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General relations for quantum gases in two and three dimensions.
1I. Bosons and mixtures

1

Félix Werner>2 and Yvan Castin?

! Department of Physics, University of Massachusetts, Amherst, MA 01003, USA
? Laboratoire Kastler Brossel, Ecole Normale Supérieure,
UPMC and CNRS, 24 rue Lhomond, 75231 Paris Cedex 05, France
(Dated: October 5, 2012)

We derive exact general relations between various observables for /N bosons with zero-range in-
teractions, in two or three dimensions, in an arbitrary external potential. Some of our results are
analogous to relations derived previously for two-component fermions, and involve derivatives of the
energy with respect to the two-body s-wave scattering length a. Moreover, in the three-dimensional
case, where the Efimov effect takes place, the interactions are characterized not only by a, but
also by a three-body parameter R;. We then find additional relations which involve the derivative
of the energy with respect R;. In short, this derivative gives the probability to find three parti-
cles close to each other. Although it is evaluated for a totally loss-less model, it remarkably also
gives the three-body loss rate always present in experiments (due to three-body recombination to
deeply bound diatomic molecules), at least in the limit where the so-called inelasticity parameter
71 is small enough. As an application, we obtain, within the zero-range model and to first order in
7, an analytic expression for the three-body loss rate constant for a non-degenerate Bose gas with
infinite scattering length. We also discuss the generalization to arbitrary mixtures of bosons and/or

fermions.

PACS numbers: 67.85.-d
I. INTRODUCTION

Ultracold gases with resonant interactions, that is hav-
ing a s-wave scattering length much larger in absolute
value than the interaction range, can now be studied
experimentally thanks to the broad magnetic Feshbach
resonances, not only with fermionic atoms [1] but also
with bosonic atoms [2-4] or mixtures [5]. In this reso-
nant regime, one can neglect the range of the interaction,
which is equivalent to replacing the interaction with con-
tact conditions on the N-body wavefunction: In 3D, this
constitutes the so-called zero-range model [6-12], that
can also be defined in 2D (see e.g. [13-16]), and of course
in 1D [17, 18]. In each dimension, these models include
a length, the so-called d-dimensional scattering length a.
In three dimensions, when the Efimov effect occurs [6],
an additional length has to be introduced, the so-called
three-body parameter [19].

For the zero-range models, it was gradually realized
that several observables, such as the short distance be-
havior of the pair distribution function ¢ (r) or the
tail of the momentum distribution n(k), can be re-
lated to derivatives of the energy with respect to the
d-dimensional scattering length a. In 1D, the value of
g(2)(0) was directly related to such a derivative by the
Hellmann-Feynman theorem [17]; the coefficient of the
leading 1/k* term in n(k) at large k was then related to
the singular behavior of the wavefunction for two close
particles, and ultimately to ¢(* (0), by general properties
of the Fourier transform [20]. In 3D, for spin-1/2 fermions
(where the Efimov effect does not occur), an extension of
the 1D relations was obtained by a variety of techniques
[21-26], including the original 1D techniques. General-

izations were then obtained for 2D systems, for fermions
or bosons [27-30].

This is the second of a series of two articles on such
general relations. The first one covered two-component
fermions (Ref. [30], hereafter referred to as Article I).
Here, we consider single-component bosons, as well as
mixtures. In the 3D case, remarkably, the Efimov ef-
fect leads to modifications or even breakdown of some
relations, and to the appearance of additional relations
involving the derivative of the energy with respect to
the three-body parameter R;. Several of the results pre-
sented here were already contained in [31] and rederived
in [32] with a different technique, that allowed the au-
thors of [32] to obtain still other Efimovian relations for
N bosons [66].

The article is organized as follows. Section II intro-
duces the zero-range model and associated notations for
the single-component bosons. Section III presents rela-
tions which are analogous to the fermionic ones. Addi-
tional relations resulting from the Efimov effect are de-
rived in Section IV. As an application, the three-body
loss rate of a non-degenerate Bose gas for an infinite scat-
tering length is calculated in Section V. Finally the case
of an arbitrary mixture is addressed in Section VI. For
convenience, the obtained relations are displayed in Ta-
bles I, II, III.

II. MODEL AND NOTATIONS

In 3D, the zero-range model imposes the Wigner-
Bethe-Peierls contact condition on the N-body wavefunc-
tion: For any pair of particles 4, j, when one takes the



limit of a vanishing distance r;; = |r; — r;| with a fixed
value of the center of mass c;; = (r; + r;)/2 different
from the positions ry of the other N — 2 particles, the
wavefunction has to behave as

1 1
P(ry, ... rN) = (— - —) Aij(cij, (tr)riz) + O(rij)
Tij a
(1)
where a is the 3D scattering length. The a priori un-
known functions A;; are determined from the fact that
1) solves the free Schrodinger’s equation over the domain
where the positions of the particles are two by two dis-
tinct: Ev = Hvy with

N
H =
i=1

FL2
e U ©)

and U is the external potential. Also ¢ is normalized to
unity.

If there are three bosons or more, the Efimov effect
occurs [6], and the zero-range model has to be supple-
mented by a three-body contact condition that involves
a positive length, the three-body parameter R;: In the
limit where three particles approach each other (that one
can take to be particles 1, 2 and 3 due to the bosonic
symmetry), there exists a function B, hereafter called
three-body regular part, such that

U(ry,...,ry) ~ @(ry,ro,r3) B(C,ry,...

R—0

tN) (3)

where C = (r; +r2+13)/3 is the center of mass of parti-
cles 1,2 and 3, ® is the zero-energy three-body scattering
state

1 . R
®(rq,re,r3) = 72 Sin [|80| In E] b0 (L), (4)
t

and where R, € are the hyperradius and the hyperangles
associated with particles 1, 2 and 3. We take the limit
R — 0 in (3) for fixed 2 and C (in analogy with the
two-body contact condition).

