N

N
N

HAL

open science

Walking automata in the free inverse monoid

David Janin

» To cite this version:

‘ David Janin. Walking automata in the free inverse monoid. 2012. hal-00738793v2

HAL Id: hal-00738793
https://hal.science/hal-00738793v2
Submitted on 4 Feb 2013 (v2), last revised 3 Oct 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00738793v2
https://hal.archives-ouvertes.fr

9 LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1464-12 (revised february 2013)

Walking automata in the free inverse monoid

February 4, 2013

David Janin,
LaBRI, IPB, Université de Bordeaux

Walking automata in the free inverse monoid

David Janin

Université de Bordeaux, LaBRI UMR 5800,
351, cours de la libération, F-33405 Talence, FRANCE
janin@labri.fr

Abstract. In this paper, we study languages of birooted trees or, follow-
ing Scheiblich-Munn’s theorem, subsets of free inverse monoids. Extend-
ing the classical notion of rational languages with a projection operator -
that maps every set of birooted trees to the subset of its idempotent ele-
ments - it is first shown that the hierarchy induced by the nesting depth
of that projection operator simply correspond the hierarchy induced by
the number of (invisible) pebbles used in tree walking automata extended
to birooted trees (with complete run semantics).

Then, analyzing further the behavior of these walking automata by allow-
ing partial accepting runs - runs that are no longer required to traverse
the complete input structure - it is also shown that finite boolean combi-
nations of languages recognizable by finite state walking automata (with
partial run semantics) are equivalent to languages recognizable by means
of (some computable notion of) premorphisms from free inverse monoids
into finite partially ordered monoids.

The various classes of definable languages that are considered in this
paper are compared with the class of languages definable in Monadic
Second Order (MSO) logic : a typical yardstick of expressive power.

1 Introduction

In theoretical computer science, tree walking automata with pebbles have been
an important subject of study this last decade for they appear as quite a inter-
esting abstract machines induced by XML query languages such as XPATH or
XML transformation languages such as XSL (7, 6].

Various logical characterizations of the induced classes of recognizable lan-
guages have been obtained [8, 6] and difficult separation results have been proved
(2, 3]. Appart from some even more difficult problems that remain open (see [1]
for an overview), these results suggest that, nowadays, the nature of walking
automata is rather well understood.

However, although these automata are sequential machines, like word au-
tomata, the classical algebraic tools that have been developed for the study of
word automata seem not applicable to tree walking automata. This can be ex-
plained, in particular, by the fact that, a priori, the partial run of a walking
automata does not describe a language of trees.

In this paper, we study languages of birooted trees or, following Scheiblich-
Munn’s theorem [20, 18], subsets of free inverse monoids. For that purpose, the
main tool we use is an extension of tree walking automata to birooted trees.

Doing so, every partial run of a (birooted) tree walking automaton is now
simply mapped to a language. Indeed, a birooted tree can be just seen as tree-
shaped directed graphs with two distinguished vertices that respectively mark
the vertex (called the input root) where a partial run starts and the vertex (called
the output root) where the partial run stops. It follows that, as a byproduct, we
also obtain a better understanding of the behavior of walking automata.

More precisely, we first extend the classical notion of rational languages with
a projection operator - that maps every set of birooted trees to the subset of
its idempotent elements -. The hierarchy induced by the nesting depth of that
projection operator is studied and related, on one side, with languages of birooted
trees recognizable by finite monoids and, on the other side, with languages of
birooted trees definable in Monadic Second Order logic (Theorem 2).

Then, considering finite state walking automata with invisible pebbles [6]
with complete run semantics - the input structure must be traversed completely
by accepting runs - we show that the hierarchy of extended rational languages
simply corresponds to the hierarchy induced by bounding the number of allowed
invisible pebbles (Theorem 5).

Investigating a little deeper the behavior of walking automata on birooted
trees with partial run semantics - accepting runs are no longer required to tra-
verse the entire input structure - it is shown that the bolean closure of the class of
languages recognized by finite state walking automata with partial run seman-
tics correspond to the class of languages recognized in the algebraic sense by
(some notion of) admissible premorphisms into finite partially ordered monoids
(Theorem 8 and Theorem 13).

All along our presentation, the various classes of definable languages that are
considered are related with the class of languages of birooted trees that are de-
finable in Monadic Second Order Logic (Theorem 1, Theorem 6 and Theorem 7).
Indeed, in the proposed development of a language theory for birooted trees as
in classical language theory [22], definability in MSO logic appears as a robust
yardstick for the measure of expressive power.

Last, it must be mentioned that in another study of subsets of inverse monoids
[12,11,13] we use another classes of premorphisms: the adequate premorphisms.
So far, the two approaches seem unrelated.

2 Languages of birooted trees

We review in this section the notion of birooted trees, the associated monoids:
free inverse monoids, and we define and relate several classes of birooted tree
languages: the languages recognizable by morphism into finite monoid (REC),
the languages definable by means of (an extended notion of) rational expressions
(RAT*) and the languages definable by monadic second order formula (M SO).

Let A be a finite alphabet A and let A* be the free monoid generated by A
with the empty word denoted by 1. The concatenation of two words u and v (or
more generally the product of two elements of a monoid) is denoted by u - v or
even just uv.

Given A a disjoint copy of A, u + @ denotes the mapping from (A + A)*
to itself inductively defined by 1 = 1, and, for every letter a € A, every word
u€ (A+ A)*, @u = a i and au = a 4. The mapping v — % is an antimorphism,
i.e. for all words u and v € (A+ A)*, wo = ¥ - 4 and an involution, i.e. for every
word u € (A + A)*, u = u.

