Marin Bougeret 
email: bougeret@imag.fr
  
Pierre-Francois Francois Dutot 
email: dutot@imag.fr
  
Klaus Jansen 
  
Christina Otte 
  
Denis Trystram 
email: trystram@imag.fr
  
Approximation Algorithm for Multiple Strip Packing

Keywords: 

published or not. The documents may come   L'archive ouverte pluridisciplinaire

Introduction

In this paper we study the Multiple Strip Packing (MSP) problem, a generalization of the well-known Strip Packing (SP) problem. For a given set of rectangles, r 1 , . . . , r n , with heights and widths ≤ 1, the goal is to find a non-overlapping orthogonal packing without rotations into k ∈ N strips [0, 1] × [0, ∞), minimizing the maximum of the heights. As much as Strip Packing, its generalization Multiple Strip Packing is not only of theoretical interest, but also has many applications to real-world problems as in computer grids, server consolidation and in cutting problems. In computer grids for example, MSP is related to the problem of finding a schedule for parallel tasks into different clusters of processors with minimum makespan [START_REF] Schwiegelshohn | Online scheduling in grids[END_REF]. Consider an instance L = {r 1 , . . . , , r n } of MSP. The value k always denotes the number of strips S 1 , . . . , S k . For i ∈ {1, . . . , k} the value h i denotes the height of a feasible packing in strip S i . For an algorithm A for MSP let A(L) be the output of the algorithm, in this case the maximum height of the packing generated, i.e. max i∈{1,...,k} h i . The optimal value is denoted with OP T (L), in this case the minimal height that can be achieved. The quality of an approximation algorithm is measured by its performance ratio. For a minimization problem as MSP we say that A has absolute ratio α, if sup L A(L) /OP T (L) ≤ α, and asymptotic ratio α, if α ≥ lim sup OP T (L)→∞ A(L) /OP T (L), respectively. A minimization problem admits an (asymptotic) polynomial-time approximation scheme ((A)PTAS), if there exists a family of polynomial-time approximation algorithms {A ε |ε > 0} of (asymptotic) (1 + ε)-approximations. We call an approximation scheme fully polynomial ((A)FPTAS), if the running-time of every algorithm A ε is bounded by a polynomial in n and 1 ε . Zhuk showed in [START_REF] Zhuk | Approximate algorithms to pack rectangles into several strips[END_REF] that there is no approximation algorithm for MSP with absolute ratio less than 2. Since MSP can be reduced to 3-Partition, it is also strongly N P -hard. Therefore a PTAS and an FPTAS are ruled out and an AFPTAS is asymptotically the best possible. A related problem is 3D Strip Packing (3SP), which also is a generalization of Strip Packing. Here the goal is to find a packing of a given list of cuboids with side lengths bounded by one into a 3-dimensional strip [0, 1] × [0, 1] × [0, ∞), minmizing the height of the packing. Multiple Strip Packing with k strips can be reduced to 3SP by introducing a cuboid with depth 1 /k for each rectangle packing the strips next to each other. Parallel Job Scheduling in Grids with identical machines is also a related problem. In the offline case we have m machines M i with ℓ processors and jobs j ∈ J with processing time p j , and a size size j . The jobs must be executed on parallel processors within one machine M i , but not necessary on consecutive processors. The machines can be seen as strips with width l and the jobs as vertically scissile rectangles with width size j and height p j . In Multiple Strip Packing we have just the additional constraint that a job must be scheduled on consecutive processors. Unfortunately this is the reason why approximation algorithms for Parallel Job Scheduling cannot be applied to MSP maintaining their ratio.

