
HAL Id: hal-00738793
https://hal.science/hal-00738793v1

Submitted on 5 Oct 2012 (v1), last revised 3 Oct 2015 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Walking automata in the free inverse monoid
David Janin

To cite this version:

David Janin. Walking automata in the free inverse monoid. 2012. �hal-00738793v1�

https://hal.science/hal-00738793v1
https://hal.archives-ouvertes.fr

LaBRI, CNRS UMR 5800
Laboratoire Bordelais de Recherche en Informatique

Rapport de recherche RR-1464-12

Walking automata in the free inverse monoid

October 5, 2012

David Janin,
LaBRI, IPB, Université de Bordeaux

Abstract

This paper considers subsets of the free inverse monoid or, following Munn’s
representation theorem, languages of finite birooted trees.

We propose three notions of definability for these languages: definability
by means of finite state walking automata with nested (invisible) pebbles,
definability by means of (extension of) Kleene regular expressions, and de-
finability by means of (adequate) premorphisms (or relational morphisms) in
(adequate) finite ordered monoids.

Various correspondences, linking these three notions together, are shown
to hold. Finite walking automata with a finite number of pebbles are shown to
be captured by regular expressions; the number of allowed pebbles corresponds
to the nesting depth of a projection operator onto languages of idempotent
birooted trees. Finite walking automata with a finite or an infinite number
of pebbles are also shown to be captured by finitely generated premorphisms
from the (naturally ordered) free inverse monoid in their associated (finite)
transition monoids (ordered by inclusion).

These results strengthen the idea that (some subcategory of) the category
of ordered monoids and premorphisms is an adequate framework for the study
of walking automata on trees much in the same way the category of monoids
and morphisms is an adequate framework for the study of classic (one way)
automata.

Moreover, since our algebraic characterization of walking automata holds
even for automata using infinitely many pebbles, it also provides a presumably
new algebraic framework for the study of regular languages of finite trees.

Contents

1 Introduction 3

2 Walking automata 8

3 Walking automata and k-rational languages 11

4 Walking automata and quasi-recognizability 16

5 Walking automata in Rees quotients of the free inverse monoid 21

2

1 Introduction

Background

Whether they walk on words or trees, finite state walking automata have been studied
for many years in theoretical computer science.

Presumably simple in nature - they are simply standard word automata extended
with the capacity to read letters both ways - it however took more than thirty
years to prove that, on finite trees, they are strictly less expressive than finite state
(branching) tree automata [3]. Worse still, when extended with the capacity to drop
and lift a finite number of pebbles (in a nested fashion) [7], walking automata still
fail to capture all the regular languages of trees [4]. Indeed, one needs to allow an
unbounded number of pebbles [6] to reach the classic yardstick of expressive power
defined by regular languages of trees or, equivalently, languages definable by means
of formulae of monadic second order (MSO) logic.

At first sight, these results reveal that walking automata are barely understand-
able and inadequately expressive. Must the story end with such negative results?

As observed in [7], walking automata are models of sequential machines that
extend classic finite state automata. With a bounded number of pebbles they behave
like (restricted) hierarchical finite state systems. With an unbounded number of
pebbles they behave like (restricted) recursive finite state systems. And, because
of these restrictions, the language emptyness problem for walking automata is still
decidable.

In other words, walking automata provide a fairly general decidable model of se-
quential machines, which is intrinsically different from the model of parallel machines
that is induced by (branching) tree automata. From the standpoint of computation
models, achieving a deeper understanding of the behavior of walking automata is
thus highly relevant.

Since walking automata are sequential machines, one may expect to extend to
walking automata (some elements of) the enormous amount of mathematical tools
that have been successfully developed for the study and (fine grained) analysis of
finite state (one way) automata on words (see [14] for an overview). Of course, in
the simpler case of two-way automata, one can built finite monoids that characterize
their semantics. This however amounts to converting two-way automata into one-
way automata. As observed by Birget [1] years ago and still true nowadays, there
are as yet no appropriate algebraic settings that capture the behavior of two-way
automata. With the remarkable exception of deterministic machines [11], adapting
algebraic approaches presumably fails when applied to walking automata.

3

As observed in [4], this can be explained by the fact that walking automata runs
are not presumably compositional: the set of runs of a walking automata on a given
tree is not presumably a function of the set of subruns induced by decomposition
of the same tree into substructures. Still, coping with this lack of compositionality
is a key issue. For instance, in their proof of the infiniteness of the pebble hierar-
chy [4], the authors eventually achieve some (unfortunately technical) compositional
description of walking automata behavior.

Yet how close to success are naive applications of classic techniques? Are these
approaches bound to fail?

In this paper, we show that although simple compositionality fails, given a walk-
ing automaton, input structures can still be mapped to sets of runs (i.e. pairs of
states) in such a way that the resulting mapping still enjoys many interesting alge-
braic properties. In particular, this mapping turns out to be finitely generated, and
this property is one of the corner stones of algebraic approaches.

How do we achieve such a result? We propose to study walking automata se-
mantics through an embedding of (languages of) trees into (languages of) birooted
trees.

Birooted trees came to the forefront in the 70s with Munn’s theorem[13]. They
provide a concrete description of elements of the free inverse monoid.

For computer scientists, the free inverse monoid can be seen as the quotient of the
set of walks in tree-shaped structures (with labeled directed edges) by the equivalence
which indicates when two walks, issuing from the same initial vertex, traverse the
same (implicit) substructure and end in the same final vertex. Munn’s birooted
trees can thus be seen as explicit models of these implicit underlying substructures.

Since the above equivalence turns out to be a congruence with respect to the
sequential composition of walks, the resulting algebraic structure is a monoid. As
every walk can actually be reversed, the monoid in question turns out to be an inverse
monoid. Since every walk can be modeled by the sequence of (labeled directed) edges
traversed either forwards or backwards, the monoid of birooted trees is even finitely
generated by (forward or backward) single edge birooted trees.

The free inverse monoid is thus peculiarly well suited for the study of walking
automata. Indeed, partial runs (or walks) of tree walking automata actually define
bi-rooted trees.

Moreover, the induced embedding of all (edge labeled deterministic) finite trees
(with unlabeled vertices) into the monoid of birooted trees also provides a surpris-
ingly simple algebraic framework for generating those finite trees. This observation
also constitutes another prime motivation for studying the languages of birooted

4

trees since, in the long term, such studies may also impact our understanding of
regular tree languages themselves beyond the theory of walking automata.

Outline

In this paper, we thus propose a computer-science flavored study of subsets of the
free-inverse monoid which, following Munn’s theorem [13], are seen as languages of
birooted trees.

This study continues and extends the study initiated in [10] for languages of
overlapping tiles that are linear unidirectional birooted trees. It has already been
shown [5] that two-way automata on words can relevantly be studied on overlapping
tiles. We aim at proving here that tree walking automata semantics can relevantly
be studied on birooted trees.