Words in the free monoid W(A) = (A + A)* are called walks. Intendedly,
every walk models the traversal of a tree-shaped graph with A-labeled directed
edges that is both forward and backward deterministic. In that modeling, a
letter a € A describes the forward traversal of an edge labeled by a, and the
letter @ € A describes the backward traversal of such an edge labeled by a.

The free group FG(A) generated by A arises when one reduces arbitrary
walks to shortest ones. More precisely, let ~ be the least congruence relation
defined over W(A) such that aa ~ 1 ~ aa for very a € A. The free group FG(A)
is then defined as the quotient of W(A) by the congruence ~.

Since the rewriting system on W(A) defined by the rules aa — 1 and aa — 1
is confluent, every word u € W(A) is equivalent to a reduced walk red(u) €
W(A). The free group FG(A) is thus equivalently defined as the set of reduced
walks with product u-v = red(uv) for every reduced walks v and v € FG(A). In
this paper, we follows such a presentation. By definition, for every u € FG(A),
we have ut = tu = 1 hence @ is the (group) inverse of u and FG(A) is indeed a
group.

A birooted tree is a pair (u,U) where U, the vertex domain of the birooted
tree, is a finite prefix closed subset of FG(A), and u € U is the shortest walk from
the input root 1 to the output root u. Birooted trees are conveniently pictured
as illustrated below.

_a a b
a—1—a— qab

b T
Lol

ac — achb —

In this figure, we have depicted the birooted tree (acb, {1, a,ab, a¢, acb,a,ab})
with the input root vertex 1 (resp. the output root vertex ach) marked by a
dangling input arrow (resp. a dangling output arrow).

The product (u,U)- (v, V') of two birooted tree (u,U) and (v, V) is defined by
(u,U) - (v, V) = (uv,UUu-V) with (the point wise extension) of the product in
FG(A). Following Scheiblich-Munn’s theorem [20, 18], the set of birooted trees
on the alphabet A equipped with such a product is the free inverse monoid
FIM(A) generated by A with neutral element 1 = (1,{1}).

In particular, the mapping 6 : W(A) — FIM(A) that maps every walk
w € W(A) to the birooted tree defined by 6(w) = (red(w), P,) with P, =

{red(u) € FG(A) : Jv € W(A),uv = w} is a monoid morphism. Moreover, for
every walk u and v € W(A), we have 8(u) = 6(v) if and only if u ~y v where
~y is the congruence of Wagner defined on W(A) as the least congruence such
that uuu ~w u and uuvv ~yw vouu for every u and v € W(A).

In other words, two walks u and v € W(A) induce the same birooted tree,
i.e. (u) = O(v), when, seen as two paths in the Cayley graph of FG(A), if u and
v start from the same vertex, then u and v traverse the same sub-structure, i.e.
P, = P, and they end in the same vertex, i.e. red(u) = red(v). This property
will be especially relevant in the next section when defining walking automata
semantics on birooted trees.

Since FIM(A) is the free inverse monoid generated by A it is equipped with
the rich algebraic structure of every inverse monoid [15].

First, for every birooted tree x = (u,U) the birooted tree x=! = (u, ul) is
the unique birooted tree such that both zz 'z = z and z 'zz~! = z~!. The
birooted tree 27! is called the (semigroup) inverse of the birooted tree z.

Second, birooted trees are conveniently ordered by the natural (partial) order
relation < defined by © = (u,U) < y = (v,V) when v« = v and U D V.
The natural partial order is related with the notion of inverse by the following
property. For every birooted tree x and y € FIM(A), we have x < y if and only
if = zz~ 1y if and only if z = yz~'z.

The natural order induces the following definitions that are especially mean-
ingful when aiming at defining walking automata on birooted trees. A walk
w € W(A) is a partial walk on the birooted tree x € FIM(A) when = < 6(w).
The walk w is a complete walk on the birooted tree x when z = 6(w).

A language of birooted trees is just a set L C FIM(A). The set of languages
of birooted trees is equipped with sum, product and star operators defined by
X+Y =XUY, X Y={aye FIM(A): 2 € X,y € Y}and X* =J,, X", for
every X and Y C FIM(A). Additionally, the operators of inverse and idempotent
projection of languages are defined by X! = {27! € FIM(A) : z € X} and
XE = {z € X : 2 < 1}. Operator E is called the idempotent projection since
for every birooted tree x € FIM(A) we have x < 1 if and only if zx = x.

A language L C FIM(A) is said to be rational when it can be defined as a
finite combination of finite languages by sum, product and star operators. For
every k € N, a language L is said to be k-rational when it can be defined as
a finite combination of finite languages by sum, product, star and idempotent
projection where, moreover, the nesting depth of idempotent projection operator
is at most k.

By definition, a O-rational language is just a rational language, and for every
k € N, a k + 1-rational language is just a language definable by a finite combi-
nation of k-rational languages or idempotent projection of k-rational languages
by sum, product and star operators.

The class of k-rational languages of birooted trees is denoted by RAT*. It
is an easy observation that adding inverse operator on languages does not add
anything since it commutes in some sense with every other operators. Indeed,
for every X and Y C FIM(A), (X+Y) '=X"1+Yy L (X. V) t=yv-L. X"

(X*) "= (X"1)* and (X 1)F = (XF)~L. In order words, for every 0 < k, the
class RAT" is closed under the inverse operator.

Every birooted tree x = (u,U) can be seen as a (tree-shaped) FO-structure
M, with domain dom(M,) = U, relation R, = {(v,w) € U x U : red(va) = w}
for every a € A, and two distinguished vertices in, = 1 and out, = u, we say that
a language L C FIM(A) is definable in monadic second order logic (MSO) when
there exists a closed MSO formula ¢ of the FO-signature {R,}aca U {in, out}
such that L = {x € FIM(A) : M, |= ¢}. The class of MSO definable languages
of birooted trees is denoted by MSO.

