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HEIGHT BOUNDS, NULLSTELLENSATZ AND PRIMALITY

HAYDAR GÖRAL

Abstract. In this study, we find height bounds in the polynomial ring over the
field of algebraic numbers to test the primality of an ideal. We also obtain height
bounds in the arithmetic Nullstellensatz. We apply nonstandard analysis and hence
our constants will be ineffective.

1. Introduction

In this paper, our goal is to augment a result of van den Dries and Schmidt [8] by

obtaining height bounds in the polynomial ring over the field of algebraic numbers to

test the primality of an ideal. We also find height bounds in the arithmetic Nullstel-

lensatz and a version of it.

Factorization is a difficult problem in integers and also in polynomial rings over

fields. A primality test is an algorithm to decide whether an input number or polyno-

mial is prime or not. Such tests have wide applications, for example in cryptography.

There are many explicit methods to check the primality of an ideal over polynomial

rings. On the other hand, nonstandard analysis can be useful to give noneffective

criteria for the primality of an ideal. Nonstandard analysis originated in the 1960’s

in the work of Robinson, as a rigorous and exhaustive way of studying infinitesimal

calculus. Now let K be a field and I be an ideal of K[X1, ..., Xn]. It is well-known that

K[X1, ..., Xn] is Noetherian, which means that every ideal of K[X1, ..., Xn] is finitely

generated. We say that I is a D-type ideal if I is generated by polynomials of degree at

most D. In [8, Theorem 2.10], using nonstandard analysis van den Dries and Schmidt

proved that there is a bound P (n,D) depending only on n and D such that if I is a

D-type ideal then I is prime if and only if 1 /∈ I, and for all f, g in K[X1, ..., Xn] of

degree less than P (n,D), fg ∈ I implies that f is in I or g is in I. In other words,

to test the primality of an ideal in K[X1, ..., Xn], it is enough to check all products of
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2 HAYDAR GÖRAL

polynomials up to a certain degree bound. This result has algebraic-geometric conse-

quences when K is algebraically closed. An explicit version of the bound P (n,D) is

not known. However, a partial result was given by Schmidt [25].

The ideal membership problem has been studied extensively. The following result

was launched by Hentzelt and Noether [13] and then established in a paper by Hermann

[14] using algorithmic tools: If f0, f1, ..., fs in K[X1, ..., Xn] all have degrees less than

D and f0 in (f1, ..., fs), then

f0 =
s∑
i=1

fihi

for certain hi whose degrees are bounded by a constant C = C(n,D) depending only

on n and D. This result was clarified by Seidenberg [26], and moreover it was obtained

that we may take C(n,D) = (2D)2
n
. Applying nonstandard analysis, the same result

was reproved by van den Dries and Schmidt [8], but the result is ineffective. Later

on, Aschenbrenner [4] generalized Hermann’s result to Prüfer domains but again the

method is ineffective. One can improve the doubly exponential bound C(n,D) dras-

tically, if we consider the case of Nullstellensatz and take f0 = 1. By the seminal work

of Kollár [17], if f0 = 1 then one can choose C(n,D) = Dn for D ≥ 3. Moreover, by

the work of Sombra [28], we can take C(n, 2) = 2n+1.

The ideal membership problem over the ring of integers Z and effective results were

studied by Aschenbrenner [1, 2] and Krick, Pardo and Sombra [18]. Contrary to the

field case, there is no uniform degree bound for h1, ..., hs in the ideal membership

problem which depends only on n and D. In [2], it was shown that there is a uniform

degree bound which depends on n and D as well as the coefficients of the polynomials

f1, ..., fs in question. Estimates for the height of polynomials h1, ..., hs were obtained

in [18] for the arithmetic Nullstellensatz, and there the number of generators also plays

a significant role.

The results in [8] influenced us to apply nonstandard analysis in the current paper.

Here we show that it is also enough to check the primality up to a certain height
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bound, and we provide uniform height bounds for the case of Nullstellensatz. More

precisely, let Q be the field of algebraic numbers and H be the height function on Q.