Generalizing the results presented in [5], we first provide a one to one correspon-
dence between finite state (invisible) pebble automata (with complete run seman-
tics) and (extensions of) Kleene regular expressions. Automata with no pebbles are
shown to be captured by standard Kleene expressions (with forward or backward
letters) and, more generally, the number of allowed pebbles is shown to correspond
to the nesting depth (in extended Kleene expressions) of the projection operator of
birooted tree languages to the subset of their idempotent elements.

We also demonstrate that recognizability by means of McAlister and Reilly’s
premorphisms [12] can be used to capture the partial run semantics of walking
automata on birooted trees. Premorphisms are monotonic mappings ϕ between
ordered monoids such that ϕ(xy) ≤ ϕ(x) · ϕ(y). Their use in theoretical computer
science has recently been advocated for languages of tiles [9],

We first show that the (partial run) semantics of every finite 0-pebble (or classic)
walking automaton is captured by a finitely generated premorphism β0 from the
free-inverse monoid into the (finite) transition monoid P(Q × Q) induced by this
automaton. As premorphisms are only sub-multiplicative this result thus constitutes
a first non-trivial issue.

We then show that the transition monoid P(Q × Q) associated with a walking
automaton can itself be extended by a self mapping (encoding the recursion mecha-
nism defined by pebbles handling) in such a way that the (partial run) semantics of
every finite k-pebble (or unbounded number of pebbles) walking automaton is also
captured by a finitely generated premorphism βk (or just β) from the free-inverse
monoid into the same transition monoid.

We conclude our study by showing that, even if birooted trees have no vertex
labels, such vertex labeling can still be simulate by additional dangling edges. The

5

main difficulty is to restrict to well-marked birooted trees (where regular edges are
distinguished from edges defining vertex labels). But we show that this amounts to
taking the Rees’s quotient of the free inverse monoid by the ideal of badly-marked
birooted trees and all our results still hold restricting to such a kind of quotient of
the free inverse monoid.

As a corollary, we prove that every MSO definable language of finite trees is
the inverse image of some finite subset of a finite ordered monoid by some (finitely
generated) premorphism, i.e. regular languages of trees are quasi-recognizable in
the sense of [9].

Preliminaries

Free monoid. Given a finite alphabet A, let A∗ be the free monoid generated by A,
1 denoting the neutral element. The concatenation of two words (or more generally
two element of a monoid) u and v is denoted by u · v or even just uv.

Monoid of walks. Given Ā a disjoint copy of A, u 7→ ū denotes the mapping from
(A + Ā)∗ to itself inductively defined by 1̄ = 1, for every letter a ∈ A, ā is the copy
of a in Ā and ¯̄a = a and, for every word u ∈ (A + Ā)∗, au = ū · ā. The mapping
u 7→ ū is an antimorphism, i.e. for all words u and v ∈ (A + Ā)∗, uv = v̄ · ū and an
involution, i.e. for every word u ∈ (A + Ā)∗, ¯̄u = u. In the sequel, elements of the
free monoid (A + Ā)∗ are called walks.

Free group. The free group FG(A) generated by A is defined as (A+ Ā)∗ quotiented
by the least congruence over (A + Ā)∗ such that, for every letter a ∈ A, aā ≃ 1 and
āa ≃ 1. Every equivalence class [u] ∈ FG(A) contains a unique element red(u) (the
reduce of u) that contains no factor of the form a · ā or ā · a. Elements of FG(A) are
identified with reduced words, the product of two elements u and v ∈ FG(A) being
defined in FG(A) by red(u · v).

Free inverse monoid. The free inverse monoid FIM(A) generated by A is defined
as (A + Ā)∗ quotiented by the Wagner congruence ≃W , i.e. the least congruence
over (A + Ā)∗ such that uūu ≃W u and uūvv̄ ≃W vv̄uū for all u, v ∈ (A + Ā)∗.

Let us recall that, being an inverse monoid, for every x ∈ FIM(A), there is a
unique element x−1, the pseudo inverse of x, such that xx−1x = x and x−1xx−1 =
x−1. As a consequence, idempotents are elements of the form xx−1 for x ∈ FIM(A),
they are self inverse and they commute one with the other.

Munn’s representation. An alternative definition of FIM(A), due to Scheiblich and
Munn [15, 13], is the following. Elements are pairs of the form (u, P) ∈ FG(A) ×
P(FG(A)) where P is a finite prefix-closed subset of FG(A) with 1 ∈ P and u ∈ P .

6

The product of two pairs (u, P) and (v, Q) is defined by (u, P) · (v, Q) = (uv, P ∪
red(uQ)). Scheiblich-Munn’s Theorem states that the mapping θ that maps every
word w ∈ (A+ Ā)∗ to the pair θ(w) = (red(w), {red(w′) ∈ FG(A) : w′ ≤p w}), with
≤p the prefix order on words, is a onto monoid morphism whose induced equivalence
is Wagner’s congruence, i.e. for all w1 and w2 ∈ (A + Ā)∗, θ(w1) = θ(w2) if and only
if w1 ≃W w2.

Inverses and idempotents. For every element (u, P), the unique pseudo-inverse
(u, P)−1 of (u, P) can directly be defined by (u, P)−1 = (ū, ūP). In particular, one
has (u, P) · (u, P)−1 = (1, P) and (u, P)−1 · (u, P) = (1, ūP). Elements of the form
(1, P) ∈ FIM(A) are the idempotents in FIM(A). As a consequence, idempotents
are self inverses.

Birooted trees. An element (u, P) ∈ FIM(A) is conveniently seen as a birooted tree
which vertices are elements of P , with two distinguished vertices: the input root 1
and the output root u , and with a directed edge labeled by a ∈ A between v and
w ∈ P , which is written v

a
→ w whenever va ≃W w (equivalently wā ≃W v). In the

sequel, we identify birooted trees and elements of FIM(A).
For instance, the birooted tree x = (ab̄, {1, a, ac, ab̄}) is drawn in the following

picture,

a b

c

entry exit

It can be generated by the complete walks acc̄b̄, or ab̄bcc̄b̄, or many others. Walk ab̄
is a partial walk on x since θ(ab̄) = (ab̄, {1, a, ab̄}). One can observe that taking the
pseudo inverse of a birooted tree just amount, with the birooted tree point of view,
to swap the input and the output roots.

Natural order. Elements of FIM(A) are ordered by the natural order that can be
defined by (u, P) ≤ (u′, P ′) when u = u′ and P ⊇ P ′. In terms of birooted trees,
this just means that there is an embedding of (u′, P ′) in (u, P) that maps the input
root 1 and output root u of (u′, P ′) to the input root 1 and output root u of (u, P).
It can be shown that x ≤ y if and only if x = xx−1y (or x = yx−1x). Idempotents
elements in FIM(A) are all elements x such that x ≤ 1 = (1, {1}).