We recall the definition of R and €Q: From the Ja-
cobi coordinates r = ry —ry and p = (2r3 —r; — rg)/\/g,
one forms the six-component vector R = (r, p)/ V/2; then,
the hyperradius R = /(r? + p2?)/2 is the norm of R, and
Q = R/Risits direction that can be parametrized by five
hyperangles, so that d°R = R°dRd*$Q). In Eq. (4), so =
1-1.00623782510. . . is Efimov’s transcendental number, it
is the imaginary solution (with positive imaginary part)
of scos(sm/2) = (8/v/3)sin(s7/6); ¢s,(2) is the hyper-
angular part of the Efimov trimers wavefunctions [6],
which, in the present case (single-component bosons), is
given by ¢,,(2) =N (1+Q)sinh [|so| (53 — «)] /sin(2a)
where Q = Pi3 + P»3 and P;; exchanges particles 4
and j, and where a = arctan(r/p). Here we in-
troduced, for later convenience, a normalization fac-

tor such that [d°Q¢s(2)* = 1. Using [d°Q =

JT dasin® acos? a [ d2F [ d2p, where d*F and d2p are

the differential solid angles in 3D, we obtain [33, 34]

2
N2 = % sinh(|so|7/2) [cosh(|50|ﬂ/2)

+ 5ol sinh(|so|r/2) - ;‘—% cosh(|sol/6)]. (5)

For N = 3 particles, it is well established that this
model is self-adjoint and that it is the zero-range limit of
finite-range models, see e.g. [12] and references therein.
The fact that the zero-range (i.e. low-energy) regime can
be described using the scattering length and a three-body
parameter only is known as universality [11]. For N =
4, an accurate numerical study [35] has shown, as was
suggested by earlier ones [36-38], that there is no need to
introduce a four-body parameter in the zero-range limit,
implying that the here considered zero-range model is
self-adjoint for NV = 4. Physically, this is related to the
fact that the introduction of R, imposed by the three-
body Efimov effect, breaks the separability of the 4-body
problem at infinite scattering length and prevents the
occurrence of a four-body Efimov effect for bosons [39].
Here we consider an arbitrary value of N such that the
model is self-adjoint.

In 2D, the zero-range model is a direct generalization
of the 3D one, since one simply replaces the 3D zero-
energy two-body scattering wavefunction ri_jl —a~! by
the 2D one In(r;;/a), where a is now the 2D scattering
length. For any pair of particles ¢ and j, in the limit
ri; = |r; —rj] — 0 with ¢;; = (r; + r;)/2 fixed, the
N-body wavefunction satisfies in 2D:

Y(ry,... rn) = In(rij/a)Aij(Cij, (Pk) ki) + O(Tij)(-
6)
There is no Efimov effect in 2D so that no additional
parameter is required [40-42]. The Hamiltonian is the
corresponding 2D version of (2).

IIT. RELATIONS WHICH ARE ANALOGOUS
TO THE FERMIONIC CASE

A first set of relations is given in Table I. These
relations and derivations are largely analogous to the
fermionic case (which was treated in Article I). An
obvious difference with the fermionic case is that there
are no more spin indices in the pair distribution function
g® and in the momentum distribution n(k). Accord-
ingly we now have ¢ (r,r') = (1 (£)dF (') (¢ ) (x)) =
Jddry . dlry [y, en) P Y 0 (e — 1) 8 (r = xy),
where 7,/; is the bosonic field operator, and the momentum
distribution is normalized as [n(k)d?k/(2m)? = N.
Apart from numerical prefactors, there are two more
important differences which appear in the 3D case due
to the Efimov effect.

The first important difference is that the derivatives
with respect to 1/a in [Tab. I, Egs. (4a,6a)] have to be
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TABLE I: For single-component bosons, relations which are analogous to the fermionic case. In three dimensions, the derivatives
are taken for a fixed three-body parameter R;. As discussed in the text, in three dimensions, the relation between energy and
momentum distribution is valid if the large cut-off limit A — +oo exists, which is not the case for Efimovian states (i.e.
eigenstates whose energy depends on R;). The notation (A, A) is defined in Eq. (8). v = 0.577215... is Euler’s constant.

taken for a fixed three-body parameter R;. This comes
from the relation

(507m),, = ) g

with the notation (given for generality in dimension d):

(A,4) = Z/( 11 dd?"k)/ddcij|Aij(Cijv(rk)k¢i7j)|2-

i<i?V  k#ij
(8)

Eq. (7) was already obtained in [12] in the case N = 3.
A simple way to derive it for any N is to use a cubic
lattice model, of lattice spacing b, with purely on-site
interactions characterized by a coupling constant go [see
the Hamiltonian in Eq. (14) with hg = 0], adjusted to
reproduce the correct scattering length [43]:

L_m / Ak _m ()
go  4mh%a  Jp (2m)3 h2k2

where the wavevector k of a single particle plane wave
on the lattice is restricted as usual to the first Brillouin
zone D = (=%, ). One then follows the same reasoning
as in (Article I, Section V, Subsections C-D-E). The key
point here is that, in the limit of b < |al, the three-body
parameter corresponding to the lattice model is equal
to a numerical constant times b [67]. Thus, varying the
coupling constant gg while keeping b fixed is equivalent

to varying a while keeping R; fixed, so that

@_( dE ) d(—1/a)
dgo ~ \d(-1/a) /g, — dgo

The left-hand side of (10) is given by the Hellmann-

(10)

Feynman theorem:

= 3 B D))
N(N —1)

=T 5 Z bg(N?l)h/)(rarar?H' e

S (11)

ry)[?

where 1) is the eigenstate wavefunction on the lattice. In
the zero-range limit b < |a|, ¢ has to match the contact
condition (1): Its two-body regular part Az, defined as

Y(r,r,rs,...,rn) = @(0)Ara(r,r3, ..., TN), (12)
with the correctly normalized zero-energy two-body lat-
tice scattering wavefunction ¢(r) [¢(r) = r~t—a=t+0(1)
at r > b], has to converge to the zero-range model regular
part. Similarly, in the right-hand side of (10), the lattice
model’s (dE/d(—1/a))g, tends to the zero-range model’s
one if one takes the zero-range limit while keeping R
fixed [68]. Finally, the last factor of (10) can be evalu-
ated from (9). Using the relation ¢(0) = —4nh?/(mgo)
established in [30], we obtain [Tab. I,Eq. (4a)]. The same
lattice model reasoning explains why the second-order
derivative in [Tab. I, Eq. (6a)] also has to be taken for a

fixed R;.