For a polynomial f in several variables over the field of algebraic numbers, define the

height of f as the maximum of the heights of its coefficients. We say that an ideal

I of Q[X1, ..., Xn] is a (D,H)-type ideal, if I can be generated by elements of degree

at most D and height at most H. We prove the existence of the constants C in the

following three results. An explicit bound C below is not known in general. The main

observation that makes the machinery of the paper is Lemma 2.4, which may be seen

as the model-theoretic analog of the properties of the height function and Gelfond’s

lemma (see Fact 2.1 and Theorem 2.2). More precisely, we prove the following results:

Theorem A. There are bounds P (n,D) and C(n,D,H) such that if I is a (D,H)-

type ideal of Q[X1, ..., Xn] then I is prime if and only if 1 /∈ I, and for all f, g in

Q[X1, ..., Xn] of degree less than P (n,D) and height less than C(n,D,H), if fg ∈ I,

then f or g is in I.

Theorem B. There are bounds N = N(n,D), r = r(n,D) and C = C(n,D,H) such

that for all polynomials f1, ..., fm, g in Q[X1, ..., Xn] of degree at most D and height

at most H, if g vanishes for all joint zeros of f1, ..., fm, then there are h1, ..., hm in

Q[X1, ..., Xn] of degree at most N and height at most C such that gr = f1h1+···+fmhm.

Theorem C. There exists C(n,D,H) such that for all polynomials f1, ..., fm, g in

Q[X1, ..., Xn] of degree at most D and height at most H, if there is some x ∈ Qn
such

that f1(x) = · · · = fm(x) = 0, g(x) 6= 0, then there is some x with this property of

height at most C.

2. Preliminaries

2.1. The Height Function. For the details of this subsection we refer the reader to

[5, Chapter 1] and [15, Part B, B.7].

Before defining the height function, we first define the Mahler measure of a polyno-

mial over C. For a non-zero polynomial f(x) = ad(X − α1) · · · (X − αd) with complex
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coefficients, its Mahler measure is defined as the product

m(f) = |ad|
∏
|αj |≥1

|αj|.

By convention m(0) is defined to be 1. For a non-zero α in Q with minimal (irreducible)

polynomial f(x) ∈ Z[X] of degree d, we define its Mahler measure as m(α) = m(f).

The height of α is defined by

H(α) = m(α)1/d.

Sometimes one also considers the logarithm of the height function and it is called the

logarithmic height function. Note that H(0) = 1 and for a non-zero integer a we have

H(a) = |a|. It is not known whether there exists an absolute constant c > 1 such that

if m(α) > 1 then m(α) ≥ c; see [19, 27]. The height function measures the arithmetic

complexity of an algebraic number and it behaves well under arithmetic operations.

More precisely, the height function satisfies the following properties:

Fact 2.1. • H(0) = H(1) = 1,

• For a non-zero rational number a/b where a and b are coprime,

H(a/b) = max{|a|, |b|},

• For all α in Q and n ∈ N, we have H(αn) = H(α)n,

• For all α and β in Q, we have H(α + β) ≤ 2H(α)H(β),

• For all α and β in Q, we have H(αβ) ≤ H(α)H(β),

• For all non-zero α in Q, we have H(1/α) = H(α).

Now we give the height inequality which is also called Gelfond’s lemma. There

is a relation between the height of a polynomial and the height of its roots. For a

polynomial

f = a0 + a1X + · · ·+ adX
d

over the field of algebraic numbers, define

H(f) = max
i
H(ai).
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Similarly we can define the height of a polynomial in several variables, as we already

mentioned in the introduction. The following lemma is the height inequality and it

states that the height function translates geometric properties into arithmetic ones.

Theorem 2.2. [5, Theorem 1.6.13] and [15, Proposition B.7.2]

For a polynomial

f(x) = (X − α1) · · · (X − αd) = a0 + a1X + · · ·+Xd ∈ Q[X],

we have that ∏
i≤d

H(αi) ≤ 22d+1H(f).

2.2. Nonstandard Analysis. Next, we define nonstandard extension which we will

need in the proof of our results.

Definition 2.3. (Nonstandard Extension of a Structure) Let M be a nonempty struc-

ture in a countable language L. A nonstandard extension ∗M of M is an ultrapower

of M with respect to a non-principal ultrafilter on N.

Now let ∗M be a nonstandard extension of M with respect to a non-principal ultra-

filter D on N. The elements of ∗M are of the form (xn)n/D where (xn)n is a sequence in

M. We identify each element x of M with the class of the constant sequence (x)n/D of

∗M. Viewing M as a subset of ∗M in this way, the structure M becomes an elementary

substructure of ∗M. For a subset A of M, the set ∗A is defined to be the set

{(an)n/D : {n : an ∈ A} ∈ D}.