Known Results. Multiple Strip Packing was first considered by Zhuk [START_REF] Zhuk | Approximate algorithms to pack rectangles into several strips[END_REF], who showed that there is no approximation algorithm with abolute ratio better than 2, and later by Ye et. al. [START_REF] Ye | On-line multiple-strip packing[END_REF]. Both concentrated on the online case. Additonally an approximation algorithm for the offline case with ratio 2 + ε was achieved in [START_REF] Ye | On-line multiple-strip packing[END_REF]. For Strip Packing Coffman et al. gave in [START_REF] Coffman | Performance bounds for level-oriented two-dimensional packing algorithms[END_REF] an overview about performance bounds for shelf-orientated algorithms as N F DH (Next Fit Decreasing Height) and F F DH (First Fit Decreasing Height). Those adopt an absolute ratio of 3, and 2.7, respectively. Schiermeyer [START_REF] Schiermeyer | Reverse-fit: A 2-optimal algorithm for packing rectangles[END_REF] and Steinberg [START_REF] Steinberg | A strip-packing algorithm with absolute performance bound 2[END_REF] presented independently an algorithm for SP with absolute ratio 2. A further important result is an AFPTAS for SP with additive constant O( 1 /ε 2 ) of Kenyon and Rémila [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF]. This constant was improved by Jansen and Solis-Oba, who presented in [START_REF] Jansen | New approximability results for 2-dimensional packing problems[END_REF] an APTAS with additive constant 1. For 3SP Jansen and Solis-Oba obtained an algorithm with ratio 2 + ε in [START_REF] Jansen | An asymptotic approximation algorithm for 3d-strip packing[END_REF] as an improvement of the formerly known result by Miyazawa and Wakabayashi [START_REF] Miyazawa | Cube packing[END_REF], who presented an algorithm with asymptotic ratio at most 2.64. Bansal et al. presented in [2] an algorithm for 3SP with a ratio of T ∞ ≈ 1.69, which is the best known result. Schwiegelshohn et al. [START_REF] Schwiegelshohn | Online scheduling in grids[END_REF] achieved ratio 3 for a version of Parallel Job Scheduling in Grids without release times, and ratio 5 with release times. Tchernykh et al. presented in [START_REF] Tchernykh | Two level job-scheduling strategies for a computational grid[END_REF] an algorithm with absolute ratio 10 for the case of machines with different numbers of processors and without release times. However, this algorithm cannot be applied directly to MSP because of the non-contiguity.

Our Results. In this paper we present an approximation algorithm with absolute ratio 2, which is an improvement of the former result of 2 + ε by Ye et al. [START_REF] Ye | On-line multiple-strip packing[END_REF] and best possible, unless P = N P. We also introduce an AFPTAS for Mutiple Strip Packing, which is a generalization of the algorithm of Kenyon and Rémila [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF]. Our algorithm achieves an additive constant of O(1), if the number of strips is sufficient large, otherwise an additive constant of O( 1 /ε 2 ). Furthermore we show how to use the simple shelf-based heuristics N F DH and F F DH to obtain approximation algorithms for MSP with the same asymptotic ratio as for SP.

Organisation of the Paper. In the next section we introduce two shelf-based algorithms, using Next Fit and First Fit policies. In Section 3 we present a 2approximation for MSP. Here we distinguish between different sizes for k. For k = 1 we use the 2-approximation of Steinberg [START_REF] Steinberg | A strip-packing algorithm with absolute performance bound 2[END_REF] or Schiermeyer [START_REF] Schiermeyer | Reverse-fit: A 2-optimal algorithm for packing rectangles[END_REF]. If k = 2 or bounded by a specified constant c we make use of a result by Bansal et al. [START_REF] Bansal | How to maximize the total area of rectangle packed into a rectangle[END_REF] for Rectangle Packing with Area Maximization (RP A). For k ≥ c we use an approximation algorithm for 2D bin packing with asymptotic ratio 1.69 of Caprara [START_REF] Caprara | Packing 2-dimensional bins in harmony[END_REF]. In the last section we present an AFPTAS for MSP. Here we generalize the algorithm by Kenyon and Rémila [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF]. Interestingly, the additive constant in our AFPTAS can be reduced from O( 1 /ε 2 ) to O(1), if the number k of strips is large enough.