Walks in birooted trees. A (partial) walk in a birooted tree (u, P) ∈ FIM(A) is
a word w ∈ (A + Ā)∗ such that (u, P) ≤ θ(w). In that case word w induces a
(partial) traversal of the birooted tree representation of (u, P) starting in the input

7

root 1 and ending in the output root u. Walk w is a complete walk in (u, P) when
θ(w) = (u, P). In that case every vertex in (u, P) is reached at most once by (the
traversal induced by) walk w.

Relational monoids. The relational monoid associated with any set Q, is defined by
P(Q × Q), with the product defined as U · V = {(q1, q2) ∈ Q × Q : ∃q ∈ Q, (q1, q) ∈
U, (q, q2) ∈ V } for all U and V ∈ P(Q × Q). The neutral element is the diagonal
relation IQ = {(q, q) ∈ Q × Q : q ∈ Q}.

The inverse and star operators are defined, for every U ⊆ Q × Q, by U−1 =
{(q1, q2) ∈ Q × Q : (q2, q1) ∈ U} and U∗ =

⋃

n∈N Un with U0 = {IQ} and Un+1 =
Un · U for every n ∈ N.

It occurs that the relational monoid ordered by reverse inclusion is particularly
well suited for recognizability [9, 8] by means of premorphism.

2 Walking automata

Informally, a walking automaton is a finite state device that walks on a birooted tree,
going from vertices to vertices traversing the directed edges reading their labels. At
any step, the automaton records some finite amount of information on the history
of its walk is its local state that ranges over finitely many values. This information
is updated at every (foot) step via the notion of state transitions.

By convention, when a walking automaton traverses forward a directed edge
labeled by some a ∈ A, from its source vertex to its target, we say that the automaton
read letter a. When a walking automaton traverses backward an edge labeled by
some a ∈ A, from its target vertex to its source vertex, we say that the automaton
read letter ā, the syntactic inverse of a. For convenience, we may also allow silent
transitions that stays in the current vertex. It that case, we say that the automaton
read empty word 1.

Additionally, walking automata are extended with the capacity to perform sub-
walks: walks that start in a given vertex and end in the same vertex, in such a way
that, the new information collected during a subwalk can be combined with the old
information previously collected before performing the subwalk.

Definition. A (finite) walking automaton on the alphabet A is a tuple A =
〈Q, I, F, δ, ∆〉 where Q is a (finite) set of states, I ⊆ Q is a set of initial states,
F ⊆ Q is a set of final states, δ : (A + Ā + 1) → P(Q × Q) is a transition table
possibly with silent transitions, and, additionally, ∆ : Q×Q → P(Q×Q) is a higher
order transition table.

8

Since a subwalk can occur within another subwalk, this induces a (limited) re-
cursion mechanism that is handled by means of the higher order transition table
and a configuration stack.

A walking automata configuration is a non empty sequence C ∈ ((Q × Q) ×
FG(A))+. Intendedly, a configuration C = ((p0, q0), u0)·((p1, q1), u1)·· · ··((pk, qk), uk)
describes the situation where k (nested) subruns have been launched. In such a con-
figuration, for every i with 0 ≤ i ≤ k, state pi (resp. state qi) is the starting state
(resp. the current state) of the ith subrun (the initial run seen as the 0th subrun).

Of course, all subruns but the kth are actually stopped, waiting for the termina-
tion of the subrun they have launched. Every pair ((pi−1, qi−1), ui−1) with 0 < i ≤ k
recorded in the configuration stack can thus be interpreted as a ith pebble colored
by (pi−1, qi−1) that has been dropped to mark the position where the ith subrun has
been launched. The position of that ith pebble is recorded by its relative position
ui−1 ∈ FG(A) from the starting position of the (i−1)th subrun. Word uk ∈ FG(A)
is the relative current position from the starting position of he kth subrun.

Definition. A walking automaton step from a configuration C to a configuration
D reading x ∈ A + Ā + 1, which is denoted by C

x
→ D, is defined when one of the

following condition is satisfied:

• automaton reads x: x ∈ 1+A+Ā, C = E ·((p, q1), u) and there is (q1, q2) ∈ δ(x)
such that D = E · ((p, q2), red(u · x)),

• automaton drops a pebble and starts a subrun: x = 1, C = E · ((p, q), u)
and there is r ∈ Q such that D = E · ((p, q), u) · ((r, r), 1), i.e. in a state r,
pebble (p, q) is dropped on the current vertex (its value and relative position
are stored in the stack),

• automaton lifts a pebble and ends a subrun: x = 1, C = E ·((p, q1), u)·((r, s), 1)
and there is q2 ∈ Q such that (q1, q2) ∈ ∆(p, q) such that D = E · (p, q2), u),
i.e. the last pebble dropped is lifted and the new current state is computing
accordingly.

A walking automaton run from a given state p to a given state q is then defined
as a sequence ρ of automaton steps ρ = C0

x1→ C1
x2→ C2 · · · Cn−1

xn→ Cn such that
C0 = ((p, p), 1), i.e. the run starts in state p with position 1 from the starting point,
Cn = ((p, q), uρ) with uρ ∈ FG(A), i.e. the run ends in state q at position uρ from
the entry point of the run, with n defining the length |ρ| of run ρ. The pebble rank
of run ρ is the least integer k such that |Ci| ≤ k + 1 for every 0 ≤ i ≤ n. It other

9

words, it is the highest number of (true) pebbles that have been used at the same
time in run ρ. A run of pebble rank at most k is called a k-run.

Remark. Observe that ending a subrun, we require that the relative position to
the start of the subrun equals 1. This ensures that a subrun ends on the vertex
it has started: we are using (so called) weak pebbles [4]. Moreover, since we also
require that the last configuration of a run is of length one, this means that, in a
run, every pebble ever dropped has eventually been removed.

Observe also that, in contrast with classical many pebble automata [7], the pebble
automata defined here can only see (and access) the last pebble dropped on the input
structure by lifting it. The pebbles used here are thus invisible and, presumably,
k-invisible pebble automata have a weaker expressive power than classical k-visible
pebble automata.

Given a run ρ as above, the element uρ ∈ FG(A) reached at the end of run ρ is
called the exit root (or just the exit) of run ρ. The word wρ = x1x2 · · · xn ∈ (A+ Ā)∗

is the walk red (in run ρ) by automaton A from state p to state q. The set Pρ =
{red(u) ∈ FG(A) : u ≤p wρ} is the domain traversed by automaton A in run ρ.
One can check, by induction on the length of runs, that uρ = red(wρ) ∈ Pρ. The
(well defined) birooted tree θ(wρ) = (uρ, Pρ) is the birooted tree red (in run ρ) by
automaton A from state p to state q.