Theorem 1. The class of MSO definable languages of birooted trees is closed
under sum, product, star, inverse and idempotent projection.

Proof. The closure by sum, inverse and idempotent projection immediately fol-
lows from the definitions. The proof of the closure by product and star causes no
real difficulty as soon as one observes, as done in [14] for languages of overlapping
tiles, that languages of sub-birooted trees (embedded as subgraphs into larger
birooted trees) can be defined by formulas of the form ¢(X,z,y) with X inter-
preted as the (connected) sub-domain of vertices and with 2 and y respectively
interpreted as the input and output roots of the sub-birooted trees. O

In order to complete the picture, one can also define the class REC of lan-
guages of birooted tree that are definable by finite monoids [19]. More precisely,
a language L belongs to REC when there exists a finite monoid S and a monoid
morphism ¢ : FIM(A) — S such that L = o= (p(L)).

Theorem 2. REC C RAT = RAT® ¢ RAT! C ... C RAT*k C RATHt! C
-+ € Upep RATY € MSO

Proof. The first strict inclusion is known for long [21]. The second strict inclusion
is a consequence of our walking automata characterization of these classes (see
Theorem 5 below) and the fact that, by a simple pumping lemma argument, the
1-rational language E(FIM(A)) of idempotent birooted trees is not O-rational.
All other inclusions but the last one immediately follow from definitions. The
last inclusion, follows from Theorem 1 that implies, by an inductive argument,
that RAT* C M SO for every 0 < k. O

It is conjectured that all these inclusions are strict. Indeed, it is a consequence

of Theorem 5 that it corresponds to the hierarchy induced by the number of
allowed invisible pebbles in walking automata. Of course, the strictness of that
invisible pebble hierarchy does not follow from the analogous known result on
tree walking automata with visible pebbles (see [1] for an overview). However, it
can still be the case that hard languages requiring k visible pebbles are definable
with k invisible pebbles.
Remark. Restricted to one-dimensional unidirectional birooted trees (called over-
lapping tiles in [5]), a similar arguments show that REC C RAT® C RAT!.
However, in the case of tile languages, it can be shown that the pebble hierarchy
collapses at level one [5], i.e. RAT' = RAT**! for every k € N.

3 Walking automata and complete runs semantics

In this section, we adapt the notion of finite state tree walking automata with
invisible pebbles [6] to birooted trees. The associated languages are defined in
this section with a complete runs semantics: a birooted is accepted by an au-
tomaton when there is an accepting run that completely traverses its domain.
The alternative notion of partial runs semantics is studied in the next section.

Although equivalent, our definition significantly differs from the classical
ones [6, 1]. Indeed, we want to consider in the same formalism walking automata
that uses boundedly many (invisible) pebbles and walking automata that uses ar-
bitrarily many of such pebbles. It follows that our definition is somehow closer to
the definition of second order pushdown automata with stack of stacks (see [9]).
The outer stack is used to handle the recursion mechanism induced by the in-
visible pebble management. Every inner stack is used to model a subrun and,
especially, the shortest path (in FG(A)) from its starting position to its current
position.

Definition 3. A (finite) walking automaton on the alphabet A is a tuple A =
(Q,I,F,0,A) where Q is a (finite) set of states, I C Q is a set of initial states,
F C Q is a set of final states, § : (A+ A+1) = P(Q x Q) is a transition table
possibly with silent transitions, and, additionally, A: Q@ x Q@ — P(Q x Q) is a
higher order transition table.

A walking automata configuration is a non empty sequence C' of triples in
Q X Q x FG(A). Intendedly, a configuration C' = (pg, qo,uo) - (p1,q1,u1) - -+ -
(Pk, qk, ur) describes the situation where k (nested) subruns have been launched.
Every subrun but the kth is actually frozen, waiting for the termination of the
subrun it has launched. For every 0 < i < k, the triple (p;, i, u;) describes the
ith subrun launched by the (¢ — 1)th subrun (when ¢ > 0) or just started (when
i = 0) in the position uguq - - - u;—1 in the state p; that is currently in the position
UoUL ** *Uj—1U; in the state qi.

Everything looks as if for every 0 < i < k, the ¢th subrun, when launching
the (¢ + 1)th run, has dropped a pebble colored by the pair (p;—1,¢;—1) at the
position uguy - - - u;—1. Such a pebble will be lifted only when the (i41)th subrun
is back in the same position and terminates.

Such an intention is modeled via the notion of walking automaton running
step from a configuration C' to a configuration D reading z € A+ A+ 1. A
running step, denoted by C' % D, is defined when one of the following conditions
is satisfied:

> Simple reading: the automaton reads z when x € 1+ A+ A, C = E-(p, q1, u),
and there exists (g1, ¢2) € d(x) such that D = E - (p, g2, red(ux)),

> Pebble dropping: the automaton frises the current run and starts a new
subrun when @ = 1, C = E - (p,q,u) and there exists r € @ such that
D=FE-(p,q,u)-(rr1l),

> Pebble lifting: the automaton ends a subrun and resumes the former run
when . =1, C = E - (p,q1,u) - (r,s,1) and there exists ¢ € @ such that
(Q17q2) € A(T,S) and D =FE - (pv QQau)a

A walking automaton run from a state p at position 1 to a state ¢ at position u is
then defined as a sequence p of automaton steps p = Cj o8B0, C1 8
Cy, such that Cy = (p,p,1) and C,, = (p,q,u). We say that the run p uses at
most k pebbles (or that run p is a k-run) when |C;| < k+ 1 for every 0 < i < n.
The word w = z1x2 - - -z, € W(A) is called the walks induced by the run p.
One can easily check, by induction on n, that we have u = red(w) € FG(A). The
birooted tree §(w) = (u, P,,) is called the birooted tree induced by the run p.

