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Abstract

In a multiple testing context, we consider a semiparametric mixture model with

two components where one component is known and corresponds to the distribution of

p-values under the null hypothesis and the other component f is nonparametric and

stands for the distribution under the alternative hypothesis. Motivated by the issue of

local false discovery rate estimation, we focus here on the estimation of the nonpara-

metric unknown component f in the mixture, relying on a preliminary estimator of the

unknown proportion θ of true null hypotheses. We propose and study the asymptotic

properties of two different estimators for this unknown component. The first estimator

is a randomly weighted kernel estimator. We establish an upper bound for its point-

wise quadratic risk, exhibiting the classical nonparametric rate of convergence over a

class of Hölder densities. To our knowledge, this is the first result establishing conver-

gence as well as corresponding rate for the estimation of the unknown component in

this nonparametric mixture. The second estimator is a maximum smoothed likelihood

estimator. It is computed through an iterative algorithm, for which we establish a de-

scent property. In addition, these estimators are used in a multiple testing procedure

in order to estimate the local false discovery rate. Their respective performances are

then compared on synthetic data.

Key words and phrases: False discovery rate; kernel estimation; local false discovery rate;
maximum smoothed likelihood; multiple testing; p-values; semiparametric mixture model.

1 Introduction

In the framework of multiple testing problems (microarray analysis, neuro-imaging, etc), a
mixture model with two populations is considered

∀x ∈ Rd, g(x) = θφ(x) + (1− θ)f(x), (1)
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where θ is the unknown proportion of true null hypotheses, φ and f are the densities of
the observations generated under the null and alternative hypotheses, respectively. More
precisely, assume the test statistics are independent and identically distributed (iid) with a
continuous distribution under the corresponding null hypotheses and we observe the p-values
X1,X2, . . . ,Xn associated with n independent tested hypotheses, then the density function
φ is the uniform distribution on [0, 1] while the density function f is assumed unknown.
The parameters of the model are (θ, f), where θ is a Euclidean parameter while f is an
infinite-dimensional one and the model becomes

∀x ∈ [0, 1], g(x) = θ + (1− θ)f(x). (2)

In the following, we focus on model (2). A central problem in the multiple testing setup
is the control of type I (i.e. false positive) and type II (i.e. false negative) errors. The
most popular criterion regarding type I errors is the false discovery rate (FDR), proposed by
Benjamini and Hochberg (1995). To set up the notation, let Hi be the i-th (null) hypothesis.
The outcome of testing n hypotheses simultaneously can be summarized as indicated in
Table 1.

Table 1: Possible outcomes from testing n hypotheses H1, . . . ,Hn.
Accepts Hi Rejects Hi Total

Hi is true TN FP n0
Hi is false FN TP n1
Total N P n

Benjamini and Hochberg (1995) define FDR as the expected proportion of rejections
that are incorrect,

FDR = E

[ FP
max(P, 1)

]

= E

[FP
P

∣

∣P > 0
]

P(P > 0).

They provide a multiple testing procedure that guarantees the bound FDR ≤ α, for a
desired level α. Storey (2003) proposes to modify FDR so as to obtain a new criterion, the
positive FDR (or pFDR), defined by

pFDR = E

[FP
P

∣

∣P > 0
]

,

and argues that it is conceptually more sound than FDR. For microarray data for instance,
there is a large value of the number of hypotheses n and the difference between pFDR and
FDR is generally small as the extra factor P(P > 0) is very close to 1 (see Liao et al., 2004).
In a mixture context, the pFDR is given by

pFDR(x) = P(Hi being true |X ≤ x) = θΦ(x)

θΦ(x) + (1− θ)F (x) ,

where Φ and F are the cumulative distribution functions (cdfs) for densities φ and f ,
respectively. (It is notationally convenient to consider events of the form X ≤ x, but we
could just as well consider tail areas to the right, two-tailed events, etc).
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Efron et al. (2001) define the local false discovery rate (ℓFDR) to quantify the plausibility
of a particular hypothesis being true, given its specific test statistic or p-value. In a mixture
framework, the ℓFDR is the Bayes posterior probability

ℓFDR(x) = P(Hi being true |X = x) = 1− (1− θ)f(x)
θφ(x) + (1− θ)f(x) . (3)

In many multiple testing frameworks, we need information at the individual level about
the probability for a given observation to be a false positive (Aubert et al., 2004). This
motivates estimating the local false discovery rate ℓFDR. Moreover, the quantities pFDR
and ℓFDR are analytically related by pFDR(x) = E[ℓFDR(X)|X ≤ x]. As a consequence
(and recalling that the difference between pFDR and FDR is generally small), Robin et al.
(2007) propose to estimate FDR by