The second important difference with respect to the
fermionic case is that the relation [Tab. I, Eq. (5a)] breaks
down in general, and only holds for special states for
which the infinite-cutoff limit A — oo exists (such as the
universal states for 3 trapped bosons of [44, 45]). This
was overlooked in [28], and was shown for an Efimov
trimer in [34]. The correct relation valid for any N-body
state in presence of the Efimov effect was obtained in [32].



IV. ADDITIONAL RELATIONS COMING
FROM THE EFIMOV EFFECT

In addition to modifying relations which already ex-
isted for fermions, the Efimov effect gives rise to addi-
tional relations, involving the derivative of the energy
with respect to the logarithm of the three-body parame-
ter. These relations are displayed in Table II.

A. Derivative of the energy with respect to the
three-body parameter

Our first additional relation [Tab. II, Eq. (1)] expresses
the derivative of the energy with respect to the three-
body parameter R; in terms of the three-body regular
part defined in Eq. (3). This is similar to the relation
(7) between the derivative with respect to the scattering
length and the (two-body) regular part [69]. We will first
derive this relation using the zero-range model in the case
N = 3, and then using a lattice model for any N.

1. Derivation using the zero-range model for three particles

We consider two wavefunctions v, ¥, satisfying the
two-body boundary condition (1) with the same scat-
tering length a, and the three-body boundary condition
(3,4) with different three-body parameters Ri1, Ria. The
corresponding three-body regular parts are denoted by
By, By. We show in the Appendix A that

{| o/In g }
t1

h 3\/_|80|
x/dgCB’f(C)Bg(C), (13)

(1, Hipg) — (Hip1,12) =

which yields [Tab. II, Eq. (1)] by choosing ; as an eigen-
state of energy F; and taking the limit R;y — Ry [70].

2. Derivation using a lattice model

We now derive [Tab. II, Eq. (1)] for all NV using as in
Sec. III a cubic lattice model, except that the Hamilto-
nian now contains a three-body interaction term (of cou-
pling constant hg) allowing one to adjust the three-body
parameter R; without changing the lattice spacing:

&k Wk
Hite = | o3
ot / 2m)3 2m ©

+Zw )T ()
+ 2> P E ) +m2§wwwwmm
' (14)

Here the bosonic field operator obeys discrete commu-
tation relations [¢)(r), )t (r)] = p/b® and the plane

wave annihilation operator obey as usual [éy, éL,] =
(2m)38(k — k') provided that k and k’ are restricted to
the first Brillouin zone D.

We then define the zero-energy three-body scattering
state ¢o(ri,ra,r3) as the solution of Hyi|po) = 0 for
a = 00, with the boundary condition

¢0(T1,I‘2,I‘3) ~ (I)(I‘l,I‘Q,I‘g) (15)
in the limit where all interparticle distances tend to infin-
ity. Here @ is the zero-range model’s zero-energy scatter-
ing state, given in Eq. (4). This defines the three-body
parameter R:(b, hg) for the lattice model (since ® de-
pends on R;). The Hellmann-Feynman theorem writes:

9B S (gl g ()

For the lattice model we define the three-body regular
part B through:

Y(r,r,r,ry,...,rn) = ¢0(0,0,0) B(r,ry,...

.ry); (17)
in the zero-range limit, we expect that this lattice model’s
regular part tends to the regular part of the zero-range
model defined in Egs. (3,4). Thus, in the zero-range limit:

<%>a = N(N—1)(N—-2)|$0(0,0,0)| (% b

X /d?’rd?’m...d?’

It remains to evaluate the derivative of hg with respect
to R;: This is achieved by applying (18) to the case of
an Efimov trimer in free space, where the regular part
can be deduced from the known expression [34] for the
normalized wavefunction. This yields [Tab. II, Eq. (1)].

r |B(r,ry,...,rn)2 (18)

B. Short-distance triplet distribution function

Similarly to the pair distribution function
¢@®, one defines _the triplet distribution function
g3 (r1,ra,w3) = (T ()7 (r2) 01 (r3) 1) (x3) e (r2) ¢ (r1)),
which is given in first quantization by N(N — 1)(N —
2) fd3r4 oo dPry|(ry, .., en) 2. In the limit R — 0
where the three positions ri,rs,r3s approach each
other, the many-body wavefunction behaves according
to (3). The result [Tab. II, Eq. (2)] then directly
follows, using [Tab. II, Eq. (1)]. As a consequence, in
a measurement of the positions of all the particles, the
mean number of triplets of particles having a small



oF _ 1% V/3|s0)? 3~ 13 3 2
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TABLE II: For single-component bosons in 3D, additional relations coming from the Efimov effect. B is the three-body regular
part of the N-body wavefunction; g(?’) is the triplet distribution function; I is the decay rate due to three-body losses and 7 is

the corresponding inelasticity parameter (see text).

hyperradius R is given by

1
Niriplets(R < €) = 5/ Brid®r3d®rsg® (r1, 12, 13)
R<e

i <5(8E ))a62 {1Re(5/3t7)2”0|

S0 202502 \ O(In Ry 1+ i]so]
(19)

where we used the Jacobian % = 3v/3 and the
division by 3! takes into account the indistinguishability

of the particles within a triplet.

C. Decay rate due to three-body losses

In experiments, the cold atomic gases are only
metastable: There exist deeply bound dimer states, that
is with a binding energy of order h?/(mb?), where b is
the van der Waals length of the real atomic interaction.
These deeply bound states can be populated by three-
body collisions, which are strongly exothermic (with re-
spect to the trapping potential depth) and thus lead to a
net loss of atoms. Usually, one expects that these deeply
bound dimer states have a vanishing small effect on the
metastable many-body states for b — 0; the metastable
states then converge to stationary states described by the
zero-range model.

