation control. This combined approach,
later on used in [13], provides practical global exponential stability as the vessel converges to
a neighborhood of the desired location or trajectory, the size of which can be chosen arbitrarily
small. Jiang [14] used Lyapunov’s direct method for global tracking under the assumption that the
reference yaw velocity requires persistent excitation condition; therefore implying that a straight
line trajectory could not be tracked. This drawback was overcome in [15] and [16]. Do et al. [15]
proposed a Lyapunov based method and backstepping technique for stabilization and tracking
of underactuated vessel. In this work, conditions were imposed on the trajectory to transform
the tracking problem into dynamic positioning, circular path tracking, straight line tracking and
parking.

In this paper, we address the global tracking control of underactuated vehicles, using saturated
state feedback control. Our work addresses the remaining case not treated in [15], i.e., the yaw
angle of the tracked trajectory does not admit a limit at time goes to infinity. This research
is therefore in the same direction as in [17], where the author achieved practical stability. Our
algorithm provides asymptotic convergence to the tracked trajectory from any initial point. The
advantage of using saturated controls is that the global asymptotic stability is ensured while the
control inputs remain bounded (as real life actuators are all limited in output). The proposed
controller has been proven to work with state measurements, as well as with observers in the
case where all states may not be measured.

The paper is organized as follows; the vessel model is presented in Section 2 and the control
problem is formulated in Section 3. In Section 4, the controller is developed and the proof of
stability is given. In Section 5, the stability of the controller is shown in presence of observation
errors. Simulations are given in Section 6 and concluding remarks are presented in Section 7.

II. VESSEL MODEL

In this section, we will first discuss the physical model of the marine vessel and the related
assumptions on physical phenomena associated with its motion. Then, a mathematical reformu-
lation will be presented, following variable and time-scale changes, to obtain a suitable form for
control design.

A. Physical Model
The general 6-DOF rigid body model for surface marine vessels presented in [2] can be reduced
by considering surge, sway and yaw motions only, under the following assumptions [17],

(H1) Heave, roll and pitch motions induced by drift forces of wind, wave and ocean current
can be neglected.

(H2) The inertia, added mass and hydrodynamic damping matrices are diagonal (valid for
ships having port/starboard and fore/aft symmetry).

The aft propeller configuration provides only the surge force τu and the yaw moment τr. The
kinematic and dynamic equations of the vessel can therefore be written as

ẋ = ucos(ψ)− vsin(ψ) ,
ẏ = usin(ψ)+ vcos(ψ) ,
ψ̇ = r,

u̇ =
1
c

vr−au+ τ̄1,

v̇ = −cur−bv,
ṙ = κuv−dr+ τ̄2,

(1)
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where (x,y) and ψ are the coordinates and the yaw angle of the vessel in the earth-fixed frame,
and u, v and r denote the surge, sway and yaw velocities respectively. The control inputs τ̄1 and
τ̄2 are the normalized expressions of the surge force and yaw moment, given as

τ̄1 =
1

m1
τu, τ̄2 =

1
m3

τr. (2)

The parameters a, b, c, d and κ are positive constants that represent the mechanical properties
of the system, namely the inertia mi > 0 and hydrodynamic damping di, where i = 1, 2, 3
corresponds to surge, sway and yaw motions respectively. The constants are defined as follows

a =
d1

m1
, b =

d2

m2
, c =

m1

m2
, d =

d3

m3
, κ =

m1−m2

m3
. (3)

B. Model for control
For control design, the system model (1) can be simplified by normalizing the physical

parameters through straightforward variable and time-scale changes. For the sake of clarity, let
us rewrite System (1) as follows,

(S̄)



(
ẋ
ẏ

)
= Rψ

(
u
v

)
,

ψ̇ = r,(
u̇
v̇

)
= −D0

(
u
v

)
− rAc

(
u
v

)
+

(
1
0

)
τ̄1,

ṙ = κuv−dr+ τ̄2,

(4)

where the matrices D0, Rψ and Ac are given as

D0 =

(
a 0
0 b

)
, Rψ =

(
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

)
, Ac =

(
0 −1/c
c 0

)
. (5)