For every k € N, let BY (A) C FIM(A) (resp. W}, € W(A)), or just By,
(resp. Wﬁ 4) Wwhen A is implicit from the context, be the set of birooted trees
(resp. walks) induced by a k-run of A from state p to state g.

Let also By q(A) = Uy, BE, € FIM(A) and W, o(A) = Uy, WE,(A) C
W(A). B -

The language of walks W¥*(A) C W(A) recognized by automaton A with
at most k-pebbles is defined by W¥(A) = U(%q)eleW;f’q. The language of
walks W(A) C W(A) recognized by automaton A is then defined by W (A) =
Uer WH(A).

The language of birooted trees B¥(A C FIM(A) recognized by automaton A
with at most k pebbles is defined by B*(A) = U(p,q)ele B]’,f’q =0(W*(A)). The
language B(.A) recognized with no bound on the number of pebbles is defined
by B(A) = Uyen B*(A) = 0(W(A)).

Of course, a bound in the number of allowed pebbles can encoded in the
states themselves.

Lemma 4. For every automaton A with m states, for every 0 < k, there exists
an automaton Ay, with m - (k + 1) states, such that for every positive integer n,
if n < k then we have B"(Ay) = B"(A) and if k < n then B"(A;) = B¥(A).
In particular, we have B(Ag) = B¥(A).

Proof. Let A = (Q,I,F,0,A) be a finite state walking automaton. We define
Ar = (Qk, Ix, Fy, 0k, Ag) as follows. We take Qr = Q x [0,k], I, = I x {0},
F, = F x {0}, d(a) = {((p, 1), (¢,7)) € Qx X Qx : (p,q) € d(a),i € [0,k]} and
A((r,0), (s,0)) = 0 for every pair of states (r,s) € Q x Q and A((r,i+1), (s,i+
1)) = {((p,9), (¢,%)) € Qr X Q. : (p,q) € A(r,5)}, for every 0 < i < k and every
pair of states (r,s) € @ x Q. Then the announced properties immediately follow
from the definition of runs. O

The above Lemma leads to the following definition. A birooted tree walking
automaton A such that B(A) = B¥(A) is called a k-pebble automaton. By exten-
sion, an arbitrary birooted tree walking automaton is called w-pebble automaton.

Theorem 5. For every integer 0 < k, for every language L C FIM(A), the
language L is k-rational if and only if there exists a finite k-pebble automaton A
such that L = B(A).

Proof. Let A = (Q,1I,F,0,A) be a finite state walking automaton. We may
assume that §(1) = 0, i.e. there are no silent transition. Otherwise, we can take
instead ¢’ and A’ defined, for every a € A+ A, by &' (a) = 6*(1) - §(A) - §*(1)
and, for every p and q € Q, by A’(p,q) = 6*(1) - A(p, q) - 6*(1). The equivalence
between the two automata is easily proved by induction on the lengths of runs.

We first prove the case of rational languages with £k = 0. One can prove, as
in classical proofs of Kleene theorem, by induction on the length of runs, that
{ng} with (p,q) € Q x @ is the least solution of the (set) equations

Bg,q:%»ﬁz Z a'BS»q"_ Z a_l'Bg,q

a€A \(p,r)€é(a) (p,r)€d(a)

with a denoting the birooted tree (a,{1,a}), a=! denoting the birooted tree
(a,{1,a}) and 6, , = 1 if p = ¢ or () otherwise.

Next, we conclude, as for classical word automata, solving this system by
standard Gaussian elimination of set variables. Indeed, on subsets of FIM(A),
products distributes over sum, and, for every languages of birooted trees U and
L, the least (set) solution of the equation X = UX + L is given by X = U*L.

Conversely, one can prove by induction on the size of rational expressions
that every rational expression can be translated into a walking automaton.

The construction is just straightforward in the ground cases of §), a and a !
for very a € A. The inductive steps are then easily achieved, just as in the case
of language of words as described, for instance, in [19], by adding extra initial
and final states and combining small automata (with disjoint set of states) into
bigger ones with silent transitions.

For & > 0, the equations defined for {Bg,q} with (p,q) € Q X @ can be
completed for {B}’,f:gl} with (p,q) € @ x Q and k € N by the (set of) equations

k+1 k
Bp,q - 51’»‘1 + Z Cp’,q’
(®,d)e@QxQ
(p,s) € AW, q")

>l X Bty X atmy

a€A \(s,r)€b(a) (s,r)€d(a)

with CF, . = (Bk, q,)E. Indeed, we just enumerate above the possible starts of
runs.

Then, by induction on the length of runs, one can prove that Blliqs with
(p,q) € Q x Q and k € N form the least solution (w.r.t. set inclusion) of this
system. Moreover, since Bj’;)q only depends on B;,f/"q, with &' < k, this least
solution is still syntactically computable by Gaussian elimination of variables.
The fact that the number of allowed pebbles matches the nesting depth of the

FE operator is immediate.

10

Conversely, building an automaton A for every k-rational language B such
that B¥(A) = B can be done by induction on the syntactical complexity of the
k-rational expression.

The inductive step for the E language operator, which is not classical, is
described as follow. Assume B is k-rational with a finite state automaton A =
(Q,1,F,6,A) such that B = B*(A).