In presence of the Efimov effect, however, the probabil-
ity Pelose to find three particles within a distance b (e.g.,
with an hyperradius R < b) vanishes only as b? accord-
ing to Eqgs. (3,4,19). As the three-body loss rate scales
as Pelose/ mb?, it does not vanish in the zero-range limit
[9, 46]. Fortunately, one can still in that limit simply in-
clude the losses by modifying the three-body boundary
conditions [47, 48]: One keeps Eq. (3) with a modified ®
deduced from Eq. (4) by the substitution

R 1 ;
sin [|So| In E] =5 [e*”em“““(R/Rf)

_eNe—tlsolIn(R/Re) | (20)

The so-called inelasticity parameter n > 0 determines to
which extent the reflection of the incoming hyperradial
wave exp[—i|so|In(R/R;)] on the point R = (where the

model-dependent short range three-body physics takes
place) is elastic.

In this work, we have considered so far the ideal case
where 7 is strictly zero. We now show that this allows
to access the decay rate due to three-body losses to first
order in n by taking simply a derivative of the loss-less
eigenenergies E. In a first approach, we simply assume
that E(In R;) is an analytic function of In R;. As the sub-
stitution (20) simply amounts to performing the change

InR; -+ InR; — ﬂ, (21)
|sol

we conclude that the resulting eigenenergy for non-zero
7 acquires an imaginary part —ifil’/2 given to first order
in n by [Tab. II, Eq. (3)]. Furthermore, we have devel-
oped an alternative approach, that relates for arbitrary
n the decay rate I' to the integral of |B|?, where B is de-
fined by Eq. (3), see Appendix B. Combining this with
[Tab. II, Eq. (1)] in the limit n — 0 reproduces the rela-
tion [Tab. II, Eq. (3)].

V. APPLICATION: THREE-BODY LOSS RATE
CONSTANT FOR A BOSE GAS

We consider a 3D Bose gas, in a cubic quantization box
of volume V', at thermal equilibrium in the grand canon-
ical ensemble and in the thermodynamic limit. Within
the zero-range model, with a truncation of the three-body
energy spectrum (that is introducing a lower energy cut-
off, as discussed below), relation [Tab. II, Eq. (3)] can
be used to obtain, to first order in the inelasticity pa-
rameter 7, the three-body loss-constant Ls customarily
defined by

%N = —L3n*N (22)
where N is the mean particle number and n = N/V the
mean density. Applying [Tab. II, Eq. (3)] to each many-
body eigenstate, taking a truncated thermal average and
keeping in mind that each loss event eliminates three par-
ticles out of the system [71], we obtain

dL3 6 N
p=0)= 23
dn (n hlso|n?N (8(1nRt))#7T (23)




where the derivative of the grand potential 2 is taken for
fixed chemical potential y and temperature 1" [72].

To obtain analytical results, we restrict to the non-
degenerate limit g — —oo, where the density vanishes,
nA3 — 0, with X = [2rh2/(mkpT)]"/? the thermal de
Broglie wavelength. One then can use the virial expan-
sion [49-53]:

1%
Q. T) = —13 kT Y bge?t, (24)
q>1
with § = 1/(kgT), and b, only depends on g-body

physics and temperature. The leading order contribu-
tion that involves In R; is thus for ¢ = 3, so that
4
dn nA350 |so| d(In Ry)
where we used nA\3 ~ exp(Bu).

The coefficient b, can be deduced from the solution of
the ¢-body problem. We thus restrict to the resonant
case 1/a = 0, where the solution for ¢ = 3 is known in
free space [6]. Due to separability in hyperspherical co-
ordinates [54] the solution is also known for the isotropic
harmonic trap case [44, 45], which allows us to use the
technique developed in [53, 55] to calculate bs:

Z
bs = 3%/2 lim [Z_B —Zs+ Zl} (26)

w—0 1

where Z,(w) is the canonical partition function at tem-
perature T for the system of ¢ interacting bosons in the
harmonic trapping potential U(r) = %mw r°. Since the
center-of-mass is separable, Z5/Z; simply equals the par-
tition function Z3 int of the internal variables. The internal
3-body eigenspectrum in the trap involves fully univer-
sal states (not depending on R;), and a single Efimovian
channel with R;-dependent eigenenergies E,(w), n € Z,
solving a transcendental equation. Within the boundary
conditions (3,4), the sequence E,(w) is unbounded be-
low. To give a mathematical existence to thermal equilib-
rium, we thus truncate the sequence, labelling the ground
three-body state with the quantum number n = 0 and
then keeping only n > 0 in the thermal average [73].
In the free space limit w — 0, this corresponds to a
purely geometric spectrum of trimer states with a ratio
exp(—27/|so|) and a ground state Efimov trimer energy:

2h2 2
Eo(w) =, ——msel (Uts) = g, (27)
t

Given FEi, this uniquely determines the three-body pa-
rameter R; [74]. This finally leads to

Obs 33/2 _ OF,(w)
) = 1 BEn(w) ZZn\ ) 9
(8(lnRt))T kBTwl—%Ze o) 2

Details of the calculation of that limit are exposed in Ap-
pendix C. The resulting expression for the three-body

loss rate constant can be split in contributions of the
three-body bound free-space spectrum and continuous
free-space spectrum:

dL3
Z(n=0
d’/] (77 ) n)\3_>~>0

72\/_ (Sbound + Scont) (29)

The bound-state contribution naturally appears as a
(rapidly converging) discrete sum over the trimer states:

Sbound = |S

T 3" BEe /10l exp (ﬁEte—%n/\SOI) _
ol =3

(30)
This allows to predict the mean number Ny, of trimers
with energy Firim = —Ete_%"/‘s[” in the loss-less system

at thermal equilibrium: Since the contribution to dN/dt
(to first order in 1) of the term of index n in (30) is intu-
itively —3I'tyim Nirim, Where the decay rate of the trimer
is Ttyim =~ (20/k|S0]) O R, Etrim, We obtain

Ntrim

N 3%/2(n\?)%e = Prsim, (31)

This agrees with Eq. (188) of [50] obtained from a chem-
ical equilibrium reasoning.