Let us consider the following matrices

A1 =

(
0 −1
1 0

)
, Dρ =

(
ρ 0
0 ρc

)
, (6)

where ρ is a positive constant to be chosen later. Then we obtain

A1 = D−1
ρ AcDρ . (7)

Linear changes of variables and time-scale are introduced in System (4) as follows

s = dt,(
x(s)
y(s)

)
=

(
x(t)
y(t)

)
,

ψ(s) = ψ(t),(
u(s)
v(s)

)
=

1
d

D−1
ρ

(
u(t)
v(t)

)
,

r(s) =
r(t)
d

.

(8)
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From this variable and time-scale change, it can be deduced by simple calculations that under
the following definitions,

β =
κ

cρ2 , D =
D0

d
=:
(

a1 0
0 b1

)
, τ1 =

τ̄1

ρd2 , τ2 =
τ̄2

d2 , (9)

the dynamics of the vessel, denoted by (S), can be rewritten as follows,

(S)



(
ẋ
ẏ

)
= RψDρ

(
u
v

)
,(

u̇
v̇

)
= −D

(
u
v

)
− rA1

(
u
v

)
+ τ1

(
1
0

)
,

ψ̇ = r,
ṙ = βuv− r+ τ2,

(10)

III. PROBLEM FORMULATION

The goal of this paper is tracking control of the presented underactuated marine vessel by
controlling its position and orientation. The vessel is forced to follow a reference trajectory
which is generated by a ’virtual vessel’, as follows,

(Sre)



(
ẋre
ẏre

)
= RψreDρ

(
ure
vre

)
,(

u̇re
v̇re

)
= −D

(
ure
vre

)
− rreA1

(
ure
vre

)
+

(
1
0

)
τ1,re,

ψ̇re = rre,
ṙre = βurevre− rre + τ2,re,

(11)

where all variables have similar meanings as in System (10). Tracking control is achieved by
using saturated control inputs and under the assumption that the velocities are bounded [18], [19].
This assumption holds true physically as resistive drag forces increase as the velocity increases
and therefore the latter cannot increase indefinitely if the control is bounded. These assumptions
are also valid for the reference system and are formalized in the following manner:

Assumption 1. There exist constraints on the control inputs and velocities such that

|τ̄1| ≤ τ̄1,max, |τ̄2| ≤ τ̄2,max,
|u| ≤ ūmax, |v| ≤ v̄max,

(12)

where τ̄1,max, τ̄2,max, ūmax and v̄max are known positive constants.

Assumption 2. The velocities ure, vre and the forces τ1,re and τ2,re are bounded as follows,∣∣τ1,re
∣∣≤ τ1,max,

∣∣τ2,re
∣∣≤ τ2,max,

|ure| ≤ ūmax, |vre| ≤ v̄max,
(13)

and the reference angle ψre does not converge to a finite limit as t tends towards infinity.

The variable and time-scale change defined in the previous section requires the following
new bounds to be defined for the new control inputs τ1 and τ2, denoted by τ1,max and τ2,max
respectively:

τ1,max =
τ̄1,max

ρd2 , τ2,max =
τ̄2,max

d2 . (14)
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We consider the following condition upon the saturation limits of the control inputs, to be used
later on in the control design. We use here m1 to denote min(a1/2,b1).