For every k ∈ N, let Bk
p,q(A) ⊆ FIM(A) (resp. W k

p,q ⊆ (A + Ā)∗), or just Bk
p,q

(resp. W k
p,q) when A is implicit from the context, be the set of birooted trees (resp.

walks) red by a k-run of A from state p to state q. Let also Bp,q ⊆ FIM(A) (resp.
Wp,q ⊆ (A + Ā)∗) be the set of birooted trees (resp. walks) red by a run of A from
state p to state q.

The language of walks W k(A) ⊆ (A + Ā)∗ recognized by automaton A with
at most k-pebbles is defined by W k(A) =

∑

(p,q)∈I×F W k
p,q. The language of walks

W (A) ⊆ (A+Ā)∗ recognized by automaton A is then defined by W (A) =
∑

k∈N W k(A).

From this point, there are two possible semantics for walking automata on bi-
rooted trees: the complete run semantics and the partial run semantics.

The complete run semantics amounts to defining recognized languages of birooted
trees just by mapping (complete) recognized walks to the birooted trees they induces.
In other words, we take Bk(A) =

∑

(p,q)∈I×F Bk
p,q = θ(W k(A) with k pebbles at most,

and B(A) =
∑

k∈N Bk(A) = θ(W (A)) with no bound on the number of pebbles.
The partial run semantics, perhaps more generally considered in the literature [4],

amounts to defining the recognized languages of birooted trees as the languages of
trees with partial accepting walks. With natural order defined on birooted trees,
this just amount to taking Ck(A) = {x ∈ FIM(A) : ∃y ∈ Bk(A), x ≤ y} with k

10

pebbles at most and C(A) = {x ∈ FIM(A) : ∃y ∈ B(A), x ≤ y} with no bound on
the number of pebbles. In other words, the partial walk semantics is the downward
closure of the complete walk semantics.

These two possible semantics essentially comes from the fact that frontiers of
birooted tree (leaf vertices) are not marked while they are marked in more classical
models of trees as these used in [4]. How to cope with this is discussed in the last
section.

An easy observation nevertheless shows that the complete run semantics actually
embed the partial run semantics.

Lemma 1 For every finite walking automaton A there exists a finite walking au-
tomaton Ap such that, for every k ∈ N, for all x ∈ FIM(A), x ∈ Bk+1(Ap) if and
only if there exists y ∈ Bk+1(A) with x ≤ y, i.e. Bk+1(Ap) = Ck+1(A).

Proof. Define the walking automaton Ap as the automaton that starts by dropping
a pebble in order to traverse all the input structure, return to the entry point, lift
that pebble, and then just behave as automaton A. 2

The following Lemma tells that silent transition can be removed without loss of
generality.

Lemma 2 For every walking automaton A = 〈Q, I, F, δ, ∆〉 there exists an au-
tomaton A′ = 〈Q, I, F, δ′, ∆′ with δ′(1) = ∅ such that, for every k ∈ N, every
(p, q) ∈ Q × Q, Bk

p,q(A) = Bk
p,q(A

′).

Proof. For every a ∈ A + Ā, let δ′(a) = δ∗(1) · δ(A) · δ∗(1) and, for every p and
q ∈ Q, let ∆′(p, q) = δ∗(1) · ∆(p, q) · δ∗(1). Then the equivalence between A and A′

is easily proved by induction on the lengths of runs. 2

3 Walking automata and k-rational languages

In this section we provide a correspondance between walking automata with complete
run semantics and (some notion of) rational languages. In this correspondance, the
maximal number of pebbles allowed in automaton runs matches the nesting depth
in rational expressions of some projection operator. Most of the material presented
in the section is a generalization of a former work on linear unidirectional birooted
trees [5].

The following definition just mimic on subsets of FIM(A) the standard definition
of Kleene rational (or regular) languages of finite words.

11

Definition. A language B ⊆ FIM(A) is rational if it is a finite rational combi-
nation of finite languages, i.e. a combination of such languages with sum, product
and iterated product (or star).

Theorem 3 For every language B ⊆ FIM(A), B is rational if and only if B =
B0(A) for some finite walking automaton A.

Proof. Let A = 〈Q, I, F, δ, ∆〉 be a finite state walking automaton.
One can observe that W 0(A) is a regular languages on the alphabet (A+ Ā)∗. It

follows that, by applying Kleene’s theorem, W 0(A) is definable by a rational expres-
sion. We conclude then by observing that (the language extension of) morphism θ
commutes with sum, product and star operators.

For the sake of completeness, especially using extended expressions below, we
also provide a complete argument.

By applying Lemma 2, we may assume that δ(1) = 0. Then, one can prove, as in
classical proofs of Kleene theorem, by induction on the length of runs, that {B0

p,q}
with (p, q) ∈ Q × Q is the least solution of the (set) equations

B0
p,q = δp,q +

∑

a∈A

∑

(p,r)∈δ(a)

a · B0
r,q +

∑

(p,r)∈δ(ā)

a−1 · B0
r,q

with a denoting the birooted tree (a, {1, a}), a−1 denoting the birooted tree (ā, {1, ā})
and δp,q = 1 if p = q or ∅ otherwise.

Next, we conclude, as for classical word automata, solving this system by stan-
dard Gaussian elimination of set variables. Indeed, on subsets of FIM(A), products
distributes over sum, and, for every languages of birooted trees U and L, X is the
least solution of the equation X = UX + L if and only if X = U∗L.

Conversely, one can prove by induction on the size of rational expressions that
every rational expression can be translated into a walking automaton.

The construction is just straightforward in the ground cases of ∅, a and a−1 for
very a ∈ A. The inductive steps are then easily achieved, just as in the case of
language of words as described, for instance, in [14], by adding extra initial and
final states and combining small automata (with disjoint set of states) into bigger
ones with silent transitions. 2

Presumably, allowing no pebble in runs of walking automata decreases their
expressive power. Can we add another language operator to capture the expressive
power of walking automata with pebbles? It is an easy observation that adding the

12

point-wise inverse operation on languages, i.e. X−1 = {x−1 ∈ FIM(A) : x ∈ X},
does not increase the class of rational language. Indeed, for every X and Y ⊆
FIM(A), (X + Y)−1 = X−1 + Y −1, (X · Y)−1 = Y −1 · X−1 and (X∗)−1 = (X−1)∗

hence the class of rational languages of birooted trees is closed under inverse.
This is (presumably) no longer true for the projection of languages on their

subsets of idempotents. More precisely, idempotents in FIM(A) are all elements of
the form (1, P). We can thus define the operator E by XE = {(u, P) ∈ X : u = 1}
for every X ⊆ FIM(A). This leads us to the following definition of k-rationality.