The continuous-spectrum contribution to (29) natu-
rally appears as an integral over positive energies F, see
Appendix C. Mathematically, it can also be turned into
an easier to evaluate (rapidly converging) discrete sum
[75]:

Seont = 5+ 2 € " Re (1~ inlsol) (BE) ™™

n>1

l\D|>—‘

(32)
As expected, Scons is a log-periodic function of E;. In
practice, due to |sp| > 1, it has weak amplitude oscilla-
tions, between the extreme values ~ 0.478 and ~ 0.522.
Our continuous-spectrum contribution to L3 is equiva-
lent, to first order in 7, to the result of a direct three-
body loss rate calculation for the thermal ensemble of
free-space three-boson scattering states [56].

In experiments, the interaction potential has a finite
range b, and the actual L3 will deviate from the above
results. For clarity, we now denote with a star the quan-
tities corresponding to a finite b. Due to the three-body
losses, the so-called weakly bound trimer states are actu-
ally not bound states, they are resonances with complex
energies E' — ihl' /2 Assuming that I'} < |Ef|, w
can name these resonances quasi-bound states or quasi-
trimers. Their contribution to the decay rate of the Bose
gas, from the reasoning below Eq. (30), can be estimated
as

. ~ 332 (nA®)2N Y e PPn, (33)

quasi—bound —
n>0

This is meaningful provided that the thermal equilibrium
trimer population formula Eq. (188) of [50] makes sense
in presence of losses, that is the formation rate of quasi-
trimers of quantum number n has to remain much larger



than I'? (in the zero-range framework, this is ensured by
first taking the limit » — 0 then the limit of vanishing
density nA*> — 0). Evaluation of the finite-b positive-
energy continuous spectrum contribution L3 s~ to the
three-body loss rate constant is beyond the scope of this
work. We can simply point out that, taking the limit
b — 0 (with a fixed, infinite scattering length) makes
L3 ont>0 converge to the value obtained in the zero-range
finite 7 model; further taking the zero-n limit gives

dLS cont

1
lim ~ ( lim L = ———(n=0). 4
Pt (blﬁ% 3cont>0) o =0 G4

In practice, as soon as b < A and 7 < 1, we expect that
dLS cont
L3 cont>0 =1 ( = 0)

VI. ARBITRARY MIXTURE

In this Section we consider a mixture of bosonic and/or
fermionic atoms with an arbitrary number of spin com-
ponents. The N particles are thus divided into groups,
each group corresponding to a given chemical species
and to a given spin state. We label these groups by
an integer o € {1,...,n}. Assuming that there are no
spin-changing collisions, the number N, of atoms in each
group is fixed, and one can consider that particle ¢ be-
longs to the group o if i € I,, where the I,’s are a fixed
partition of {1,..., N} which can be chosen arbitrar-
ily. For example, a possible choice is Iy = {1,...,N1};
I, = {N1+1,...,N1 + Na}; etc. The wavefunction
¥(r1,...,ry) is then symmetric (resp. antisymmetric)
with respect to the exchange of two particles belong-
ing to the same group I, of bosonic (resp. fermionic)
particles. Each atom has a mass m; and is subject to
a trapping potential U;(r;), and the scattering length
between atoms ¢ and j is a;;. We set m; = m, and
aij = Qg0 for i € I, and j € I». The reduced masses
are llyor = MeMyr /(Mg +meys). We shall denote by Py
the set of all pairs of particles with one particle in group
o and the other one in group o', each pair being counted
only once:

P,y = {(’L,j) S (Ia X Ia’)

(Ior x Is) /i < j}. (35)

The definition of the zero-range model is modified as
follows: In the contact conditions (1,6), the scattering
length a is replaced by a;;, and the limit r;; — 0 is
taken for a fixed center of mass position ¢;; = (m;r; +
m;r;)/(m; + m;); moreover Schrédinger’s equation be-
comes

- Arl +Ui(ri)| v = Ev. (36)

> [

Our results are summarized in Table III, where we in-

troduced the notation in dimension d:

(A (1) AZ))M, = Z / H ddrk /ddcw

(4,9)EP, o1 k#i,j
AD* (o 4@ e . 37
¥ (CU ) (rk)]GéLJ) 17 (CU ? (rk)k75717.7)' ( )

Since ago' = ag75 there are only n(n + 1)/2 independent
scattering lengths, and the partial derivatives with re-
spect to one of these independent scattering lengths are
taken while keeping fixed the other independent scat-
tering lengths. We note that, in Ref. [28], [Tab. III,
Egs. (4a,4b)] were already partially obtained [76].

In 3D the three-body Efimov effect can occur, e.g. if
the mixture contains a bosonic group, or at least three
fermionic groups, or two fermionic groups with a mass ra-
tio strictly larger than the critical value 13.6069... [57—
59]. In this case, as for single-component bosons, the
derivatives with respect to any scattering length have
to be taken for fixed three-body parameter(s), and the
relation between E and the momentum distribution
(line 4 of Table III) breaks down, which was not realized
in [28] [77]. When the Efimov effect occurs, there appear
new relations analogous to the ones given in Section IV
for bosons; we do not give these here for conciseness.

The derivations of the relations of Tab. III are anal-
ogous to the ones already given for two-component
fermions and single-component bosons. The lemmas [Ar-
ticle I, Egs. (33,35)] are replaced by

<1/115 Hl/’2> - <Hw15 1/12>
27h? 1 1 1
) A ;
. oo ( O a(2) ) (A( A ))00/ in 3D
= Tth Aye (1)0'0' 0 . .
— 1n(aaa,/am7,)(A y AV ) oo in 2D,
(38)

where 11 and 19 obey the same contact conditions (in-
cluding the three-body ones if there is an Efimov effect),
except for the independent scattering length a,,/, that is
equal to affg, for v;, ¢ = 1,2. The momentum distribu-
tion for the goup o is normalized as [ n,(k)d’k/(2m)? =
Ny. The pair distribution function is now defined by

92 (u,v) = /ddrl...ddrN (1. .. en)?