Shelf-based algorithms

In this section we modify the shelf-based heuristics NFDH and FFDH. [START_REF] Coffman | Performance bounds for level-oriented two-dimensional packing algorithms[END_REF]. A shelf is a row of items placed next to each other left-justified. The baseline of a shelf is either the bottom of the bin or the extended upper edge of the tallest item packed in the shelf below. NFDH generates for a given list of rectangles L = {r 1 , . . . , r n } a packing into a strip with height at most 2OP T SP (L)+h max , FFDH produces a packing of height at most 1.7OP T SP (L)+h max , where OP T SP (L) is the optimum value of Strip Packing for the instance L and h max is the height of the tallest item in L. Via this modification we obtain approximation algorithms for Multiple Strip Packing with the same asymptotic ratios. Furthermore, we present another algorithm, that computes for rectangles with widths bounded by ε < 1 a packing of height at most 1 /(1-ε)OP T (L) + 2h max . We show now that for any instance L of MSP the output of A k is less than αOPT(L) + h max . Let t ∈ N be the number of shelves produced by A in Step 1 and H j , j ∈ {1, . . . , t}, the height of the jth shelf. Since there are no items intersecting the 0th line (see Fig 1), the height h 1 of the first strip S 1 is bounded by h max + 1 k t j=1 H jh max after the last step of the algorithm. For a strip S i , i ∈ {2, . . . , k}, containing the items between the (i -1)th and the ith line and the ones intersecting the (i -1)th line, we have h i ≤ A k (L) = max i∈{1,...,k}

P t j=1 Hj -hmax k + h max = A(L)-hmax k + h max . We conclude
h i ≤ A(L) -h max k + h max ≤ αOPT SP (L) + h max -h max k + h max = αOPT SP (L) k + h max .
Since 1 /kOPT SP (L) is a lower bound for OPT(L) the proof is complete.

The running-time of the above algorithm is O(n log n).

Corollary The packing generated by the above algorithm is very smooth, in the sense that the heights of the strips only differ by h max .

Lemma 1. For a set of rectangles L = {r 1 , . . . , r n } Algorithm 2 with output A(L) generates a packing into k strips, so that max i∈{1,...,k} |A(L) -

h i | ≤ h max .
This leads to a further result about rectangles with bounded width. Coffman et al. showed in [START_REF] Coffman | Performance bounds for level-oriented two-dimensional packing algorithms[END_REF] that F F DH applied to an instance L of rectangles with widths bounded by 1 /m for some integer m generates a packing into a strip of height at most (1 + 1 m )OP T SP (L) + h max . Our result for packing into k strips is the following: Theorem 3. For a set of rectangles L = {r 1 , . . . , r n } with widths bounded by ε > 0 we obtain by the Algorithm 2 with output A(L) a packing into k strips with height less than 1 1-ε OP T (L) + 2h max .

For ε = 1 m this is equal to A(L) ≤ 1 + 1 m-1 OPT(L) + 2h max .

A two-approximation for MSP

In this section we construct a polynomial-time approximation algorithm for MSP with absolute ratio 2. Since there is no approximation algorithm for MSP with ratio smaller than 2 (unless P=NP), this is the best possible result. To handle different sizes of k we use, besides the well-known algorithms of Steinberg [START_REF] Steinberg | A strip-packing algorithm with absolute performance bound 2[END_REF] or Schiermeyer [START_REF] Schiermeyer | Reverse-fit: A 2-optimal algorithm for packing rectangles[END_REF], a result of Bansal et al. [START_REF] Bansal | How to maximize the total area of rectangle packed into a rectangle[END_REF] for Rectangle Packing with Area Maximization (RP A) and a of Caprara [START_REF] Caprara | Packing 2-dimensional bins in harmony[END_REF].

One or two strips

The case k = 1 is trivial, because we can use the algorithm of Steinberg [START_REF] Steinberg | A strip-packing algorithm with absolute performance bound 2[END_REF] or Schiermeyer [START_REF] Schiermeyer | Reverse-fit: A 2-optimal algorithm for packing rectangles[END_REF] with absolute performance bound 2.

Theorem 4 (Steinberg [START_REF] Steinberg | A strip-packing algorithm with absolute performance bound 2[END_REF]). Let L = {r 1 , . . . , r n } be a set of rectangles with heights h i and widths w i and Q be a rectangle with width u and height v. Let h := max i∈{1,...,n} h i and w := max i∈{1,...,k} w i . If the following inequalities hold,

w ≤ u, h ≤ v, 2SIZE(L) ≤ uv -(2w -u) + (2h -v) + ( 1 
)
then it is possible to pack L into the rectangle Q.(As usual, x + = max(x, 0).)