Definition. A language B ⊆ FIM(A) is k-rational for some k ∈ N when either
k = 0 and B is rational, or k = p + 1 for some p ∈ N and B is a finite rational
combination of languages of the form C or CE with p-rational languages C.

Again, adding the point-wise inverse operation on languages does not add any
expressive power, nor changes the defined hierarchy, since, for every X ⊆ FIM(A),
we also have (XE)−1 = (X−1)E since idempotent elements in FIM(A) are self
inverses.

Theorem 4 For every language B ⊆ FIM(A), B is k-rational if and only if B =
Bk(A) for some finite walking automaton A.

Proof. Let A = 〈Q, I, F, δ, ∆〉 be a finite state two-way automaton. Again, without
loss of generality, we may assume δ(1) = ∅. The equations defined for {B0

p,q} with
(p, q) ∈ Q×Q in the proof of Theorem 3 still holds and can be completed for {Bk+1

p,q }
with (p, q) ∈ Q × Q and k ∈ N by the (set) equations

Bk+1
p,q = δp,q +

∑

(p′, q′) ∈ Q × Q

(p, s) ∈ ∆(p′, q′)

Ck
p′,q′ ·

∑

a∈A

∑

(s,r)∈δ(a)

a · Bk+1
r,q +

∑

(s,r)∈δ(ā)

a−1 · Bk+1
r,q

with Ck
p′,q′ =

(

Bk
p′,q′

)E
. Indeed, we just enumerate above the possible starts of runs.

Then, by induction on the length of runs, one can prove that Bk
p,qs with (p, q) ∈

Q × Q and k ∈ N form the least solution (w.r.t. set inclusion) of this system.
Moreover, since Bk

p,q only depends on Bk′

p′,q′ with k′ ≤ k, this least solution is still
syntactically computable by Gaussian elimination of variables. The fact that the
number of allowed pebbles matches the resulting nesting depth of E operator is
immediate.

Conversely, building an automaton A for every k-rational language B such that
Bk(A) = B can be done by induction on the syntactical complexity of rational
expressions.

13

The inductive step for the E language operator, which is not classical, is described
as follow. Assume B is k-rational with a finite state automaton A = 〈Q, I, F, δ, ∆〉
such that B = Bk(A).

Let A′ = 〈Q′, I ′, F ′, δ′, ∆′〉 defined by Q′ = Q ⊎ {q0, qF }, I ′ = {q0}, F ′ = {qF },
δ′(x) = δ(x) for every x ∈ A+Ā+1 and ∆′(p, q) = ∆(p, q) when (p, q) ∈ Q×Q−I×F ,
∆′(p, q) = ∆(p, q) ∪ {(q0, qF)} when (p, q) ∈ I × F , and ∆′(p, q) = ∅ otherwise. It
then an easy observation that (u, P) ∈ Bk+1(A′) if and only if (u, P) ∈ Bk(A) and
u = 1 or, equivalently, (u, P) ∈ (Bk(A))E. 2

Observe that there we do not provide rational expressions for languages of the
form B(A) for finite state walking automata A with no bound on the number of
allowed pebbles. However, it can be shown that:

Theorem 5 For every language B ⊆ FIM(A), B is definable in MSO if and only
if B = B(A) for some finite walking automaton A.

Proof. This amount to prove that, without bound on the number of allowed
pebbles, (invisible) pebble automaton are equivalent to bottom up automata which
is known for trees [6]. The arguments for birooted tree languages are essentially the
same as the argument for trees presented in [2]. 2

In order to complete the picture, let R be the class of languages of birooted trees
definable as pre-images of finite sets by morphisms into finite monoids.

Lemma 6 Languages of R are recognizable by 0-pebble walking automata.

Proof. Let ϕ : FIM(A) → S with finite S. Without loss of generality we may
assume that ϕ is onto. Let then X ⊆ S and let A be the walking automaton defined
by

A = 〈S, {1}, X, δ, ∆〉

with δ(a) = {(s, s · ϕ(a)) ∈ S × S : s ∈ S} for every a ∈ A + Ā and ∆(p, q) = ∅ for
every (p, q) ∈ S × S. Then, one can easily check that ϕ−1(X) = B0(A). 2

Remark. In the above proof, one can say a little more about monoid S. Indeed,
it is itself an inverse monoid.

For every x ∈ FIM(A), xx−1x = x hence ϕ(x)ϕ(x−1)ϕ(x) = ϕ(x). It follows
that ϕ(x) and ϕ(x−1) are pseudo inverse one of the other, i.e. S is a regular monoid.

It remains to check that idempotents of S commutes. For this, it is enough to
check that every idempotent of S is the image of an idempotent of FIM(A).

Let x ∈ FIM(A) such that ϕ(x) is idempotent. First we observe that ϕ(x−1) is
also idempotent. Indeed, we have ϕ(x)ϕ(x) = ϕ(x). But since (xx)(x−1x−1)(xx) =

14

xx we also have ϕ(x)ϕ(x−1)ϕ(x−1)ϕ(x) = ϕ(x). Multiplying both sides by ϕ(x−1)
both on the left and on the right, we obtain ϕ(x−1)ϕ(x)ϕ(x−1)ϕ(x−1)ϕ(x)ϕ(x−1) =
ϕ−1(x)ϕ(x)ϕ(x−1). But x−1xx−1 = x−1 hence, by simplification, ϕ(x−1)ϕ(x−1) =
ϕ(x−1).

But again, since ϕ(x)ϕ(x−1)ϕ(x−1)ϕ(x) = ϕ(x) and since both xx−1 and x−1x
are idempotent in FIM(A), they commute and thus, ϕ(x−1)ϕ(x)ϕ(x)ϕ(x−1) =
ϕ(x). By applying idempotence of ϕ(x), we have ϕ(x−1)ϕ(x)ϕ(x−1) = ϕ(x). Since
x−1xx−1 = x−1 this shows that ϕ(x−1) = ϕ(x) and thus ϕ(x) = ϕ(x−1x) with x−1x
idempotent in FIM(A).

We are now ready to say a little more about the hierarchy induces by walk-
ing automata. Denoting by Bk the class of languages k-rational for every k ∈ N

and denoting by B be the class of languages of birooted trees definable by walking
automata with no bound on the number of allowed pebbles:

Theorem 7 R ⊂ B0 ⊂ B1 ⊆ · · · ⊆ Bk ⊆ Bk+1 ⊆ · · · ⊆ B = MSO

Proof. Inclusions follows from the Lemma 6 (for the first one) and the definitions
(for the other ones). The strictness of the first inclusion, between R (recognizable
languages) and B0 (rational languages) among subsets of FIM(A) is known for
long [16].