Let A" = (Q',I',F', ¢, A) defined by Q' = Q W{qo,qr}, I' = {q}, F' =
{qr}, 8'(x) = 6(x) for every x € A+ A+ 1 and A'(p, q) = A(p,q) when (p,q) €
QxQ—IxF, A(p,q) = A(p,q)U{(q0,gr)} when (p,q) € IxF,and A’(p,q) = 0
otherwise. It then an easy observation that (u, P) € B*+1(A’) if and only if
(u, P) € B¥(A) and u = 1 or, equivalently, (u, P) € (B¥(A))¥. 0

This theorem says in particular that, although a little complex, our definition
of walking automata on birooted trees with invisible pebble is mathematically
well founded since the notion of k-pebble walking automata captures the quite
natural notion of k-rational languages of birooted trees.

A similar observation is made in [5] in the much simpler context of subsets
of the McAlister inverse monoid [16] where the hierarchy collapses to the level
RAT! of languages definable with at most one pebble.

Theorem 6 (Adapting [6]). A language L C FIM(A) is MSO definable if and
only if there exists a finite state w-pebble automata such that L = B(A).

The above statement follows from a rather simple adaptation of an analogous
statement for trees [6]. It can thus be attributed to the same authors.

Since FIM(A) is a monoid, one may think from this point to develop an
algebraic languages theory for birooted tree walking automata. Of course, The-
orem 2 implies that such a theory cannot be built with monoid morphisms into
finite monoids. The purpose of the next section is to show that such a theory
can be built replacing morphisms by premorphism in the case the complete runs
semantics if replaced by the partial runs semantics.

4 Walking automata with partial runs semantics

In this section, we consider an alternative definition of automata semantics that
consists in dropping the somehow ad hoc condition that accepting runs must
traverse the complete input structure. The resulting new semantics is called the
partial Tuns semantics.

Studying walking automata with partial runs semantics, leads us to define a
notion recognizability by (some restricted class of) premorphisms [17,10] from
the free inverse monoid FIM (A) into finite partially ordered monoids. This no-
tion is shown to capture the class of finite boolean combinations of languages
recognizable by such finite state automata.

More precisely, let A be a finite state birooted tree walking automaton. The
language C(A) C FIM(A) recognized by the automaton A with partial runs
semantics is defined by C(A) = {x € FIM(A) : 3y € B(A),z < y}.

11

Of course, by definition, every such a language is downward closed w.r.t. the
natural order on birooted trees. However, the following Theorem shows that the
loss of expressive power induced by partial runs semantics is somehow limited
to that property.

Theorem 7. For every language L C FIM(A), the language L is downward
closed and MSO definable if and only if there exists some finite state walking
automaton A such that L = C(A).

Proof. The fact that for every finite state walking automata the language C'(A)
is definable in MSO follows from [6]. Conversely, assume that L C FIM(A) is
both MSO definable and downward closed. By Theorem 6 there exists a finite
state walking tree automaton A such that L = B(A). But since L is downward
closed, this amounts to saying that L = C(.A). Indeed, for every automaton A
we have B(A) C C(A) and the converse inclusion follows from the downward
closure property. O

We now aim at proving the announced results. Following [17,10], a premor-
phism (also known as V-premorphism) is a mapping ¢ : S — T between two
partially ordered monoids S and T such that ¢(1) = 1 and, for every x and
y € S, we have p(zy) < p(z)p(y) and if z < y then o(x) < p(y).

By itself, recognizability by premorphisms into finite monoid is not effective.
Our proposal is thus presented as follows.

We first study the premorphisms induced by finite state walking automata
with partial run semantics. We show that these premorphisms are effective in
the sense that their values on every birooted tree can indeed be computed by
some co-inductive procedure. Then, we derive from the properties satisfied a
notion of admissible premorphisms that leads us to the announced algebraic
characterization.

Theorem 8. For every birooted tree walking automaton A = (Q, 1, F, 4, A), the
canonical mapping o 4, or just ¢ : FIM(A) — P(Q X Q) that maps every birooted
tree © to the set p(x) = {(p,q) € Q x Q : Jy € FIM(A),z <y € By ,(A)} is a
premorphism that is effectively computable on every birooted tree x € FIM(A)
from the structure of x within FIM(A) and its values on (birooted images of)
letters of A and A.

Proof. The main part of this section, until Theorem 13, is dedicated to that
proof. In particular, it tells us in which sense the mapping ¢ is effectively com-
putable.

Let A be a walking automaton A = (Q, I, F, §, A). Without lost of generality,
we assume that (1) = 0, i.e. there are no silent transitions in A. Let then
v: FIM(A) — P(Q x Q) be the mapping defined in the above statement.

By definition, we have C(A) = ¢ 1(p(X4)) with X4 = {X C Q@ x Q :
XaNIxF #, hence ¢ indeed recognizes in the algebraic sense the language
L = C(A). It remains to show how it can be computed.

Set P(Q x Q) is equipped with the product defined by X -Y ={zy € S:z €
X,y € Y} for every X and Y C @ x Q. This product is associative with unit

12

Io ={(p,p) € Q x Q : ¢ € Q}: in other words, P(Q x Q) equipped with such a
product is a monoid.

For our purpose, this monoid is conveniently ordered by the reverse inclusion
order D. This order relation is stable w.r.t. the product, i.e. if X O Y then
X-Z2Y-ZandZ-X D Z Y forevery X,Y and Z € P(Q C Q).

The following theorem shows that, though ¢ is not a morphism it is a pre-
morphism.

Lemma 9. Mapping p satisfies the following properties:

1. ¢(1) = Iq,
2. for every x and y € FIM(A), if x <y then o(x) 2 ¢(y),
3. for every x and y € FIM(A), o(zy) 2 v(x) - p(y)
4. for every x € FIM(A) both p(zx~') and oz~

ez p(x) = () = o(z)e(z™).