C1: β
τ2

1,max

a1m1
< τ2,max. (15)

Note that this condition is always satisfied by an appropriate choice of the parameter ρ . Our
control objective is that (S) follows (Sre). With respect to the frame of reference of the reference
trajectory (Sre), the error system is defined as

ex
ey
eu
ev
eψ

er

=


cos(ψre) sin(ψre) 0 0 0 0
−sin(ψre) cos(ψre) 0 0 0 0

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




x− xre
y− yre
u−ure
v− vre

ψ−ψre
r− rre

 . (16)

Defining new controllers w1 and w̃2, as follows:

w1 = τ1− τ1,re,
w̃2 = τ2− τ2,re,

(17)

the dynamics of system (16) become

(Se)



(
ėx
ėy

)
= −rreA1

(
ex
ey

)
+Dρ

(
eu
ev

)
+ sin(eψ)A1Dρ

(
ure
vre

)
+
(
cos
(
eψ

)
−1
)

Dρ

(
ure
vre

)
+
(
Reψ
− Id2

)( eu
ev

)
,(

ėu
ėv

)
= −D

(
eu
ev

)
− rreA1

(
eu
ev

)
− erA1

(
ure
vre

)
+

(
1
0

)
w1 + er

(
−ev
eu

)
,

ėψ = er,
ėr = β (uv−urevre)− er + w̃2.

(18)
The control objective therefore, is to force the error system (Se) to zero, using the control

variables w1 and w̃2.

IV. CONTROLLER DESIGN

We first develop the following intermediate result, concerning the bounds of u, v, r.

Lemma 1. The variables u, v, r are bounded and satisfy

limsup
t→∞

‖(u,v)‖ ≤
τ1,max

2
√

a1m1
,

limsup
t→∞

|r| ≤ τ2,max +β
τ2

1,max

2a1m1
.

(19)
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Proof: Let us consider(
u
v

)T( u̇
v̇

)
= uu̇+ vv̇

= u(−a1u+ rv+ τ1)+ v(−b1v− ru)

≤ −a1

2
u2−b1v2 +

τ2
1

2a1
≤−m1V +

τ2
1

2a1
.

(20)

We at once deduce the first inequality in (19). In the same way, let us consider the following
equation,

rṙ =−r2− r (τ2 +βuv) =−r(r+ τ2 +βuv),

from which we derive the second inequality in (19).

Remark 1. As the reference trajectory system is similar to the vessel model, it can be shown
that the limits defined in Lemma 1 are valid for ure, vre, rre as well.

We define a new control variable

w2 = β
(
uv−urevre f

)
+ w̃2. (21)

As the upper bounds of u, v, ure and vre f are known according to Lemma 1 and Remark 1, we
obtain

limsup
t→∞

β
∣∣uv−urevre f

∣∣≤ β
τ2

1,max

a1m1
. (22)

If the control variable w2 is bounded by a positive constant U2, then the following constraint on
U2 must be satisfied:

U2 +β
τ2

1,max

a1m1
≤ τ2,max. (23)

The existence of U2 is satisfied according to Condition C1, given in (15),

0 <U2 ≤ τ2,max−β
τ2

1,max

a1m1
. (24)

With these preliminaries established, we will now proceed to fulfill the control objective by
using the bounded controls w1 and w2. Considering σ(.) as the standard saturation function, the
main result is presented as follows,

Theorem 1. If Assumption 1, 2 and Condition C1 are fulfilled, then for an appropriate choice
of constants U1, ρ1, ξ , M, U2, k1, k2, µ , the following controller ensures global asymptotic
stability of the tracking error system (Se):

w1 =−U1σ

(
ξ eu

U1

)
−ρ1σ (MW1) ,w2 =−U2σ

(
k1

U2
eψ +

k2−1
U2

er

)
, (25)

with W1 = ex +
1
µ

eu .
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A. Proof of Theorem 1
As the demonstration is long, the proof of this theorem and the choice of related constants are

developed progressively.
We first consider the errors eψ and er. The control input w2 is chosen as

w2 =−U2σ

(
k1

U2
eψ +

k2−1
U2

er

)
, (26)

where k1 and k2 are sufficiently large positive constants. Then, the dynamics of eψ and er in (Se)
become,

ėψ = er,

ėr =−er−U2σ

(
k1

U2
eψ +

k2−1
U2

er

)
.

(27)

Lemma 2. If U2 > 0 and k1 > k2−1> 0, then after a sufficiently large time, the saturated control
operates in its linear region and the errors eψ and er converge to zero exponentially.