Separation between B0 (rational walking languages) and B1 (1-pebble walking
languages) is proved by the language E(FIM(A)) = (FIM(A))E of all context
elements (or idempotents). Obviously, E(FIM(A)) belongs to B1 while, applying
Theorem 3 and with a simple pupping lemma argument, it does not belong to B0.
2

Remark. Restricted to one-dimensional unidirectional birooted trees (called over-
lapping tiles in [5]), a similar arguments show that R ⊂ B0 ⊂ B1. However, in the
case of tile languages, it can be shown that the pebble hierarchy collapses at level
one [5], i.e. B1 = Bk+1 for every k ∈ N.

Remark. We conjecture that all these inequalities are strict. Of course, the strict-
ness the invisible pebble hierarchy does not follows from the analogous known result
on tree walking automata with visible pebble (see [2] for an overview). However, it
can still be the case that hard languages requiring k visible pebbles are definable
with k invisible pebbles.

15

4 Walking automata and quasi-recognizability

In this section, following the classic approach relating automata to algebra, we study
the mapping that consists, for a given automaton, to map input structures to sets
of pairs of states in the transition monoid that accepts the input structure. After
discussing briefly the case of the complete run semantics, we show that the partial
run semantics provide a mapping with sufficient properties to induce an algebraic
characterization of walking automata.

Let A be a walking automaton A = 〈Q, I, F, δ, ∆〉. Without lost of generality,
we assume that δ(1) = ∅, i.e. there are no silent transitions in A.

Let us first consider mapping α that maps every birooted tree to the pairs of
states induced by all complete runs of A on that birooted tree. More precisely,
for every x ∈ FIM(A), let α(x) ⊆ Q × Q be define by α(x) =

∑

k∈N αk(x) with
αk(x) = {(p, q) ∈ Q × Q : x ∈ Bk

p,q} for every k ∈ N.
Though straightforward, the next lemma is worth being stated for it tells to

which extent the standard algebraic approach fails with complete run semantics for
walking automata.

Lemma 8 For all k ∈ N, we have αk(1) = IQ (resp. α(1) = IQ), and, for all x and
y ∈ FIM(A), we have αk(xy) ⊇ αk(x) · αk(y) (resp. α(xy) ⊇ α(x) · α(y)).

Proof. Let k ∈ N. The fact αk(1) = IQ immediately follows from the definition
of walking automata semantics and the fact that we assume there are no silent
transitions, i.e. δ(1) = ∅.

Let then γk : (A + Ā)∗ → P(Q × Q), defined for all w ∈ (A + Ā)∗ by γk(w) =
{(p, q) ∈ Q × Q : w ∈ W k

p,q}. By definition of walking automata semantics we have

(A + Ā)∗

FIM(A) P(Q × Q)

γk
θ

αk = γk ◦ θ−1

In other words, αks are relational morphisms and, since θ−1(xy) ⊇ θ−1(x) · θ−1(y)
we have αk(xy) ⊇ αk(x) · αk(y). 2

Remark. With k = 0, if there is equality then mapping α0 is a monoid morphism
hence B0(A) is a recognizable language. It follows that automaton A′ obtained from
A by taking ∆(Q × Q) = ∅ is na inverse automaton (see [16] for a study of these
languages). As these are very specific automata, this is not the case in general.

16

Remark. Although mappings αk (and α) are sub-multiplicative they are not, in
general, premorphism in the sense of McAlister and Reilly [12]. Indeed, when x ≤ y
in FIM(A) there may be just no relationship between αk(x) and αk(y) hence αk is
in general not monotonic.

Instead of α, let us now consider mapping β that maps every birooted tree to the
set of pairs of states induced by partial runs of A (henceforth addressing the partial
run semantics of A). More precisely, for every x ∈ FIM(A), let β(x) ⊆ Q × Q be
define by β(x) =

∑

k∈N βk(x) with βk(x) = {(p, q) ∈ Q × Q : ∃y ∈ FIM(A), y ≤
x ∧ y ∈ Bk

p,q} for every k ∈ N. In other words, let β(x) (resp. βk(x)) be defined as
the image of the upper set ↑ x = {y ∈ FIM(A) : x ≤ y} by (the set extension) of
mapping α (resp. αk).

As opposed to α, mappings β and βk enjoys many more properties.

Lemma 9 For every k ∈ N, mapping βk (and thus mapping β) is a premorphism.
It satisfies in particular the following properties:

1. βk(1) = IQ,

2. for all x and y ∈ FIM(A), if x ≤ y then βk(x) ⊇ βk(y),

3. for all x ∈ FIM(A), if x ≤ 1 (equivalently x is idempotent) then βk(x) ⊇ IQ

and βk(x) is idempotent,

4. for all x and y ∈ FIM(A), βk(xy) ⊇ βk(x) · βk(y),

5. for all x and y ∈ FIMA) if y ≤ 1 and x = xy (resp. x = yx) then βk(x) =
βk(x) · βk(y) (resp. βk(x) = βk(y) · βk(x)).

Proof. (1) and (2) are immediate from the definition of βk. Actually, (2) also follows
from (3) and (4) since x ≤ y is equivalent to x = yx−1x with x−1x idempotent.

(3) follows from (4). Indeed, if x ≤ 1 then, by (1) and (2), βk(x) ⊇ IQ henceforth,
by (4), βk(x) = βk(xx) ⊇ βk(x) · βk(x) ⊇ βk(x) · IQ = βk(x).

(4) Let (p, q) ∈ βk(x) · βk(y). By definition of product of relations, this means
there is r ∈ Q such that (p, r) ∈ βk(x) and (r, q) ∈ βk(y) hence x′ ∈ B∞

p,r and
y′ ∈ B∞

r,q such that x ≤ x′, y ≤ y′ and x′y′ ∈ B∞

p,q. But, since ≤ is stable under
product one has xy ≤ x′y′ and thus (p, q) ∈ βk(x).

(5) follows from (3) and (4). Indeed, if x = yx then, by (4), we have βk(x) =
βk(yx) ⊇ βk(y)βk(x). But if moreover y ≤ 1 then, by (3), we have βk(y) ⊇ IQ hence
βk(y)βk(x) ⊆ IQ.βk(x) = βk(x). The other when x = xy is symmetric. 2

The following lemma tells that both βk(x) and β(x) reduce to the computation
of their values on letters and idempotents.

17

Lemma 10 Let x ∈ FIM(A) with x = (u, P) and u = a1a2 · · · an. Let u0 = 1 and
let ui = a1a2 · · · ai for 1 ≤ i ≤ n and let yi = θ(ui)

−1 · x · x−1 · θ(ui) for 0 ≤ i ≤ n.
For every k ∈ N we have:

β(x)k = βk(y0)β
0(a1)β

k(y1)β
0(a2)β

k(y2) · · · βk(yn−1)β
0(an)βk(yn) (1)

and
β(x) = β(y0)β

0(a1)β(y1)β
0(a2)β(y2) · · · β(yn−1)β

0(an)β(yn) (2)

Proof. We first prove equation (1). Let k be a fixed integer. We prove that
for every x = (u, P) ∈ FIM(A), if u = av is the exit root of x, then βk(x) =
βk(xx−1) · β0(a)βk(a−1x). Indeed, the exit root of a−1x is v and thus the expected
result just follows from an iteration of the above step.