Note that ∗A contains A. Every function on a subset A of M extends to ∗A coordi-

natewise and this is well-defined. Subsets of ∗M of the form ∗A for some subset A of

M are called internal. Not every subset of ∗M is internal. The following sets ∗N, ∗Z,

∗Q, ∗R are called hypernatural numbers, hyperintegers, hyperrational numbers and

hyperreals respectively. The elements ∗R\R are called nonstandard real numbers. Let

Rfin = {x ∈ ∗R : |x| < n for some n ∈ N}
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be the set of finite numbers. The elements in ∗R \ Rfin are called infinite. Note that

Rfin is a subring of ∗R containing R.

The notion of a nonstandard extension and its properties can be generalized to

many-sorted structures. This will be significant for the concept of the height function

which takes values in R. For more detailed information about nonstandard analysis

and model theory, the reader might consult [10, 12] and [20].

Let ∗Q be a nonstandard extension of Q with respect to a non-principal ultrafilter

D on N. Note that ∗Q is also algebraically closed. For an element x = (xn)n/D in ∗Q,

its height is defined to be

(H(xn))n/D.

Set

Qfin = {x ∈ ∗Q : H(x) ∈ Rfin}.

As the height function is unbounded, the extension

Qfin ( ∗Q

is proper. The element (21/n)n/D is in Qfin and it is not in Q. Hence the extension

Q ( Qfin is also proper. The following lemma plays a central role in proving all the

results of the paper, and it is the model-theoretic analog of the properties of the height

function and Gelfond’s lemma.

Lemma 2.4. The set Qfin is an algebraically closed subfield of ∗Q.

Proof. Since the height function behaves well under addition, multiplication and in-

verse as given in Fact 2.1, we obtain that Qfin is a field. By the height inequality

Theorem 2.2, we see that Qfin is also algebraically closed. �

2.3. Degree Bound. In this subsection, we provide some facts from commutative

algebra and give the result in [8].
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Let F ⊆ E be a field extension. The following fact is well-known and completely

standard, as a consequence of the faithful flatness of E[X1, ..., Xn] over F [X1, ..., Xn].

Fact 2.5. Let F ⊆ E be a field extension and I ⊂ F [X1, ..., Xn] be a proper ideal.

Then the ideal IE[X1, ..., Xn] ⊂ E[X1, ..., Xn] is also proper. Moreover, we have the

following equality

(IE[X1, ..., Xn]) ∩ F [X1, ..., Xn] = I.

Recall that a field extension F ⊆ E is called regular, if E and F ac are linearly

disjoint over F. For the following fact, we refer the reader to [6, Chapter 5, Section 15,

Proposition 15] and [6, Chapter 5, Section 17, Corollary to Proposition 1].

Fact 2.6. Let F ⊆ E be a regular field extension and I ⊆ F [X1, ..., Xn]. Then

I is a prime ideal in F [X1, ..., Xn] if and only if IE[X1, ..., Xn] is a prime ideal in

E[X1, ..., Xn].

Now let K be a field and take a nonstandard extension ∗K of the 2-sorted structure

K = (K[X1, ..., Xn],+,−, ·, 0, 1, deg,N),

where deg is the degree function on K[X1, ..., Xn] assuming values in N. Note that

∗K[X1, ..., Xn] ( ∗(K[X1, ..., Xn])

and ∗K[X1, ..., Xn] = {f ∈ ∗(K[X1, ..., Xn]) : deg f ∈ N}. The following Theorem is

from [8, 2.5] and it yields the existence of the constant P in Theorem A.

Theorem 2.7. [8, 2.5] Let K be a field. The ideal I of ∗K[X1, ..., Xn] is a prime ideal

in ∗K[X1, ..., Xn] if and only if I∗(K[X1, ..., Xn]) is a prime ideal in the nonstandard

extension ∗(K[X1, ..., Xn]).

3. Results

3.1. Proof of Theorem A.

Proof. Note that

V (n,D) = {f ∈ Q[X1, ..., Xn] : deg(f) ≤ D}
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is a finite dimensional vector space over Q. In fact, the dimension is

q(n,D) =

(
n+D

n

)
.