Proof: Let us consider the following Lyapunov function V ,

V =
α

2
e2

r +S
(

k1

U2
eψ +

k2−1
U2

er

)
, (28)

where S(ξ ) is a positive definite function, defined by

S(ξ ) =
∫

ξ

0
σ(s)ds, (29)

and α =
k1− k2 +1

U2
2

is a positive constant. The derivative of the Lyapunov function is

V̇ = αerėr +σ

(
k1

U2
eψ +

k2−1
U2

er

)[
k1

U2
ėψ +

k2−1
U2

ėr

]
,

= αer (−er−U2σ(.))+σ(.)

[
k1

U2
er +

k2−1
U2

(−er−U2σ(.))

]
,

= −αe2
r − (k2−1)σ2(.)+ erσ(.)

[
−U2α +

k1

U2
− k2−1

U2

]
,

= −αe2
r − (k2−1)σ2

(
k1

U2
eψ +

k2−1
U2

er

)
.

(30)

The derivative V̇ is negative for (eψ ,er) 6= (0,0); and after a finite time we obtain∣∣∣∣ k1

U2
eψ +

k2−1
U2

er

∣∣∣∣≤ 1.

Then , the dynamics of eψ and er become:(
ėψ

ėr

)
=

(
0 1
−k1 −k2

)(
eψ

er

)
(31)

As k1 and k2 are positive constants, System (31) is exponentially stable.
Lemma 2 shows that the errors eψ and er converge to zero under the control w2. We will now

consider the errors eu and ev. We choose the constants µ and ξ such that
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(
a1 +ξ 0

0 b1

)
= µ

(
ρ 0
0 ρc

)
. (32)

This implies that

ξ =
b1

c
−a1, µ > 0. (33)

Lemma 3. Consider the dynamics of eu and ev presented in Equation (18). If the positive
constants U1 and ρ are chosen as

a1 > U1 +ρ,

U1 >

∣∣∣a1− b1
c

∣∣∣
min

(
a1,

b1
c

)ρ,
(34)

then the control
w1 =−U1σ

(
ξ eu

U1

)
−ρσ1(.), (35)

with σ1(.) to be chosen later, ensures that eu and ev are bounded, satisfying the following
inequalities:

limsup
t→∞

‖(eu,ev)‖6
ρ√
m2ã

, (36)

where

ã = inf
t>0

a1 +ξ

σ

(
ξ eu
U1

)
ξ eu
U1

> 0, m2 := min(ã/2,b1)., (37)

Proof: Considering(
eu
ev

)T ( ėu
ėv

)
=−

(
eu
ev

)T

D
(

eu
ev

)
− er

(
eu
ev

)T

A1

(
ure
vre

)
+ euw1. (38)

By applying the control w1 presented in (35), we get(
eu
ev

)T ( ėu
ėv

)
≤−a1e2

u−b1e2
v−U1euσ

(
ξ eu

U1

)
−ρeuσ1(.)+C0 |er|

√
e2

u + e2
v , (39)

where C0 is a positive constant defined below,

C0 = ūmax + v̄max.

According to Lemma 2, er tends to zero. This means that after a sufficiently large time,(
eu
ev

)T ( ėu
ėv

)
≤− [a1 +ξ s(t)]e2

u−b1e2
v−ρeuσ1(.). (40)

Notice that ã > 0 since it is trivially the case if ξ ≥ 0, and otherwise, ã ≥ a1 +ξ =
b1

c
. Let us

consider ã defined in equation (37). In this case,(
eu
ev

)T ( ėu
ėv

)
≤−m2(e2

u + e2
v)+

ρ2σ2
1 (·)

ã
. (41)
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We immediately deduce (36).