<

1€lo,j€ 51 ,1#]

d(u—r))d(v—r;). (39)

The Hamiltonian of the lattice model used in some of the
derivations now reads

Hiaw = Ho+ Y, 90,00 Woor (40)

o<lo’
where Hy = vazl [f n -Ar, + U (rz)} with the discrete
Laplacian defined by <r|Ar|k> = —k%(r|k) (for k in the



Three dimensions Two dimensions
oF 2 h? oF h?
= A A) o 1 _— = A A) o 1
(—1/a,o") Hoo! (4, A)o0 (1a) I(lnager) MW/( Ao (1b)
_ 4 _ S8Tloor oF _ 4 _ Ampyer  OF
Co = kgrfook no(k) = Z,(l o) h? 9(—1/ayer) (22)|Co = kgrfook no(k) = Z,(l T 0o07) h? d(lnag,) (2b)
3 (2) ’ _ Mo 2 (2) mes _ Me
/ng""' <R+mo+ma nR mo—&-marr) /ng”' <R+ Mo + My nR ma—&-ma,r)
Moo oF = Koo’ oF 2
o A 0e0) s BT ) 1 (3a) o B 0e0) s gy T (3b)
1 OF . oF oot A7
E— Etrap = <Z, mm E— Etrap = Ah_)H;o - Z, 8(1n (lgg/) In ( B )
&k h2K? Co d2k: h2k2
ne (k) — — 4 -(k 4
+Z/ 27T32m { (k) k‘4] (42) +Z/k<A n() (4b)
1 2B orh?\? A A0y 2 1 0°E, 2\ 2 ACD Ay 2
58(781/a /)2 _ < Wh/) Z |( E77E)/aa | (5a) ia(l?la /)2 _ <ﬂ'h/) Z |( E77E)/UU | (5b)
oo Moo n’,En/#En n n oo Moo ",,En/#En n n
0’F 0’F
(3(_1/a00,)2>T <0 (6a) (78(111@”/)2)T <0 (6b)
0°FE 0°FE
e = b
<a(,1/aw,)2>s <0 (7a) <3(1nawl)2>s <0 (7b)

TABLE III: Main results for an arbitrary mixture. In three dimensions, if the Efimov effect occurs, the derivatives must be
taken for fixed three-body parameter(s), the expression for E in line 4 breaks down, and the last two lines, with derivatives of
the free energy F' and of the mean energy E respectively taken at fixed temperature 7' and entropy S, are meaningless in the

absence of spectral selection (see Sec. V). v = 0.577215. ..

first Brillouin zone) and Wy, = Z(i,j)er,/ 6ri,rjb_d.
In the formulas of Article I involving the two-body
scattering problem, one has to replace go by go,00/, @
by asor and m by 2u,,. Denoting the correspond-
ing zero-energy scattering wavefunction by ¢,/ (r), the
lemma [Article I, Eq. (56)] is replaced by (' |W,o |th) =
|¢UU’ (0)|2 (A/’A)UU

VII. CONCLUSION

In dimensions two and three, we obtained several re-
lations valid for any eigenstate of the IN-boson problem
with zero-range interactions. The interactions are char-
acterized by the 2D or 3D two-body s-wave scattering
length a and, in 3D when the Efimov effect takes place,
by a three-body parameter R;. Our expressions relate
various observables to derivatives of the energy with re-
spect to these interaction parameters. Some of the ex-
pressions, initially obtained in [31], were derived in [32]
with a different technique. For completeness, we have
also generalized some of the relations to arbitrary mix-
tures of Bose and/or Fermi gases.

For the bosons in 3D, especially interesting are the rela-
tions involving the derivative of the energy with respect
to the three-body parameter. Physically, one of then
predicts (to first order in the inelasticity parameter 7)
the decay rate I' of the system due to three-body losses,

is Euler’s constant.

that occur in cold atom experiments by recombination to
deeply bound dimers. This means that one can extract I"
from the eigenenergies of a purely loss-less (n = 0) model.
As an application, we analytically obtained (within the
zero-range model, and to first order in 7)) the three-body
loss rate constant Lg for the 3D non-degenerate Bose gas
at infinite scattering length. Experimentally, this quan-
tity is under current study with real atomic gases [56].

Mathematically, the 3D relations hold under the as-
sumption that the two-body scattering length and the
three-body parameter are sufficient to make the N-boson
problem well-defined, with a self-adjoint Hamiltonian.
Therefore they may be used to numerically test this as-
sumption, for example by checking the consistency be-
tween the values of the derivative of the energy with re-
spect to the three-body parameter obtained in different
ways. Three possible ways are: numerical differentiation
of the energy, the present relation on the short-distance
triplet distribution function, or the virial theorem which
also involves this derivative [60].
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Appendix A: Derivation of a lemma

Here we derive the lemma (13) for three bosons in the
zero-range model. The first step is to express the Hamil-
tonian in hyperspherical coordinates [12, 61]: Using the
value of the Jacobian given below Eq. (19),

(1, Hipa) — <H7/)1, a)

sf/ dRR5/d5 /d3
{ui <aa;2 }52(;; i gAc ) va - [0 o vl
%3\/??{/0 dRR5/d5QAc(R,Q)
+/d5Qd3CAR(Q,C) +/O dRRs/d3CAQ(R, C)}

(A1)

where

AG(R, Q) = /d3
& 0?2 0

Ane0) = [ dRR5{wr(aR2 233)%

[Z/JTH?%]}

Aar0) = [ @0 { LA wl}

Tq being a differential operator acting on the hyperangles
and called Laplacian on the hypersphere.