—_

x) are idempotents with

Proof. (1) and (2) are immediate from the definition of .

(3) Let (p,q) € o(x) - ¢(y). By definition of the product of relations, this
means there is r € @ such that (p,r) € (z) and (r,q) € ¢(y). It follows, by
definition of ¢, that there exists 2’ € B, , and y’ € B, 4 such that z < 2/, y < y'.
But now, combining in sequence the underlying k-runs makes no difficulty. It
follows that we also have 'y’ € B, 4. Now, by stability of the natural order, we
have zy < z'y’ and thus (p, q) € ¢(zy).

(4) Let * € FIM(A). Since zz~! < 1 we immediately have, by (2) that
o(zz~t) D Ig. It follows, by stability, that p(zz=1)p(z) 2 ¢(z). Now, since
r = xzzlx, we also have, by (3) that p(x) 2 p(xz~1)p(x) hence p(z) =
o(zx~Hp(z). A similar argument, multiplying o(xz~1) by itself also shows
that p(zz~Yp(zz~t) D Igp(zz~!) and thus, together with the reverse inclu-
sion given by (3) because (zz~1) = (zaz~1)(zz~!), we also have p(xz~!) =
o(zr=1)p(zx~1). The case of p(x~1x) is proved symmetrically. O

In other words, the mapping ¢ is a premorphisms [17,10] that moreover
preserves idempotents.

Remark. Tt can even be shown that the mapping ¢ 4 : FIM(A) — P(Q x Q) also
preserves restricted products in the sense of [15], i.e. for every x and y € FIM(A),
if v 1z = yy~! then p4(zy) = () ¢.A(y). This surprising property is however
not explicitly used in the sequel.

In another paper [13], another class of premorphisms is considered : the pre-
morphisms v that preserve disjoint products, i.e. for every x and y € FIM(A),
if 272 Vyy~! =1 then ¢ (zy) = ()1 (y). These two notions, though comple-
mentary in many ways are yet not explicitly related one with the other.

Before studying further the properties of the premorphism ¢, let us first
review some essential notions and decomposition properties that are satisfied by
birooted trees. It occurs that such decomposition properties are already used
in [4].

13

Let x = (u,U) € FIM(A) be a birooted tree and let D(x) C FIM(A) be
defined by D(z) = {#(v)™' -2z 271 -0(v) € FIM(A) : v € U}. Observe that all
element of D(z) are idempotents. Moreover, they are in a one to one correspon-
dance with the vertices of (the birooted representation of) x. In particular, for
every y € D(x), we have D(y) = D(z). The set D(z) can thus be seen as the the
idempotent birooted trees image of the domain of z. Let also A(z) C A + A be
defined by A(z) = {a € A+ A:aa"'z = z}. The set A(x) is the set of ingoing
or outgoing edges from the input root of x,

These two definitions can be related as follows. For every z € D(z), for every
a € A+ A, a € A(z) if and only if a='za € D(x). In the case a € A, this situation
is depicted in the following figure.

1

y=aza S ———— 2z = a‘lya

Lemma 10 (Decomposition [4]). Let x = (u,U) with u = ajag---a, be a
birooted tree. For every 0 < i < mn, let u; = ajas---a; and let y; = u;lxx_lui.
Then we have x = yoa1y102Y2 * * * Yn—10nYn -

This expression is called the canonical decomposition of x. With elements of
D(x) seen as the vertices of z, this notion is illustrated by the following figure
(with a; € A and a,, € A).

The following Lemma shows that, for every x, the computation of ¢(x) reduces
to the computation of its values on letters and idempotents in D(x).

Lemma 11. Let x € FIM(A). Let yoa1y1a2y2 - Yn—1anYn be the canonical
decomposition of . We have

w(x) = w(yo)plar)p(y)e(az)p(ya) - - @(Yn—1)p(an)e(yn) (1)

Proof. We prove this result by induction on n. When n = 0, nothing has to be
done since x = zx~! = yy. Assume this is true of to n — 1 and let = be as above.
By definition of the canonical decomposition, we have z = yoay with yo = zz ™1,
a = a; and y = y1G2Y2 - - - Yn—1anYn hence, by Lemma 9, property 3, we have
e(y) 2 e(yo)ela)p(y).

Let us prove the converse inclusion. Let (p,q) € ¢(y) and let p be a partial
run from state p to state ¢q. By definition, x is a birooted tree of the form (av, P)
with yo = z2z~! = (1, P) and y = (v,aP). Since every pebble ever dropped
must eventually be lifted, this means that the run p starts in a configuration
(p,p, 1), eventually arrived in a configuration of the form (p, g1, 1) (with no peb-
ble dropped) that is necessarily followed by the reading of a reaching thus a
configuration of the form (p, g2, a) (with no pebble dropped) from which the run

14

continues till it reaches the end of the run in configuration (p, ¢, 1) (with no peb-
ble dropped). But this means (p, q1) € ¢(yo), (q1,42) € ¢°(a) and (g2, q) € ¢(y).

In other words, since ¢%(a) C ¢(a), (p,q) € ¢(yo)(a)p(y)-
It follows that we have p(z) = ©(yo)p(a)e(y) and we conclude by applying
the induction hypothesis on ¢(y). a

The following Lemma tells how to compute ¢ on the idempotent elements of
D(x).