Lemma 3 proves the convergence of eu and ev to a neighborhood of zero. Since ã≥min
(

a1,
b1

c

)
,

one gets together with condition (34) that

limsup
t→∞

∣∣∣∣ξ eu

U1

∣∣∣∣ < 1,

and after a finite time interval, the controller will exit saturation and enter its linear region of
operation. We get

σ

(
ξ eu

U1

)
=

ξ eu

U1
,

and the dynamics of eu and ev become(
ėu
ėv

)
= −µDρ

(
eu
ev

)
− rreA1

(
eu
ev

)
−ρσ1(.)

(
1
0

)
− erA1

(
ure
vre

)
+ er

(
−ev
eu

)
.

(42)
This result will be used further on during the study of convergence of ex and ey. Let us consider

an intermediate variable W = (W1,W2)
T , such that

W =

(
ex
ey

)
+

1
µ

(
eu
ev

)
. (43)

Based on the result in (42), we obtain the following result concerning W .

Lemma 4. Consider the variable W defined in (43) and the controller w1 presented in (35) with
σ1(.) = σ(MW1), where M is an arbitrary positive constant. Then

W tends to a finite limit W̄ =

(
0

W̄2

)
.

Proof: The dynamics of W can be expressed as

Ẇ = −rreA1W + rreA1
1
µ

(
eu
ev

)
+ sin

(
eψ

)
A1Dρ

(
ure
vre

)
+Dρ

(
eu
ev

)
+O

(
e2

ψ ,
∣∣eψ

∣∣( eu
ev

))
−Dρ

(
eu
ev

)
− rre

A1

µ

(
eu
ev

)
− ρ

µ
σ1(.)

(
1
0

)
+O

(
|er|
(

1+
∥∥∥∥ eu

ev

∥∥∥∥)) .

(44)

In order to find the limsup of ‖W‖, we calculate

W TẆ = sin
(
eψ

)
W T A1Dρ

(
ure
vre

)
+W T

[
O
(

e2
ψ ,
∣∣eψ

∣∣( eu
ev

)
+O(|er|)

)]
− ρ

µ
W1σ1(.),

= O
(
‖W‖ .

∥∥eψ ,er
∥∥)− ρ

µ
W1σ1(.).

(45)
From here, it is clear that

|W TẆ | ≤ ‖W‖
[

O
(
‖eψ ,er‖

)
+

ρ

µ

]
. (46)
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Then there exists A > 0 such that the time derivative of ‖Ẇ‖ is bounded by a positive constant
A and thus,

‖W‖6 At +B, (47)

where B is the initial value of ‖W‖. As σ1(.) = σ(MW1), this implies that

|W TẆ |+ ρ

µ
W1σ1(MW1)6 O

(
(At +B)e−ct) . (48)

Then, the integral
∫

∞

0
|W T (s)Ẇ (s)|ds is finite , implying that‖W‖ is bounded, as well as the

integral
∞∫

0

W1σ(MW1)ds. As both W1 and Ẇ1 are bounded, then according to Barbalat’s Lemma,

W1→ 0 as t→ ∞. Consequently W2 tends towards a finite value W̄2 as t→ ∞.
The intermediate result obtained in the form of Lemma 4 permits us to further improve the

result of Lemma 3, as follows:

Lemma 5. If Lemmas 3 and 4 hold true, then the variables eu and ev converge to zero asymp-
totically.

Proof: From Lemma 3 and setting G(eu,ev) := (e2
u + e2

v)/2, Equation (41) can be rewritten
as

Ġ+2m2G≤
ρ2σ2

1 (MW1)

ã
. (49)

Since the right-hand side is integrable over R+, then one concludes using Barbalat’s Lemma.

So far, we have established that the errors eψ , er, eu and ev converge to zero. From Lemmas
4 and 5, it can immediately be deduced that if W1 → 0 and eu → 0, then ex will converge
asymptotically to zero as well. We next address the convergence of the remaining error variable,
ey.

Lemma 6. If Assumption 2 is satisfied, then W̄2 is equal to zero and ey converges asymptotically
to zero.