Therefore let us first consider the case for k = 2. Here we use the PTAS found by Bansal et al. [START_REF] Bansal | How to maximize the total area of rectangle packed into a rectangle[END_REF] for RPA. In RPA we are given a set of rectangles L = {r 1 , . . . , r n } with widths w i and heights h i and a bin of unit size. The goal is to find a feasible packing of a subset L ′ ⊂ L of the rectangles and to maximize the area of the rectangles in L ′ .

Algorithm 5

1 Guess the height of an optimal solution for MSP and denote it with v. 2 Scale the heights of the rectangles in L by 1 /v so that the corresponding packing fits into one bin of height and width one. 3 The set of resulting rectangles L v is now considered as an instance of RPA with OPT RP A (L) = SIZE(L v ), where SIZE(L v ) is the total area of all rectangles in L v . Apply the algorithm in [START_REF] Bansal | How to maximize the total area of rectangle packed into a rectangle[END_REF] with accuracy ε = 1 /2 and find a packing of a subset L ′ v ⊂ L v with total area at least (1ε)SIZE(L v ). By rescaling the rectangles of L ′ v get a packing for the first strip with height at most v.

4 Since SIZE(L v ) ≤ 2 the remaining items in L v \L ′ v have total area SIZE(L v \L ′ v ) ≤ εSIZE(L v ) ≤ 1.
Therefore we can pack them with Steinberg's algorithm into a strip of height at most 2. Rescaling gives us a second strip of height at most 2v.

The running-time of the algorithm is polynomial in n:

In the first step we can assume that the heights of the rectangles are rational, so by multiplying with a common denominator they become integer values. Then the optimum height v of MSP is also integer and equals a sum of heights of the rectangles in L, so we have h max ≤ v ≤ nh max . Thus Binary Search takes at most log(nh max ) iterations to find the value v. Step 3 is also polynomial, since we apply the algorithm in [START_REF] Bansal | How to maximize the total area of rectangle packed into a rectangle[END_REF] for a fixed accuracy ε = 1 /2.

A bounded number of strips

In the case of a constant number of strips we can use an extended version of the PTAS for RP A in [START_REF] Bansal | How to maximize the total area of rectangle packed into a rectangle[END_REF] called kRP A. Another helpful tool is the next lemma. The proof can be obtained applying Steinberg's algorithm for h, w, u = 1 and v = k /2 in equation 1.

Lemma 2. If L is an instance of 2DBP with total area SIZE(L) ≤ k /4 and k ≥ 3, then there exists a packing of L into k bins.

Algorithm 6

1 Guess an optimal height for MSP and denote it with v. 2 Scale the heights of the rectangles in L by 1 /v so that the corresponding packing fits into k bins of height and width one. 3 The set of resulting rectangles L v is now considered as an instance of RPA with OPT RP A (L) = SIZE(L v ). Apply kRP A to k bins of unit size and find for an accuracy ε ≤ 1 /4 a packing for a subset L ′ v ⊂ L v with total area (1ε)SIZE(L v ). By rescaling the rectangles of L ′ v we get k bins of height v. 4 For the total area of the remaining rectangles in

L v \L ′ v we have SIZE(L v \L ′ v ) = εSIZE(L v ) ≤ k /4.
Pack those rectangles according to Lemma 2 into k bins and rescale the rectangles. This results again in k bins of height at most v. 5 Stack every two bins on top of each other and get a solution with k bins of height at most 2v.

A large number of strips

Caprara presented in [START_REF] Caprara | Packing 2-dimensional bins in harmony[END_REF] a shelf algorithm for 2DBP that produces a solution whose asymptotic ratio can be made arbitrarily close to T ∞ = 1.69.... Clearly if the number of strips is large enough (≈ 10 4 ) applying this algorithm we get a twoapproximation for M SP stacking every two bins on each other. Alternatively, we can use the recently published two-approximation for 2DBP by Jansen et al. [START_REF] Jansen | Two for one: Tight approximation of 2d bin packing[END_REF] to achieve this result. Along with the previous sections we have the following:

Theorem 7. For any k ∈ N there is a polynomial-time algorithm for MSP with absolute ratio two.