Lemma 12. For every x € FIM(A), the set {¢(y)}yep(a) s the least solution
(w.r.t. inclusion) of the (finite) set of (monotonic) fizpoint equations defined, for
every y € D(z) by:

o) = [Alew) + D @la)-ela " ya)-pla™) (2)

a€A(y)

where, for every X C Q xQ, we define X* by X* =3 X" and we define A(X)
by A(X) = U{Ap,9) : (p.q) € X}.
Proof. For every k € N, every x € FIM(A), let

(@) ={(p.q) €Q x Q:3y € FIM(A),y <z Ny € Bpq(A)}

i.e. ©* is the mapping analogous to ¢ but restricted to runs that use at most k
pebbles. One can easily check that Lemma 9 also holds for (F.

We first claim that for every o € FIM(A), every k € N, the set {¢*(y)}yep ()
is the least solution (w.r.t. inclusion) of the (finite) set of (monotonic) fixpoint
equations defined, for every y € D(x) by:

P =TI+ | > @) (@ ya)-p"(a™) | - ©°(v) (3)
when k£ = 0 and

W) =Io+ [AT W)+ D) Faya)e" @) | o) ()
a€A(y)

when k£ > 0. Indeed, the inclusion D follows, in both cases K = 0 or k > 0, from
the following facts:

1. ¢*(y) D Ig since y is idempotent (Lemma 9 (4)),

2. when k > 0, ¢*(y) D A(¢*~!(y)), since every pebble that is dropped must
be lifted from the same vertex,

3. for every a € A(y), we have y = (yy~')a(a"'ya)a™! hence, since ¢* is a
premorphism (Lemma 9 (3)), we have ¢©*(y) 2 ¢*(yy~1) - ©*(a)-¢*(a"1ya)-
p(ah),

1

15

4. and ¢*(y) is idempotent (Lemma 9 (4)), i.e. p*(y) = ¢*(y) - ¢*(y) with
inclusion stable under product.

The reverse inclusion C follows from the fact that we just mimic all possible
cases of partial runs over the idempotent element y that consists to:

1. either doing nothing hence staying in the same state (which is allowed since
y<1),
2. or, optionally when &k > 0,
(a) dropping a pebble at the entry root of y,
(b) performing a partial run with & — 1 pebbles (a partial run described by
0" 1Y),
(c) lifting that pebble back (upon returning back to the entry root of y),
) and being ready to keep on performing another partial run on y with &
pebbles,
3. or, starting to read a letter while staying domain of y hence:
(a) reading some letter a € A(y) (a reading described by ¢°(a) C ¢*(a)),
(b) and then, performing a partial run with k& pebbles on a~!y which, by
equation 5, amounts to:
i. performing a run with & pebbles on a~'ya (described by ¢*(a~'ya))
since y is idempotent and thus a~ty(a='y)~! = a~lya,
ii. completing that run by reading a (described by ¢°(a~1) C ¢*(a™1)),
(c¢) and being ready to keep on performing another partial run on y with k
pebbles,

The fact that {©*(y)}yep(x) is the least solution (for inclusion) of this finite
system of equations immediately follows from an induction on the (even) length
of partial runs on elements of D(x).

The fact ¢ satisfies the same set of least fixpoint equations follows from the
fact that every birooted tree x is finite and thus D(x) as well, hence there is some
n big enough such that for every k > n, every letter a € A+ A, p*(a) = ¢"(a)
hence p(a) = " (a) and, for every y € D(z), ¢*(y) = ¢"(y) hence p(y) = ©"(y).

In other words, the set {¢(y)}yep(x) is the least set equation of the set of
fixpoint equations (5) defined, for all y € D(z) by:

o) =Io+ [Alew)+ > ¢°(a)-playa)- & (@) | -oy) (5)
a€A(y)

Then, by replacing inductively the right occurrence ¢(y) by the expression pro-
vided in equation (5), this equation “simplifies” into the expected equation (2)
above. This concludes the proof of Lemma 12. o

Observe that in the case A is a 0-pebble automaton then A(p(y)) = 0 hence
©(y) in equation (2) no longer depends on itself. Could this be a characterization
of 0-pebble walking automaton ?

By applying Knaster and Tarski’s fixpoint theorem, since P(Q x Q) is a
finite lattice, we indeed conclude that for every x € FIM(A), the value p(z) is

16

effectively computable applying equation (1) and solving, by finite iteration, the
finite system of least fixpoint equations defined by (2).

More precisely, let « be a birooted tree and let ¢y : D(z) — P(Q x Q), one
for every k € N, be the mappings inductively defined by vg(y) = 0 for every
y € D(x), and, for every k € N, for every y € D(x), by ¥x+1(y) defined by
the right part of equation (2) where every occurrence of ¢ has been replaced
by 1. Then, because @ is finite, there exists some k large enough such that
Yi(y) = ¢(y) for every y € D(z). This concludes the proof of Theorem 8. |

From now on, the mapping ¢ : FIM(A) — P(Q % @) induced by the (transi-
tion graph of) a birooted tree walking automaton A with set of states @ is called
an admissible premorphism.

We are now ready to state and prove our last theorem:

Theorem 13. For every language L C B(A), the language L is a finite boolean
combination of languages recognizable by finite state birooted tree walking au-
tomata with partial run semantics if and only if the language L is recognizable
by an admissible premorphism ¢ : FIM(A) — P(Q x Q) for some finite set Q
or, equivalently, if and only if L is a finite boolean combination of downward
closed MSO definable languages of birooted trees.

Proof. Let L C FIM(A) be a language of birooted trees. Assume L is recognized
by ¢ : FIM(A) — P(Q x Q) as stated above for some birooted tree walking
automata A. By definition, we have L = (J{X € ¢(L) : o~ 1(X)}.