Proof: From Equation (44) in Lemma 4, the dynamics of W can be expressed as follows,

Ẇ =−rreA1W +O
(∣∣eψ

∣∣ , |er| ,W1σ (MW1)
)
. (50)

We define the new variable W̃ as follows,

W̃ ∆
=

(
W̃1
W̃2

)
= RψreW, (51)

and the dynamics of W̃ are given by

˙̃W = ṘψreW +RψreẆ ,
= ψ̇reA1RψreW − rreRψreA1W +RψreO

(∣∣eψ

∣∣ , |er| ,W1σ (MW1)
)
,

= O
(∣∣eψ

∣∣ , |er| ,W1σ (MW1)
)
.

(52)
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With the exponential convergence of eψ and er to zero and the existence of
t∫

0

W1σ(MW1)ds

when t −→ ∞, we get
+∞∫
0

∥∥∥ ˙̃W (s)
∥∥∥ds <+∞, (53)

which means that W̃ will not explode and converge to a finite limit Wre, with

Wre =

(
(Wre)1
(Wre)2

)
. (54)

As demonstrated in Lemma 4, W1 converges to zero and W2 converges to W̄2. Then

W2 sin(ψre) −−→t→∞
−(Wre)1 ,

W2 cos(ψre) −−→t→∞
(Wre)2 .

(55)

Using these two results, we proceed by contradiction. Assuming that W̄2 6= 0, two cases are
taken into account, (Wre)2 = 0 and (Wre)2 6= 0.
• If (Wre)2 = 0, then cos(ψre) converges to zero, i.e. ψre converges to a finite limit.

• If (Wre)2 6= 0, then tan(ψre) =−
(Wre)1
(Wre)2

= constant, i.e. ψre converges to a finite limit.

In either case, we find that ψre converges to a finite value, which contradicts Assumption 2.
Therefore W̄2 has to be zero and according to Lemma 4, W tends to zero. Consequently, ey
converges asymptotically to zero.

The proof of Theorem 1 demonstrates that the tracking errors between the vessel and the
reference system, defined in terms of position coordinates, yaw angle and respective velocities,
will converge asymptotically to zero. The controller will therefore, force the vessel (S) to follow
the virtual vessel (Sre).

It should be noted that the controller presented in Theorem 1 has been designed under the
assumption that all state variables are known. In the next section, the study is extended to the
case where only the position and orientation states of the vessel are available and the velocities
need to be observed.

V. TRACKING WITHOUT VELOCITY MEASUREMENT

In practical cases, only position and orientation feedbacks are available for navigation. Therefore
the only available states of the vessel are x, y, ψ along with the the complete coordinate state
set of the virtual vessel to be followed. For such output feedback systems, the variables u,v,r
need to be observed. In this section, we will show that the controller presented in Theorem 1
is applicable in this case and the use of observation instead of measurement does not affect the
stability.

We suppose that the velocities are obtained through an observer such as that presented by
Fossen and Strand in [20], or a robust differentiator such as that presented in [21]. In both cases,
an asymptotic convergence of observation errors is guaranteed. It can be noted that, when we
use a differentiator, the estimated values (û, v̂, r̂) of (u,v,r), can be determined according to the
following equation (

û
v̂

)
= D−1

ρ R−ψ

(
ˆ̇x
ˆ̇y

)
, r̂ = ˆ̇ψ (56)
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where ( ˆ̇x, ˆ̇y, ˆ̇ψ) are the estimated values of (ẋ, ẏ, ψ̇) respectively.
Let us follow the same steps used in the demonstration of stability of system (Se) with velocity

measurement. The observation error related to the velocity are define as below:

fu = u− û, fv = v− v̂, fr = r− r̂. (57)

As the references are common, the observation errors can be described in terms of trajectory
pursuit errors as

fu = eu− êu, fv = ev− êv, fr = er− êr, (58)

where,
êu = û−ure, êv = v̂− vre, êr = r̂− rre. (59)

We note that the variable x,y,ψ are measured and the related observation errors are null.
The problem is transformed to demonstrate the stability of the error system (Se) under control
laws w1 and w̃2, which are now based on the observed values.
As in the previous case, we define

w2 = β (ûv̂−urevre)+ w̃2. (60)

Then the result of this section can be stated as the following theorem.