Let thus x ∈ FIM(A) as above. We have x = aa−1x = xx−1aa−1x, hence, by
premorphism property (Lemma 9 (4)) and the fact that βk ⊇ β0 ⊇ α0 we do have
βk(x) ⊇ βk(xx−1) · β0(a) · βk(a−1x).

The converse inclusion follows from the fact that, in a partial run with k pebble
at most from vertex 1 to vertex u in x = (u, P), every dropped pebble on a given
vertex must eventually be lifted coming back to that same vertex. In other words,
such a partial run can be decomposed into a partial run with at most k pebbles on
xx−1 (described by βk(xx−1)) followed by a reading (with no pebble) of a (described
by α0(a) ⊆ β0(a)), followed by a partial run with at most k pebble on the remaining
birooted tree a−1x (described by βk(a−1x)). In other words: βk(x) ⊆ βk(xx−1) ·
α0(a) · βk(a−1x) ⊆ βk(xx−1) · β0(a) · βk(a−1x).

Equation (2) just follows equation (1) summing up over all k ∈ N. 2

Definition. For every x = (u, P) ∈ FIM(A), let D(x) ⊆ FIM(A), the domain
of x, be defined by D(x) = {θ(v)−1 · x · x−1 · θ(v) ∈ FIM(A) : v ∈ P} and let
Ax ⊆ A + Ā, the set of immediate edges from the input root of x, be defined by
Ax = {a ∈ A + Ā : aa−1x = x}.

Remark. Observe that all element of D(x) are idempotents. Moreover, they are
in a one to one correspondance with the vertices of (the birooted representation of)
x and, for every z ∈ FIM(A), if zz−1x = x then z−1xx−1z ∈ D(x).

The following lemmas and corollaries tell how to compute βk and β on idempo-
tents:

Lemma 11 For every x ∈ FIM(A), every k ∈ N, the set {βk(y)}y∈D(x) is the
least solution (w.r.t. inclusion) of the (finite) set of (monotonic) fixpoint equations

18

defined, for every y ∈ D(x) by:

β0(y) = IQ +

∑

a∈Ay

β0(a) · β0(a−1ya) · β0(a−1)

 · β0(y) (3)

when k = 0 and

βk(y) = IQ +

∆
(

βk−1(y)
)

+
∑

a∈Ay

β0(a) · βk(a−1ya)β0(a−1)

 · βk+1(y) (4)

when k > 0.

Proof. We prove equations (3) and (4). The inclusion ⊇ follows, in both cases
k = 0 or k > 0, from the following facts:

1. βk(y) ⊇ IQ since y is idempotent (Lemma 9 (3)),

2. for every a ∈ Ay, we have y = (yy−1)a(a−1ya)a−1 hence, since βk is a premor-
phism (Lemma 9 (4)), βk(y) ⊇ βk(yy−1) · βk(a) · βk(a−1ya) · β(a−1) with both
βk(a) ⊇ β0(s) and βk(a) ⊇ β0(s) and inclusion order stable under product,

3. when k > 0, ∆(βk−1(y)) ⊆ βk, since a pebble that is dropped must be lifted
from the same vertex,

4. and βk(y) is idempotent (Lemma 9 (3)), i.e. βk(y) = βk(y) · βk(y).

The reverse inclusion ⊆ follows from the fact that we just mimic all possible
cases of partial runs over the idempotent element y that consists to:

1. either doing nothing hence staying in the same state (which is allowed since
y ≤ 1),

2. or, optionally when k > 1,

(a) dropping a pebble at the entry root of y,

(b) performing a partial run with k − 1 pebbles (a partial run described by
βk−1(y)),

(c) lifting that pebble back (upon returning back to the entry root of y),

(d) and being ready to keep on performing another partial run on y with k
pebbles,

19

3. or, starting to read a letter while staying domain of y hence:

(a) reading some letter a ∈ Ay (a reading described by α0(a) ⊆ β0(a)),

(b) and then, performing a partial run with k pebbles on a−1y which, by
equation 1, amounts to:

i. performing a run with k pebbles on a−1ya (described by βk(a−1ya))
since y is idempotent and thus a−1y(a−1y)−1 = a−1ya,

ii. completing that run by reading ā (described by α0(a−1) ⊆ β0(a−1)),

(c) and being ready to keep on performing another partial run on y with k
pebbles,

The fact that {βk(y)}y∈D(x) is the least solution of this finite system of equa-
tions immediately follows from an induction on the (even) length of partial runs on
elements of D(x). 2

In other words:

Corollary 12 For every x ∈ FIM(A) and every k ∈ N, βk(x) is effectively com-
putable applying equation (1) and solving, by finite iteration, the finite system of least
fixpoint equations (3) and (4) defining βk′

(y) for every 0 ≤ k′ ≤ k and y ∈ D(x).

Proof. For a given x ∈ FIM(A) and a given k ∈ N, equations (1) and (5) defines
a finite set of least (w.r.t. to inclusion) fixpoint equations, defining βk′

(y) for every
0 ≤ k′ ≤ k and y ∈ D(x), with monotonic function in a finite lattice.

It follows that the Knaster-Tarski fixpoint theorem applies: this system can be
solves by a finite iteration procedure, initially taking βk′

(y) = ∅. 2

Moreover:

Corollary 13 For every x ∈ FIM(A), β(x) is effectively computable applying equa-
tion (2) and solving, by finite iteration, the finite system of least fixpoint equa-
tions (5) defined, for all y ∈ D(x) by:

β(y) = IQ +

∆−1 (β(y)) +
∑

a∈Ay

β0(a) · β(a−1ya) · β0(a−1)

 · β(y) (5)

Proof. By applying the Knaster-Tarski fixpoint theorem, in the finite iteration
process computing βk on the domain of x for a given x ∈ FIM(A), since D(x) is
finite, there exists some k > 0 big enough such that, for all y ∈ D(x), βk(y) =

20

βk+1(y) hence β(y) = βk(y) = βk+1. Replacing βk and βk+1 by β in equation (4) we
deduce equation (5). 2

In other words, mappings β and βks are finitely computable on any birooted tree.
As they do capture the partial run semantics of walking automata it remains to show,
even on birooted trees with unmarked vertices, that the partial run semantics can
be used as relevantly as with classic tree walking automata.