Now, for every such X € (L), we also have, by definition of ¢,

e X)) =(Hp9) e X o7 {0} — U a) € X 0 {0 1)}

We conclude then by observing that for every (p,q) € Q x Q, o *({{(p,q)}) =
C(Ap,q) where A, , is obtained from A by taking I, , = {p} as set of initial
states and F), , = {¢} as set of final states.

Conversely, by Theorem 8, we already know that the class of languages rec-
ognizable by admissible premorphisms contains all languages recognizable by
birooted tree automata with partial run semantics. Since this class is obviously
closed under complementation, it suffices thus to prove it is closed under union.

For i =1 and i = 2, let L; C FIM(A) be a languages recognizable by an
admissible premorphism ¢; : FIM(A) — P(Q; x Q;) induced by a finite state
automaton A;. Without loss of generality, we may assume that Q1 N Q2 = 0.
Let then A be the automaton obtained by taking the union of the two automata
(graphs of) A; and A with set of states Q = Q1 U Q2. Since it is an automaton
(graph), let ¢ : FIM(A) — P(Q x Q) be the resulting admissible premorphism.
Then we conclude the proof simply by observing that Ly U Ly = ¢~ (1 (L1) U
p2(L2)).

Applying Theorem 7, we obtained the equivalent statement in terms of MSO
definable languages. a

17

5 Conclusion

We have thus defined and studied walking automata with invisible pebbles on
birooted trees with both partial runs and complete runs semantics. For the com-
plete run semantics, the pebble hierarchy has been shown to correspond to the
extended rational expressions hierarchy.

For the partial run semantics, we have provided an original algebraic char-
acterization (via admissible premorphisms) of the finite boolean combinations
of languages recognized by finite walking automata or, equivalently, the finite
boolean combinations of downward closed MSO definable languages.

Now, one can check that, given any finite functional signature F', the set of
finite F-terms can be encoded as an antichain of (idempotent) birooted trees.
Indeed, one can simulate the vertex F-labels just by additional dangling F-
labeled edges. It follows that the notion of algebraic recognizability by admissible
premorphisms also capture MSO definable languages of (encodings of) F-terms.
This suggest that, perhaps, such a notion is worth being studied more in depth.

References

1. M. Bojanczyk. Tree-walking automata. In LATA, volume 5196 of LNCS. Springer,
2008.

2. M. Bojanczyk and T. Colcombet. Tree-walking automata do not recognize all
regular languages. In STOC. ACM, 2005.

3. M. Bojanczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expressive power
of pebble automata. In Automata, Languages and Programming (ICALP), 2006.

4. T. Deis, J. Meakin, and G. Sénizergues. Equations in free inverse monoids. Inter-
national Journal of Algebra and Computation, 17(4):761-795, 2007.

5. A. Dicky and D. Janin. Two-way automata and regular languages of overlapping
tiles. Technical Report RR-1463-12, LaBRI, Université de Bordeaux, 2012.

6. J. Engelfriet, H. J. Hoogeboom, and B. Samwel. XML transformation by tree-
walking transducers with invisible pebbles. In Principles of Database System
(PODS). ACM, 2007.

7. J. Engelfriet and H.J. Hoogeboom. Tree-walking pebble automata. In
J. Karhumaéki, H. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are for-
ever, contributions to Theoretical Computer Science in honor of Arto Salomaa,
pages 72—-83. Springer-Verlag, 1999.

8. J. Engelfriet and H.J. Hoogeboom. Automata with nested pebbles capture first-
order logic with transitive closure. Logical Methods in Computer Science, 3, 2007.

9. S. Fratani and G. Sénizergues. Iterated pushdown automata and sequences of
rational numbers. Ann. Pure Appl. Logic, 141(3):363-411, 2006.

10. C. D. Hollings. The Ehresmann—Schein-Nambooripad Theorem and its successors.
European Journal of Pure and Applied Mathematics, 5(4):414-450, 2012.

11. D. Janin. Overlaping tile automata. Technical Report RR-1465-12, LaBRI, Uni-
versité de Bordeaux, 2012.

12. D. Janin. Quasi-recognizable vs MSO definable languages of one-dimensional over-
laping tiles. In Mathematical Foundations of computer Science (MFCS), volume
7464 of LNCS, pages 516-528, 2012.

18

13.

14.

15.

16.
17.

18.

19.

20.

21.
22.

D. Janin. Algebras, automata and logic for languages of labeled birooted trees.
Technical Report RR-1467-13, LaBRI, Université de Bordeaux, 2013.

D. Janin. On languages of one-dimensional overlapping tiles. In International
Conference on Current Trends in Theory and Practice of Computer Science (SOF-
SEM), volume 7741 of LNCS, pages 244-256, 2013.

M. V. Lawson. Inverse Semigroups : The theory of partial symmetries. World
Scientific, 1998.

M. V. Lawson. McAlister semigroups. Journal of Algebra, 202(1):276 — 294, 1998.
D.B. McAlister and N. R. Reilly. E-unitary convers for inverse semigroups. Pacific
Journal of Mathematics, 68:178-206, 1977.

W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathematical
Society, 29(3):385-404, 1974.

J.-E. Pin. Mathematical foundations of automata theory. Available on: http:
//www.liafa.jussieu.fr/~jep/MPRI/MPRI.html, 2011.

H. E. Scheiblich. Free inverse semigroups. Semigroup Forum, 4:351-359, 1972.

P. V. Silva. On free inverse monoid languages. ITA, 30(4):349-378, 1996.

W. Thomas. Chap. 7. Languages, automata, and logic. In G. Rozenberg and
A. Salomaa, editors, Handbook of Formal Language Theory, Vol. III, pages 389—
455. Springer Verlag, 1997.

19