An AFPTAS for MSP

In this section we present an AFPTAS for MSP. The algorithm is a generalization of an AFPTAS found by Kenyon and Rémila [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF] for Strip Packing. For an instance L of Strip Packing and an accuracy ε > 0 their algorithm generates a packing with height (1 + ε)OP T SP (L) + O( 1 /ε 2 )h max . Our algorithm achieves the same ratio for Multiple Strip Packing. For instances with k sufficient large, namely k ∈ Ω( 1 /ε 3 ), our algorithm adopts an improved additive constant of O(1).

More precisely for an accuracy ε and k ≥ ⌈ 128 /ε 3 ⌉ we get an approximation ratio of (1 + ε)OPT(L) + 6h max .

The regular case

As in Section 2 we divide a packing into one strip into k parts of nearly the same height and distribute them to k strips.

Theorem 8 (Kenyon & Rémila [9]). For a list L = {r 1 , . . . , r n } of rectangles and an accuracy ε > 0 the algorithm A KR ε in [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF] generates a packing into one strip with height at most (1 + ε)OP T SP (L) + (4( 2+ε ε ) 2 + 1)h max .

Our result is the following:

Theorem 9. For a list L = {r 1 , . . . , r n } of rectangles with widths and heights ≤ 1 and an accuracy ε > 0 there exits an algorithm A ε that generates a packing into k strips, so that

A ε (L) ≤ (1 + ε)OP T (L) + (2( 2+ε ε ) 2 + 2)h max .

Instances with a large number of strips

In this section we consider the case k ≥ ⌈ 128 /ε 3 ⌉. In this case it is possible to improve the additive constant to O(1)h max by balancing the configurations.

Rounding. We choose ε ′ = ε /4 (w.l.o.g. 1 /ε ′ integral) and divide the list of rectangles L into a list of narrow rectangles L narrow := {r i ∈ L|w(r i ) ≤ ε ′ } and a list of wide rectangles L wide := {r i ∈ L|w(r i ) > ε ′ }. Then we round L wide to an instance L sup with only M := ( 1 /ε ′ ) 2 different widths. For the rounding step we put the wide rectangles sorted by non-increasing widths left-aligned on a stack. Let ST ACK(L) denote the total area of the plane covered by this stack and let H denote its height. Moreover, for arbitrary lists L ′′ , L ′ we define a relation ≤ g , so that L ′′ ≤ g L ′ , if and only if ST ACK(L ′′ ) ⊆ ST ACK(L ′ ). We draw M -1 horizontal lines through ST ACK(L) with distance H /M starting at the bottom. Therefore we get M so-called threshold rectangles. A rectangle is a threshold rectangle if it either with its interior or with its lower edge intersects a line at height iH /M, i ∈ {1, . . . , M -1}. For i ∈ {1, . . . , M -1} we round up the width of each rectangle between the lines iH /M and (i+1)H /M to the width of the ith threshold rectangle. The widths of the rectangles below the first line are rounded up to the width of the undermost rectangle in the stack. So we get at most M groups of different widths (see Fig 2). Furthermore, we get a list L sup of rectangles with widths larger than ε ′ and only M different widths, in particular we have L wide ≤ g L sup .

Fractional Packing. Our first objective is to create a fractional packing for the wide rectangles into k strips. To do this we introduce configurations. A configuration is a non-empty multiset of widths, which sum up to less than one. Denote with q the number of different configurations C j with height x j . Let α ij be the number of occurence of width w i in configuration C j and let β i be the total height of all rectangles of width w i . Based on the solution of the following Linear Program min q j=1 x j k s.t. q j=1 α ij x j ≥ β i for all i ∈ {1, . . . , M } x j ≥ 0 for all j ∈ {1, . . . , q}, (LP(L sup )) by distributing the configurations to k strips we get the requested fractional packing for the rectangles in L sup . Note that rank(α ij ) ij ≤ M and hence a basic solution x of LP (L sup ) has at most M nonzero entries. In the next section we show how to transform a fractional packing into a feasible packing for L sup . Later the rectangles in L narrow are packed into the idle space in a Greedy manner. For a list L of rectangles let LIN (L) denote the height of an optimum fractional packing for L. Let h 0 := LIN (L sup ) and note that h 0 ≤ OP T (L). Lemma 3. Let x = (x 1 , . . . , x q ) be a solution of LP (L sup ) with at most m ≤ M nonzero entries x 1 , . . . , x m . For k ≥ ⌈ 128 /ε 3 ⌉ we get a fractional packing into k strips with height at most (1 + ε ′ )h 0 and at most m ′ ≤ 2M different configurations.