Theorem 2. If Assumption 1, 2 and Condition C1 are fulfilled, then for an appropriate choice
of constants U1, ρ, ξ , M, U2, k1, k2, µ , the following controller ensures global asymptotic
stability of the tracking error system (Se):

w1 =−U1σ

(
ξ êu

U1

)
−ρσ

(
MŴ1

)
,w2 =−U2σ

(
k1

U2
eψ +

k2−1
U2

êr

)
, (61)

with Ŵ1 = ex +
1
µ

êu.

Remark 2. The choice of constants U1, ρ, ξ , M, U2, k1, k2, µ remain the same as in the case
of Theorem 1, therefore their expressions and conditions will not be repeated in this section.

Proof: The proof of Theorem 2, is largely based upon the proof of Theorem 1, and will be
developed progressively in the same manner. We first consider the dynamics of error variables
eψ and er:

ėψ = er,

ėr = β (uv− ûv̂)− er−U2σ

(
k1

U2
eψ +

k2−1
U2

êr

)
,

= −er−U2σ

(
k1

U2
eψ +

k2−1
U2

er + f1(t)
)
+ f2(t),

(62)

where,

f1(t) = −k2−1
U2

fr,

f2(t) = β (uv− ûv̂)
= β ( fuv̂+ fvû+ fu fv).

As mentioned before, the observer errors fu, fv and fr converge asymptotically to zero and (u, v)
are bounded. This implies that f1(t) and f2(t) would converges to zero asymptotically.
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Lemma 7. If f1(t) and f2(t) converge to zero asymptotically, then for some large positive
constants k1 and k2, System (62) is globally asymptotically stable.

Proof: In order to prove Lemma 7, we consider the following Lyapunov function,

V =
α

2
e2

r +S
(

k1

U2
eψ +

k2−1
U2

er

)
. (63)

Let z=
k1

U2
eψ +

k2−1
U2

er, then the derivative of V , along System (62) can be calculated as follows,

V̇ = αerėr +σ

(
k1

U2
eψ +

k2−1
U2

er

)[
k1

U2
ėψ +

k2−1
U2

ėr

]
,

= αer (−er−U2σ(z+ f1)+ f2)+σ(z)
[

k1

U2
er +

k2−1
U2

(−er−U2σ(z+ f1)+ f2)

]
.

(64)

Using the well known inequality, |ab| ≤ a2 +b2

2
, and taking αU2 =

k1− k2 +1
U2

> 0, we get

V̇ ≤ −α

2
e2

r − (k2−1)σ (z)σ (z+ f1)+αU2er (σ (z)−σ (z+ f1))+
α

2
f 2
2 +

k2−1
U2

| f2| .
(65)

From here, it is clear that

|σ (z)−σ (z+ f1)| ≤ | f1| ,
σ (z)σ (z+ f1) ≥ σ

2 (z)−| f1| ,
(66)

then,

V̇ ≤ −α

2
e2

r − (k2−1)σ
2 (z)+(k2−1) | f1|+αU2 |er| | f1|+

α

2
f 2
2 +

k2−1
U2

| f2| . (67)

After a sufficiently large time interval T , it is assured that |U2 f1|<
1
6
∀t > T , and

V̇ ≤ −α

3
e2

r − (k2−1)σ2 (z)+O
(

f 2
1 , | f2| , f 2

2
)

(68)

From here, we obtain that
limsup

t→∞

|er|= limsup
t→∞

|σ(z)|= 0. (69)

Therefore, System (62) is globally asymptotically stable.
Lemma 7 shows that the errors eψ and er converge asymptotically to zero. Following the same

steps as used in the previous section, we will now demonstrate the convergence of the error
variables (eu,ev,ex,ey) of System (Se). For eu and ev, Lemma 3 is modified using equations (32),
(33) and (37), as follows:

Lemma 8. Consider the dynamics of eu and ev presented in Equation (18). Then, the control

w1 =−U1σ

(
ξ êu

U1

)
−ρ1σ1(.) (70)

ensures that eu and ev are bounded and again verifiy the estimate (36).
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Proof: The proof of this Lemma exactly follows the line of the argument of Lemma 3 with
the controller w1 written as:

w1 =−U1σ

(
ξ eu

U1
+ f
)
−ρ1σ1(.),

where f = − ξ

U1
fu, converges to zero asymptotically, and by using the inequality xσ(x+ f ) ≥

xσ(x)−|xσ( f )|.

From this proof, it can be deduced that after a sufficiently large time interval, the dynamics
of eu and ev become(

ėu
ėv

)
=−µDρ

(
eu
ev

)
− rreA1

(
eu
ev

)
−ρ1σ1(.)

(
1
0

)
+O

(
euσ( fu), |er|

(
1+
∥∥∥∥ eu

ev

∥∥∥∥)) .

(71)
Therefore the proof of convergence of W1 to zero and W2 to a finite limit, presented in Lemma

6, will hold true.
From this discussion, it can be concluded that the replacement of known or measured states

in the controller by observed states does not affect the stability of the closed-loop system.

VI. SIMULATION

The performance of the presented controller is illustrated by simulation. We apply the controller
on an example of a monohull vessel, as considered in [15]. The length of this vessel is 32 m,
and a mass of 118×103 kg. The parameters of the damping matrices as given as follow:

d1 = 215×102Kgs−1, d2 = 97×103Kgs−1, d3 = 802×104Kgm2s−1,

m1 = 120×103Kg, m2 = 172.9×103Kg, m3 = 636×105Kgm2.
(72)

Based on these physical parameters, we find the parameters of System (1) as

a = 0.179, b = 0.561, c = 0.694, β = 0.126,κ = 8.32×10−4. (73)

Then, the parameters of the controller and the normalized system (S) are given by

a1 = 1.421, b1 = 4.449, d = 0.126,
k1 = 10, k2 = 10, U2 = 0.1,
U1 =

a1

2
, ρ =

a1

4
, M = 0.1.

(74)

The reference trajectory is generated by considering the surge force and the yaw moment as
constants:

τ1,re = 10, τ2,re = 0.05.

with the initial values

(xre(0),yre(0),ψre(0),ure(0),vre(0),rre(0)) =
(
0 m,0 m,0 rad, 0ms−1,0 ms−1,0 rads−1)).

The initial conditions of the vessel are as follow:

(x(0),yre(0),ψ(0),u(0),v(0),r(0)) =
(

50 m,−150 m,
π

4
rad, 50ms−1,0 ms−1,0 rads−1

)
.
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The reference trajectory and the vessel are shown in a 2D coordinate plane in Figure 1. It can
be seen that the vessel converges to the reference trajectory asymptotically. The convergence
can also be seen in the position errors graph shown in Figure 2. The orientation error and its
derivative also converge to zero, as seen in Figure 4. The convergence of eu and ev is shown in
Figure 3. Figures 5 and 6 show the control signals τ1 and τ2 respectively. It is clear from these
figures that the controllers are bounded. This is an essential property in real systems, where the
control signals are constrained.

VII. CONCLUSION

In this paper, we have addressed the problem of tracking of an underactuated surface vessel
with only surge force an yaw moment. The proposed controller ensures global asymptotic tracking
of the vessel, following a reference trajectory modeled by a virtual vessel. It is also shown that
the stability of the system is not affected if the state measurements are replaced by observers. The
using of saturated inputs is essential as in real life the actuators have limited output. Simulation
results illustrate the performance of the controller.

Fig. 1. Reference trajectory and the vessel

Fig. 2. Errors ex and ey
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Fig. 3. Errors eu and ev

Fig. 4. Errors eψ and er

Fig. 5. Control τ1
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Fig. 6. Control τ2
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