The quantity Ag can be computed using the following
simple lemma: If ®;(R) and ®2(R) are functions which
decay quickly at infinity and have no singularity except
maybe at R = 0, then

o0 2 50
5 * -~ R o *
[Fanne o (22 20, 01 0]
L OF» OF;
EE%R(E or ~? aR> (44)

where F;(R) = R? ®;(R). Expressing the right-hand-side
of (A4) thanks to the boundary condition (3) then yields
the desired result (13), because the other two contribu-
tions A¢c and Agq both vanish as we now show.

The quantity Ac(R,€2), rewritten as % [d*C V¢ -
(ViVeths — 2Vept) with the divergence theorem, is
zero, since the 1;’s are regular functions of C for every
(R, €2) except on a set of measure zero.

¢ {vi 3hc v~ i o val

(A2)

(A3)

It remains to show that

Aq(R,C) =0 for any C and R > 0. (A5)
We will use the fact that iy and s satisfy the two-
body boundary condition (1) with the same a, and apply
lemma [Article I, Eq. (33)]. More precisely, we will show
that for any smooth function f(R, C) which vanishes in
a neighborhood of R = 0,

/Oo dRR5/d3Cf(R,C)2AQ(R, C)=0; (A6)
0

this clearly implies (A5). To show (AG) we note that

- 5_23@/00 dRR5/d3Cf(R,C)2An(R, C)
m 0

h—;3\/§/oodRR5/d5Q/dSC
{Gen B -t o w}. 4

which can be rewritten as

/ BrydPrad®rs {(F07)H(f) — [0F ¢ o]}

2 o0
+2h—3\/§/ dRR5/d5Q/d3C

{00 (g + 3o + 3 ) () — o+ wal |
(A8)

The first integral in this expression vanishes, as a conse-
quence of the lemma [Article I, Eq. (33)]. This lemma is
indeed applicable to the wavefunctions fv;: They van-
ish in a neighborhood of R = 0 (see the discussion in
Article I), moreover they satisfy the two-body boundary
condition for the same value of the scattering length a (as
follows from the fact that R varies quadratically with r
for small ). The second integral in (A8) vanishes as well:
The contribution of the partial derivatives with respect
to R vanishes as a consequence of lemma (A4), and the
contribution of A vanishes because the fi;’s are regular
functions of C.

Appendix B: Relation between I' and B for any 7

Contrarily to the remaining part of the paper, we as-
sume here that the inelasticity parameter n > 0, so
that the N-body wavefunction v obeys contact condi-
tions given by Eq.(3) and by Eq.(4) modified according
o (20). As a consequence, 1 is in general an eigenstate
of H with a complex energy E — ihl'/2, where T is the
decay rate. If ¢ is normalized to unity at time 0 then

d 2 —
— 5 U5 = 0). (B1)



This can be transformed using the continuity equation,
valid for all r;; > 0, and that results as usual from
Schrédinger’s equation:

Ot (X, 1)]2 + divxJ =0 (B2)

where we collected all the particles coordinates in a single
vector X = (ry,...,ry) with 3N components, and where
we introduced the probability current in R3%:

h
J= Elm (" gradx ). (B3)

To avoid the singularities that appear in 1 for three coin-
ciding particle positions, we introduce exclusion volumes
Bijk(e) = {X € R¥N /Ry < €} for all triplets {i,j, k}
of particles (of hyperradius R; i) in the integral defining
|[1]|?, taking the limit € — 0 at the end of the calculation.
This leads to

I'=—1lim

e—0 Jr

d*N X Oy (lv (X, 1)]%)

=i > [

{i.4,k}

dN-1s.J  (B4)

ijh(€)

with the surface element d*VN—!S oriented towards the
exterior of Bjj,. Here I, is R*N minus the union of all
Bijk(€); it is thus the set of all the X having all the
R;ji, > €. We use the bosonic symmetry and we single
out the decay rate due to particles 1, 2 and 3:

N(N —1)(N -2
I=— ( ?( )1im/ d*N='S.J. (B5)
3_ e—0 9B123(¢)

The integration domain in Eq. (B5), which is the bound-
ary of Bz (€), is actually a cylinder in R3Y | and the coor-
dinates number 10 to 3N of the surface element ¢*V—1S
are zero, so that one can keep the contribution to the
probability current of the first 3 particles only: We can
thus replace d>V~1S-J with d®S;-J;, the nine-coordinate
vectors J; and d®S; coinciding with the first nine coor-
dinates of J and d3N~!S. For fixed ry,...,ry we thus
have to evaluate

~v(e) = —/ d®S; - J, = / d3r1d3r2d3r3divr17r2,r3Jt,
R=¢ R>e

(B6)
where we used the divergence theorem. We then change
the integration variables from rj,ro,r3 to C, R, with a
Jacobian given below Eq. (19), we use the identity

3
Z divy, (v*grad, v — c.c.) = divg (¢ *gradge — c.c.)
i=1

+ %divc (¢ gradg?y —c.c.) (B7)

and we apply backwards the divergence theorem, to ob-
tain

2(e) = —3V3 ¢ / e / 0 L imly Oplne.. (B8)
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Using Eq. (3) and Eq.(4) modified according to (20), we
finally obtain

P = Ly - - 2L sl simnnl B (B9)

with ||B||2 = fd30d3T4 e dBTN |B(C, ryq,... 7I‘N)|2. In
the limit 7 — 0, || B||? tends to its value in the loss-less
model and we recover [Tab. II, Eq. (3)] using [Tab. II,

Eq. (1)].

Appendix C: Free space limit of a virial sum

Here we derive the free-space limit (28) of a sum
over the internal Efimovian eigenenergies F,, (w) for three
bosons in a harmonic trap with oscillation frequency w,
interacting in the zero-range limit with infinite scattering
length. A rewriting of the implicit equation for E,, of [44]
gives, for n € N:

1+807E~1n |So| 2hw -
ImlnF( 5 )Jr 5 In o +nm=0. (Cl)

We have introduced the notation E, = FE,/(hw). Also,
I'(z) is the Gamma function and its logarithm InT'(z) is
the usual univalued function with a branch cut on the
real negative axis. The left-hand side of (C1) can be
shown to be a decreasing function of E,, using relation
8.362(1) of [62], so that Eq. (C1) determines E, in a
unique way. The fact that E, as given by (27), is the
free space ground trimer binding energy can be checked
from (C1) by a Stirling expansion for E,, — —oc.