5 Walking automata in Rees quotients of the free

inverse monoid

A priori, in the partial run semantics, it is just impossible to define a singleton
language nor even a finite languages of birooted trees. Indeed, all definable languages
are downward closed with respect to the natural order. This comes from the fact
that, in birooted trees, we lack of a way to constrain the branching structure of trees.
There is no way to tell that some vertices are leaves (i.e. vertices with at most one
edge). Can we cope with that fact? It turns out that a classic algebraic tool, the
Rees quotient of monoids, provide a fairly elegant solution to that problem.

Definition. A birooted tree on the alphabet A+P(A+Ā) is a well-marked birooted
tree when for every vertex there is at most one ingoing or outgoing edge labeled by
some C ∈ P(A + Ā) and:

• either this is an ingoing edge and the vertex has no other edges,

• or this is an outgoing edge and the vertex can only have edges of the following
type:

– either outgoing edge labeled by a with a ∈ C ∩ A

– or ingoing edge labeled by a with ā ∈ C ∩ Ā.

A birooted tree on the alphabet A + P(A + Ā) is a completely well-marked birooted
tree when there is one ingoing or outgoing edge labeled by some C ∈ P(A+ Ā) from
every vertices. A birooted tree on the alphabet A + P(A + Ā) is a maximally well-
marked birooted tree when it is completely well-marked and when every dangling
edge on the alphabet P(A + Ā) describes all the ingoing or outgoing A-edges from
its source vertex.

21

The following picture gives exemples of (1) unmarked, (2) partially marked, (3)
completely marked and (4) maximally marked, well-marked birooted trees.

a b

c

(1)

a b

c

{ c }

{ a , b , c }

(2)

entry exit

a b

c

{ a }

{a, c}

{ e, b }{ a , b , c }

(3)

a b

c

{ a }

{ c }

{ b }{ a , b , c }

(4)

In other words, a well-marked birooted tree is a birooted tree on the alphabet A
extended with optional dangling outgoing edges on P(A + Ā) that tells what is the
branching structure of their source vertex.

Lemma 14 Non well-marked birooted trees form a ideal ⊥A of FIM(A+P(A+Ā)).

Proof. As soon as a birooted tree is non well-marked its left or right product with
any birooted tree yields a non well-marked birooted tree. 2

Definition. The monoid WFIM(A) of well-marked birooted tree is defined to be
the Rees quotient WFIM(A) = FIM(A+P(A+ Ā))/⊥, i.e. the monoid FIM(A+
P(A+ Ā)) where all non well-marked birooted are collapsed into a single ⊥ element.

Remark. All results stated above can be extended to WFIM(A). Indeed, for
the extensions of Kleene theorem, all non well-marked birooted trees can just be
removed from languages defined by rational expressions. For the characterization
of walking automata semantics by premorphism, the transition monoid P(Q × Q)
can just be extended with (a new) 0, absorbant element and maximal w.r.t. the
inclusion order, mapping ⊥ in WFIM(A) to 0 in P(Q × Q).

Corollary 15 For every language B ⊆ WFIM(A) of (maximally well-marked)
finite birooted trees, if B is definable in MSO then there exists a finite ordered monoid
S and a (finitely generated) premorphism β : WFIM(A) → S such that B =
β−1 ◦ β(B).

Proof. Take automaton A = 〈Q, I, F, δ, ∆〉 provided by Theorem 5. One can
observe that maximally well-marked birooted trees are minimal elements w.r.t. the
natural order among non zero elements of WFIM(A). It follows that complete
and partial run semantics for A coincides. Let then S be the transition monoid
P(Q × Q) of Ap extended with a zero (and equipped with the “recursion” mapping

22

∆−1 : S → S). Mapping β defined in the previous section recognizes B and, by
Corollary 13, it is finitely generated. 2

Remark. As a concluding remark, one can observe that the “trick” to describe
the branching structure of birooted trees can be extended in order to encode extra
vertex labeling on any given finite alphabet.

In other words, up to some encoding via some Rees quotient, (the encoding
of) every languages of finite trees definable in MSO is recognizable by means of a
premorphism into a finite ordered monoid, i.e. this extend to regular languages of
trees the algebraic framework proposed for tiles [9].
Nota: most proofs and some extra examples or remarks are provided in the appendix
below.

References

[1] J.-C. Birget. Concatenation of inputs in a two-way automaton. Theoretical
Computer Science, 63(2):141 – 156, 1989.

[2] M. Bojańczyk. Tree-walking automata. In LATA, volume 5196 of LNCS.
Springer, 2008.

[3] M. Bojańczyk and T. Colcombet. Tree-walking automata do not recognize all
regular languages. In STOC. ACM, 2005.

[4] M. Bojańczyk, M. Samuelides, T. Schwentick, and L. Segoufin. Expres-
sive power of pebble automata. In Automata, Languages and Programming
(ICALP), 2006.

[5] A. Dicky and D. Janin. Two-way automata and regular languages of overlapping
tiles. Technical Report RR-1463-12, LaBRI, Université de Bordeaux, 2012.

[6] J. Engelfriet, H. J. Hoogeboom, and B. Samwel. XML transformation by tree-
walking transducers with invisible pebbles. In Principles of Database System
(PODS). ACM, 2007.

[7] J. Engelfriet and H.J. Hoogeboom. Tree-walking pebble automata. In
J. Karhumäki, H. Maurer, G. Paun, and G. Rozenberg, editors, Jewels are
forever, contributions to Theoretical Computer Science in honor of Arto Salo-
maa, pages 72–83. Springer-Verlag, 1999.

23

[8] D. Janin. Quasi-inverse monoids (and premorphisms). Technical Report RR-
1459-12, LaBRI, Université de Bordeaux, 2012.

[9] D. Janin. Quasi-recognizable vs MSO definable languages of one-dimentionnal
overlaping tiles. In Mathematical Foundations of computer Science (MFCS),
volume 7464 of LNCS, pages 516–528, 2012.

[10] D. Janin. On languages of one-dimensional overlapping tiles. In International
Conference on Current Trends in Theory and Practice of Computer Science
(SOFSEM), volume (to appear) of LNCS, 2013.

[11] M. Kunc and A. Okhotin. Describing periodicity in two-way deterministic
finite automata using transformation semigroups. In Developments in Language
Theory, volume 6795 of Lecture Notes in Computer Science, pages 324–336.
Springer, 2011.

[12] D.B. McAlister and N. R. Reilly. E-unitary convers for inverse semigroups.
Pacific Journal of Mathematics, 68:178–206, 1977.

[13] W. D. Munn. Free inverse semigroups. Proceeedings of the London Mathematical
Society, 29(3):385–404, 1974.

[14] J.-E. Pin. Mathematical foundations of automata theory. Lecture notes, 2011.

[15] H. E. Scheiblich. Free inverse semigroups. Semigroup Forum, 4:351–359, 1972.

[16] P. V. Silva. On free inverse monoid languages. ITA, 30(4):349–378, 1996.

24