Thus if J = (f1, ..., fs) is an ideal of D-type, then the number of generators of J can

be taken less than q. So we can always assume that s ≤ q. We know the existence of

the bound P = P (n,D) by [8]. Now we prove the existence of the bound C(n,D,H).

Suppose there is no such bound. This means that for all m > 0 there is an ideal Im of

(D,H)-type of Q[X1, ..., Xn] which is not prime such that for all f, g with deg f and

deg g less than P , and H(f), H(g) less than m, if fg ∈ Im then f or g is in Im. Let

∗M be a nonstandard extension of the many-sorted structure

M = (Q[X1, ..., Xn],+,−, ·, 0, 1, H, deg,R≥1,N),

where H is the height function from Q[X1, ..., Xn] to R≥1, and deg is the degree

function on Q[X1, ..., Xn] which takes values in N. Then the functions H and deg

extend to ∗(Q[X1, ..., Xn]) and they take values in the positive hyperreals ≥ 1 and

hypernaturals respectively. Then by saturation, there is an ideal I of (D,H)-type of

∗(Q[X1, ..., Xn]) which is not prime but for all m > 0, if f, g are of degree less than P

and are of height less than m, if fg ∈ I then f or g is in I. Now, we see that the ideal

I is prime in Qfin[X1, ..., Xn]. However, it is not prime in ∗Q[X1, ..., Xn] by Theorem

2.7. This contradicts Fact 2.6 since Qfin is algebraically closed by Lemma 2.4, and

the field extension Qfin ⊆ ∗Q is regular. �

3.2. Proof of Theorem B.

Proof. Suppose that n,D and H are fixed. The existence of N = N(n,D) and r =

r(n,D) is well-known and was already proved in [23, Chapter 8] and [24, Section 4].

For the sake of completeness, we give its proof briefly here. As in the proof of Theorem

A, we can assume that

m ≤ q(n,D) =

(
n+D

n

)
.

It is enough to show that there exists N ′(n,D) such that for all algebraically closed

fields K and polynomials f1, ..., fm in K[X1, ..., Xn] of degree at most D without com-

mon zeros in Kn, there are h1, ..., hm in K[X1, ..., Xn] of degree at most N ′ such that
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1 = f1h1 + · · ·+ fmhm. The existence of N ′ implies the existence of N, r by the Rabi-

novich trick: introduce a new variable Y and the additional polynomial f0 = 1− gY ;

then we see that f0, f1, ..., fm have no common zeros. Now suppose that there is no

such bound N ′. Then we obtain a non-standard extension ∗K of K and polynomi-

als f1, ..., fm ∈ ∗K[X1, ..., Xn] of degree at most D without common zeros in (∗K)n.

However, 1 /∈ (f1, ..., fm), contradicting Hilbert’s Nullstellensatz applied to the alge-

braically closed field ∗K. Thus we proved the existence ofN and r. Now we show the ex-

istence of C = C(n,D,H). Suppose that there is no such bound C = C(n,D,H). Then

we obtain a non-standard extension ∗Q and polynomials f1, ..., fm, g ∈ Qfin[X1, ..., Xn]

of degree at most D and height at most H such that g vanishes for all joint zeros of

f1, ..., fm in (∗Q)n but there are no h1, ..., hm ∈ Qfin[X1, ..., Xn] of degree at most N

such that gr = f1h1+···+fmhm. However, by Lemma 2.4, the field Qfin is algebraically

closed. This contradicts the choice of N and r. �

3.3. Proof of Theorem C.

Proof. Suppose there is no such bound C(n,D,H). Then, we obtain a non-standard

extension ∗Q and polynomials f1, ..., fm, g ∈ Qfin[X1, ..., Xn] (of degree at most D and

height at most H) such that for some x in (∗Q)n we have f1(x) = · · · = fm(x) = 0 and

g(x) 6= 0, but there is no such x in (Qfin)n. This contradicts Lemma 2.4 as Qfin is an

elementary substructure of ∗Q by model-completeness of the theory of algebraically

closed fields. �

3.4. Some Corollaries. Next, we prove the existence of a height bound similar to the

height bound in Theorem A. For the details of this subsection, we direct the reader to

[9, 21]. Let R be a commutative Noetherian ring with 1 and M be an R-module. For

a prime ideal p of R, we say that p is an associated prime of M , if p is the annihilator

of some x in M . For an ideal J of R, the associated prime ideals containing J coincide

with AssR(R/J), which in fact is the set of prime ideals that are the radicals of

the primary ideals occurring in the primary decomposition of J . First, we recall the

following facts from commutative algebra.
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Remark 3.1. • An ideal J is a primary ideal if and only if

AssR(R/J)

has exactly one element.