To evaluate the sum in (28) for w — 0, we collect the
eigenenergies F,, into three groups. The (finite) transi-
tion group corresponds to |E, | not much larger than fuw,
and gives a vanishing contribution to (28) for w — 0.
The bound state group corresponds to negative eigenen-
ergies with |E,| > hw; the corresponding free space
trimer sizes are much smaller than the harmonic oscil-
lator length [h/(mw)]'/?, so that the trapping potential
has a negligible effect and E,, (w) is close to the free space
trimer energy of quantum number n:

Ep(w) o~ —Eye=2mm/Isol, (C2)
This directly leads to the contribution Shound in (30).

Finally, the third group contains the positive eigenen-
ergies with E),, > hw, that shall reconstruct the free space
continuous spectrum for w — 0. As shown in Sec. 3.3.a
of [12], these E, are almost equally spaced by 2hw. We
need here the leading order deviation from equispacing,
that we parametrize with a “quantum defect” A as

E, = 2n+A(E,)+0(1/n).
“+o0

For E,, — 400, Stirling’s formula cannot be immediately
applied to (C1) since the argument of the Gamma func-
tion remains at finite distance from the poles of T' (on



the real negative axis). Using I'(2)I'(1 — z) = 7/ sin(7z)
[62], we obtain the useful identity:

—ImInl (#) —ImInT <#>

+ gE +Im In [1 + eiﬂso‘e*”E} (C4)

for all real E. Note that the logarithm in the last term
of that expression is unambiguously defined (by a series
expansion of In(1+u) with u) since e~71%l < 1. Stirling’s
expansion can now be used in the right-hand side of (C4),

turning (C1) into an implicit equation for the “quantum
defect” A:

E 2 .
A(E) — |SO| In ( ) — ZImIn |:1 + 677r|50\6717rA(E):| )
™

™ Et
(C5)
Since exp(—7|sg|) < 1, we have a small-deviation prop-
erty: A(E) only slightly deviates, by Olexp(—m|sol)],
from the first term in the right-hand side of (C5). This
deviation was not fully taken into account in §3.3.a of

11

[12]. To remain exact, we multiply (C5) by im on both
sides, and we exponentiate the resulting equation. Since
exp[—2iIm In(1+u)] = (14+u*)/(14+u), we obtain a solv-
able equation for exp(imrA) that determines A modulo 2.
From the small-deviation property stated above, we can
lift the modulo 2 uncertainty:

_ sl (BN, 2 ol (BT
A(E) = - In E, —|—7rIm In|l—e E, .
(C6)

Finally, it remains in (28) to replace the sum over n (for
E, in the third group) by an integral fOJrOO dE/(2hw),
where 2hw is the leading order level spacing, to obtain
the continuous spectrum contribution

cont 3/2 “+oo
9bs _ 3 / i opB OAE)
8(111 Rt) T 2]€BT 0 8(111 Rt)

(C7)
After expansion of 9y, g, A(E) in powers of e~ "Il the
integral over E can be expressed in terms of the Gamma
function, which eventually leads to (32).
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separable potential model.

The zero-range limit for a fixed R: can be taken by
repeatedly dividing b by the discrete scaling factor
exp(m/|so|) and by adjusting go so that a remains fixed.
In this limit the ground state energy tends to —oo as
follows from the Thomas effect, but the restriction of
the spectrum to any fixed energy window converges (see
e.g. [12]).

We note that it was already speculated in [23] that, in
presence of the Efimov effect, “a three-body analog of the
contact” may “play an important role”.

We note that 11 and 12 do not satisfy the lemma [Arti-
cle I, Eq. (33)] because they are too singular for R — 0.
If this lemma was applying, the right-hand side of (13)
would be zero and the zero-range model (1) would be
self-adjoint without need of the extra contact condition
(3), which is not the case.

If one normalizes to unity the eigenstate 1 at time O,
the norm squared ||1(¢)||? is the probability that no loss
event occured during t. For the complex eigenenergy E —
thI'/2, this leads to a loss event rate equal to I', and to
a particle loss rate dN/dt = —3T".

To give a meaning to a N-body thermal average within
the zero-range model requires, for N > 4, a procedure
whose identification is beyond the scope of this paper.
This is here a formal issue, as we will consider the non-
degenerate limit allowing us to restrict to the three-body
sector.

Physically, our n = 0 trimer state corresponds to the low-
est weakly bound trimer. As usual in cold atom physics,
the deeply bound (here trimer) states are excluded from
the thermal ensemble since their (very exothermic) colli-
sional formation simply leads to particle losses

In reality, for an interaction with finite range or ef-
fective range b, the Efimovian trimer spectrum is only
asymptotically geometric (n — +00); there exist var-
ious models [63, 64], however, where E: is of order
exp(—27/|s0])h?/(mb?) so that Ry > b, the ground state
Efimovian trimer is close to the zero-range limit, and the
spectrum is almost entirely geometric.

This is rapidly converging since |T'(1 — in|so|)|> =
mn|so|/ sinh(mn|sol) [62].

Our expressions [Tab. III, Egs. (4a,4b)] complete the ones
in [28] in the following way. In Ref. [28],the coefficient of
1/ayo was not expressed as 0E/9(1/ay,); only the case
of a spatially homogeneous system was covered; finally,
an arbitrary mixture was covered only in 3D, while in 2D
only the case of a 2-component Fermi-Fermi mixture was
covered.

Indeed, in presence of the Efimov effect, the momen-
tum distribution has a subleading contribution dn. (k) o
1/k°, evaluated in the bosonic case in [65], leading to
a divergent integral in this relation. For two-component
fermions with a small enough mass ratio, the integral
converges, because dn, (k) o 1/k5T2® where s > 0 is
the scaling exponent of the three-body wavefunction,
P(Ary, Arz, Arz) oc A*72 for A\ — 0, see a note in [22]
and note 6 in [30].