Proof. First we fractionally pack the rectangles into the configurations. Imagine each configuration C j as a bin with height x j and width c j and divide it into α ij columns of widths w i and height x j . Pack the rectangles in L sup of width w i in a Greedy manner fractionally into the columns of width w i until exactly height x j , starting with j = 1. In this way each column contains a sequence of rectangles, which completely fits inside the column, and possibly the top part of a rectangle, that started in a previous column, and the bottom part of a rectangle, that is too tall to fit into this column. Since m j=1 α ij x j ≥ β i , there will be maybe more than enough space for the rectangles of width w i in the configurations. In this case we distribute the rectangles among the columns and delete the additional space. So we split a configuration C j into two parts, one of the old type where the columns of width w i are completely filled and one without columns of width w i . This case may happen only M times. So we have in total m ′ = m + M ≤ 2M configurations C 1 , . . . C m ′ with nonzero heights x 1 , . . . , x m ′ . Notice that there exist configurations with height larger or equal h 0 , since if not we conclude

m ′ j=1 x j < m ′ h 0 ≤ 2M h 0 ε ′ = ε /4 = 32h0
ε 2 < kh 0 , which is a contradiction. Consider a configuration C j , j ∈ {1, . . . , m ′ }. If x j ≥ h 0 we allocate ⌊ xj /h0⌋ empty strips with height h 0 for C j . If then xj /h0 -⌊ xj /h0⌋ ≤ ε ′ h 0 , we assign to C j additional space with height ( xj /h0 -⌊ xj /h0⌋) in a strip, that has already height h 0 . If xj /h0 -⌊ xj /h0⌋ > ε ′ h 0 , we divide ( xj /h0 -⌊ xj /h0⌋) into at most 1 /ε ′ stripes with height less or equal ε ′ h 0 . So assign to C j additional space of height ε ′ h 0 in no more than 1 /ε ′ strips, which are already occupied until height h 0 . In the same way as the remaining stripes we handle configurations of height less than h 0 . Since there are at most 2M configurations with nonzero height, we get at most

2M /ε ′ = 2 /ε ′ 3 ≤ 2•4 3
/ε 3 ≤ k additional assignments of height ε ′ h 0 , which can be distributed to k strips. Thus by this assignment policy, where the configurations are balanced, each strip has allocated area of height at most (1 + ε ′ )h 0 for at most 2 different configurations. Integral Packing. The next Lemma shows how to get from a fractional packing to a feasible integral packing. A proof is given in the full paper. Lemma 4. Let x = (x 1 , . . . , x q ) be a solution of LP (L sup ) with at most m ′ ≤ 2M nonzero entries x 1 , . . . , x m ′ . For k ≥ ⌈ 128 /ε 3 ⌉ we can convert x to a feasible packing for the wide rectangles with height at most (1 + ε ′ )h 0 + 2h max and at most 2 different configurations per strip.

0 h 0 -h max h 0 h 0 + h max (1 + ε ′ )h 0 + h max (1 + ε ′ )h 0 + 2h max C j C ℓ
Since we can guarantee that there are at most 2 different configurations per strip, the additive constant will be improved, while the running-time is still polynomial in n and 1 /ε. Our last step is to pack the narrow rectangles. We use a modified version of the NFDH algorithm: For strip S i as above we pack narrow rectangles with NFDH into the empty space next to the configurations until the total height is at most (1+ε ′ )h 0 +2h max . After that we repeat the process for strip S i+1 . When all strips are filled in this way, we draw a horizontal line at height (1 + ε ′ )h 0 + 2h max in each strip and pack the remaining narrow rectangles with Algorithm 2 on top (see Fig 3 and4). Thus we can ensure by Lemma 1 that the maximum difference of the heights of two arbitrary strips is at most h max (see Fig 4). Let h f inal denote the height of the packing after packing the narrow rectangles. + 6h max + ε ′ h 0 .