• Every ideal J (through primary decomposition) is expressible as a finite inter-

section of primary ideals. The radical of each of these ideals is a prime ideal

and these primes are exactly the elements of AssR(R/J) .

• Any prime ideal that is minimal with respect to containing an ideal J is in

AssR(R/J). These primes are precisely the isolated primes.

Corollary 3.2. Let n ∈ N, X = (X1, ..., Xn) and I be an ideal of Qfin[X].

(1) If pk, ..., pm are the distinct minimal primes of I then

p1
∗Q[X], ..., pm

∗Q[X]

are the distinct minimal primes of I∗Q[X1, ..., Xn].

(2)
√
I∗Q[X] =

√
I∗Q[X].

(3) If M is a Qfin[X]-module, then

Ass∗Q[X](M ⊗Qfin[X]
∗Q[X]) = {p∗Q[X] : p ∈ AssQfin[X](M)}.

(4) The ideal I is a primary ideal if and only if I∗Q[X] is a primary ideal of ∗Q[X].

(5) Let I = I1 ∩ ...∩ Im be a reduced primary decomposition, Ik being a pk-primary

ideal. Then

I∗Q[X] = I1
∗Q[X] ∩ ... ∩ Im∗Q[X]

is a reduced primary decomposition of I∗Q[X], and Ik
∗Q[X] is a pk

∗Q[X]-

primary ideal.

Proof. (1) is an immediate consequence of Fact 2.6 and Lemma 2.4. (2) follows from

(1), since the radical of an ideal is the intersection of minimal prime ideals which

contain the ideal. Since Qfin[X] is Noetherian, (3) follows from [7, Chapter 4, 2.6,

Theorem 2] and Fact 2.5. To prove (4), suppose that I is a p-primary ideal. So we

get AssQfin[X](Qfin[X]/I) = {p}. Applying (3) with M = Qfin[X]/I, we obtain that
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Ass∗Q[X](
∗Q[X]/I) = {p∗Q[X]} and this yields (4) with the help of Remark 3.1. The

converse of (4) can be seen by Fact 2.5. (5) follows from (4). �

Now we give the standard corollaries with no proof, since the proofs are similar to

that of Theorem A. For the following corollary, the existence of the constant E(n,D,H)

is new and the other constants are due to [8].

Corollary 3.3. There are constants B(n,D), M(n,D) and E(n,D,H) such that if I

is an ideal of (D,H)-type, then

(1)
√
I is generated by polynomials of degree less than B and height less than E,

if f ∈
√
I then fM ∈ I.

(2) There are at most B associated primes of I and each is generated by polynomials

of degree less than B and height less than E.

(3) I is primary if and only if 1 /∈ I, and for all f, g of degree less than B and

height less than E, if fg ∈ I then f ∈ I or gM ∈ I.

(4) There is a reduced primary decomposition of I consisting of at most B primary

ideals, each of which is generated by polynomials of degree at most B and height

at most E.

4. Generalized Height Function

In this section we define a generalized version of the height function, and we state a

generalized version of Theorem A for fields. For this purpose, we let R be a commu-

tative ring with unity, and θ : N→ N be a function. We say that

h : R→ [0,∞)

is a height function of θ-type if for any x and y in R with h(x) ≤ n and h(y) ≤ n,

then both h(x+ y) ≤ θ(n) and h(xy) ≤ θ(n). We say that h is a height function on R

if h is a height function of θ-type for some θ : N→ N.

We can extend the height function h to the polynomial ring R[X1, ..., Xn] by setting

h

(∑
α

aαX
α

)
= max

α
h(aα).
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Note that this extension does not have to be a height function, it is just an extension

of functions. Now we give some examples of height functions.

Example 4.1. For the following examples of height functions, one can take θ(n) =

(n+ 1)2.

• The height function on the set of algebraic numbers.

• Absolute values on R.

• The degree function on R[X1, ..., Xn].

• Let λ be a positive real number. On Z[X], define

h(a0 + a1X + ...+ akX
k) =

k∑
i=0

|ai|λi.

Then this is a height function on Z[X].

Constructing height functions has been always crucial, as it has important arithmetic

consequences. To illustrate, elliptic curves over number fields are finitely generated

and the height function attached to them plays a crucial role in the proof. For more

on the general frameworks for constructing height functions, the reader may consult

[16, 22]. The work of Kani [16] was discussed by Aschenbrenner [3], and this has

applications to the ideal membership problem over Z.

For a function h : R→ [0,∞) and a nonstandard extension ∗R of R, we define

Rhfin = {x ∈ ∗R : h(x) < n for some n ∈ N}.

In fact, h being a height function can be detected by the set Rhfin. The following

proposition gives a nonstandard point of view on the concept of height functions.

However, this characterization is ineffective, i.e. it does not provide the θ-type of the

height function.

Proposition 4.2. A function h : R→ [0,∞) is a height function on R if and only if

Rhfin is a subring of ∗R.

Proof. We see that if h is a height function of θ-type, then Rhfin is a subring by the

first-order properties of the generalized height function. Conversely, suppose Rhfin
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is a subring and h is not a height function. This means there is some N ∈ N such

that we have two sequences (rn) and (sn) in R with h(rn) ≤ N and h(sn) ≤ N ,

but lim
n→∞

h(rn ? sn) = ∞, where the binary operation ? means either addition or

multiplication. By saturation, we get two elements r and s in ∗R such that h(r) ≤ N ,

h(s) ≤ N but h(r ? s) is infinite. This contradicts the fact that Rhfin is a subring. �

The next remark shows when Rhfin is internal.

Remark 4.3. Let h be a height function on R. The set Rhfin is an internal subset of

∗R if and only if h is bounded.

Proof. Suppose Rhfin = ∗A for some subset A of R. First we show that the height

function on A must be bounded. To see this, if there is a sequence (an)n in A such

that lim
n→∞

h(an) = ∞, then there is an element in ∗A whose height is infinite. This

contradicts the fact that all the elements in Rhfin have bounded height. So the height

function on A is bounded. Therefore the height function on ∗A is also bounded.

However sinceRhfin containsR, the height function onRmust be bounded. Conversely

if the height function on R is bounded, then we have Rhfin = ∗R and so Rhfin is

internal. �

Definition 4.4. Let K be an algebraically closed field with a height function h. We

say that h satisfies the height inequality, if for every d there is a bound B(d) such that

for each monic polynomial f(x) in K[X] of degree d and each zero α of f , we have

h(α) ≤ B(d)h(f).

We finish with a generalized version of Theorem A with no proof, as the proof is

similar to that of Theorem A.

Theorem 4.5. Let K be an algebraically closed field with a height function of θ-

type. Suppose that for any non-zero x in K with h(x) ≤ n, we have h(1/x) ≤ θ(n).

Moreover suppose that h satisfies the height inequality. Then there are bounds P (n,D)

and C(n,D,H) such that if I is a (D,H)-type ideal of K[X1, ..., Xn] then I is prime

if and only if 1 /∈ I, and for all f, g in K[X1, ..., Xn] of degree less than P (n,D) and

height less than C(n,D,H), if fg ∈ I, then f or g is in I.
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In Theorem 4.5, there are cases where K does not have to be algebraically closed

and we do not need h to satisfy the height inequality. If the height function on K is

bounded, then we do not require K to be algebraically closed. By Northcott’s theorem

[5, Theorem 1.6.8], there are only finitely many elements of bounded height and degree

in Q. This yields that the height bound C is trivial when K is a number field.

From the nonstandard point of view, for any ideal I of Khfin[X1, ..., Xn] if we have

that I is prime if and only if the ideal I∗K[X1, ..., Xn] is prime in ∗K[X1, ..., Xn], then

the conclusion of Theorem 4.5 holds without assuming that K is algebraically closed

and h obeys the height inequality. In light of Fact 2.6, this means that Theorem 4.5

holds whenever the field extension Khfin ⊆ ∗K is regular; to illustrate, if Khfin is an

elementary substructure of ∗K. This will be the case if K is the field of real algebraic

numbers with the height function H. If h is an absolute value function on a field, then

the result 4.5 holds again. Finally, if Khfin is an elementary substructure of ∗K, then

this leads to Theorem C as well.
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