0 h 0 -h max h 0 h 0 + h max (1 + ε ′ )h 0 + h max (1 + ε ′ )h 0 + 2h max
For details we refer to the full paper. The next lemma is shown in [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF] for the Linear Program corresponding to Strip Packing, but obviously also holds for our linear program LP (L sup ). 

Theorem 1 .

 1 Let A be one of the shelf-based Strip Packing algorithms NFDH or FFDH with asymptotic ratio α > 1, that creates for an instance L a packing of height less than αOPT SP (L) + h max . For any k ∈ N there exists an algorithm A k that packs a list of rectangles L into k strips with A k (L) ≤ αOPT(L) + h max . Proof. For any instance L of MSP we define the algorithm A k as follows 1 Pack the sorted rectangles with A into one strip S. (In particular the rectangles are first sorted by non-increasing height.) Let A(L) denote the height of S. 2 Cut out the first shelf and pack it into the first strip S 1 . 3 Divide the residual strip S into k parts: 3.1 For each ℓ ∈ {0, 1, . . . , k} draw a horizontal line across S at height ℓ(A(L)h max )/k. 3.2 For ℓ ∈ {0, 1, . . . , k -1} pack all items intersecting the ℓth line and all items between the ℓth and (ℓ + 1)th line into strip S ℓ+1 .

Fig. 1 .

 1 Fig. 1. Dividing strip S.

Fig. 2 .

 2 Fig. 2. Rounding the rectangles in Lsup.

Fig. 3 .

 3 Fig. 3. Si with Cj and C ℓ .

Fig. 4 .

 4 Fig. 4. Si after packing the narrow rectangles.

Lemma 5 .

 5 Let k ≥ ⌈ 128 /ε 3 ⌉. If h f inal ≥ (1 + ε ′ )h 0 + 2h max , then we have h f inal ≤ SIZE(Lsup∪Lnarrow) k(1-ε ′ )

Lemma 6 . [ 9 ] 10 1Theorem 11 .

 691011 For the rounded instance L sup and L wide the inequalitiesLIN (L sup ) ≤ LIN (L wide ) 1 + 1 M ε ′ and SIZE(L sup ) ≤ SIZE(L wide ) 1 + 1 M ε ′ hold.The entire algorithm is now defined as follows:Algorithm Set ε ′ := ε /4 and M := ( 1 /ε ′ ) 2 .2 Partition L into L wide and L narrow . 3 Construct L sup , so that L wide ≤ g L sup and there are only M different widths in L sup . 4 Solve the linear program LP (L). 5 Construct a feasible solution for L sup by balancing the configurations. 6 Use modified N F DH to pack the rectangles in L narrow into the remaining space and on top of the strips. If k ≥ ⌈ 128 /ε 3 ⌉ the Algorithm 10 generates for an instance L of MSP a packing of height at most (1 + ε)OPT(L) + O(1)h max .

  1. Let L be an instance of MSP. In a packing generated by the above algorithm A k we have max i∈{1,...,k} |h i -A k (L)| ≤ 2h max , where h i denotes the height of strip S i . For each i ∈ {1, . . . , k} pack one shelf according to the N F DH heuristic into strip S i , that means starting in the lower left corner pack the rectangles next to each other on the baseline of strip S i , until the next rectangle does not fit. Draw a new baseline at the top edge of the tallest rectangle (that clearly is the first one). 3 Take the strip S -with the current lowest height h -and pack one shelf according to the N F DH heuristic on top of the shelves. 4 Repeat Step 3 until all rectangles are packed.

	Another way to pack a set of rectangles with a modified version of the N F DH
	heuristic into k strips is the following:
	Algorithm 2
	1 Sort the rectangles by non-increasing height.
	2
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