F̂DR(xi) =
1

i

i
∑

j=1

ℓ̂FDR(xj),

where ℓ̂FDR is an estimator of ℓFDR and the observations {xi} are increasingly ordered. A
natural strategy to estimate ℓFDR is to start by estimating both the proportion θ and either
f or g. Another motivation for estimating the parameters in this mixture model comes from
the works of Sun and Cai (2007; 2009), who develop adaptive compound decision rules for
false discovery rate control. These rules are based on the estimation of the parameters in
model (1) (dealing with z-scores) rather than model (2) (dealing with p-values). However, it
appears that in some very specific cases (when the alternative is symmetric about the null),
the oracle version of their procedure based on the p-values (and thus relying on estimators of
the parameters in model (2)) may outperform the one based on model (1) (see Sun and Cai,
2007, for more details). In the following, we are thus interested in estimating parameters in
model (2).

In a previous work (Nguyen and Matias, 2012), we discussed the estimation of the Eu-
clidean part of the parameter θ in model (2). Thus, we will not consider further this point
here. We rather focus on the estimation of the unknown density f , relying on a preliminary
estimator of θ. We just mention that many estimators of θ have been proposed in the lit-
erature. One of the most well-known is the one proposed by Storey and Tibshirani (2003),
motivating its use in our simulations. Note that some of these estimators are proved to be
consistent (under suitable model assumptions). This is for instance the case for the one
proposed by Celisse and Robin (2010). Moreover, this latter estimator has been shown to
be
√
n-consistent in Nguyen and Matias (2012). This will be used later when assessing the

rate of convergence of one of our estimators of f .
Now, different modeling assumptions on the marginal density f have been proposed in

the literature. For instance, parametric models have been used with Beta distribution for the
p-values (see for example Allison et al., 2002; Liao et al., 2004; Pounds and Morris, 2003)
or Gaussian distribution of the probit transformation of the p-values (McLachlan et al.,
2006). In the framework of nonparametric estimation, Strimmer (2008) proposed a modi-
fied Grenander density estimator for f , which has been initially suggested by Langaas et al.
(2005). This approach requires monotonicity constraints on the density f . Other non-
parametric approaches consist in relying on regularity assumptions on f . This is done for



4 V. H. Nguyen and C. Matias

instance in Neuvial (2010), who is primarily interested in estimating θ under the assumption
that it is equal to g(1). Relying on a kernel estimator of g, he derives nonparametric rates
of convergence for θ. Another kernel estimator has been proposed by Robin et al. (2007),
along with a multiple testing procedure, called kerfdr. This iterative algorithm is inspired
by an expectation-maximization (em) procedure (Dempster et al., 1977). It is proved to be
convergent as the number of iterations increases. However, it does not optimize any criterion
and contrarily to the original em algorithm, it does not increase the observed data likeli-
hood function. Besides, the asymptotic properties (with the number of hypotheses n) of
the kernel estimator underlying Robin et al.’s approach have not been studied. Indeed, its
iterative form prevents from obtaining any theoretical result on its convergence properties.

The first part of the present work focuses on the properties of a randomly weighted
kernel estimator, which in essence, is very similar to the iterative approach proposed by
Robin et al. (2007). Thus, this part may be viewed as a theoretical validation of kerfdr

approach that gives some insights about the convergence properties (as the sample size in-
creases) of this method. In particular, we establish that relying on a preliminary estimator
of θ that converges at parametric rate, we obtain an estimator of the unknown density f that
converges at the usual minimax nonparametric rate. To our knowledge, this is the first result
establishing convergence as well as corresponding rate for the estimation of the unknown
component in model (2). In a second part, we are interested in a new iterative algorithm
for estimating the unknown density f , that aims at maximizing a smoothed likelihood. We
refer to Paragraph 4.1 in Eggermont and LaRiccia (2001) for an interesting presentation of
kernel estimators as maximum smoothed likelihood ones. Here, we base our approach on
the work of Levine et al. (2011), who study a maximum smoothed likelihood estimator for
multivariate mixtures. The main idea consists in introducing a nonlinear smoothing opera-
tor on the unknown component f as proposed in Eggermont and LaRiccia (1995). We prove
that the resulting algorithm possesses a desirable descent property, just as an em algorithm
does. We also show that it is competitive with respect to kerfdr algorithm when used to
estimate ℓFDR.

The article is organized as follows. We start by recalling in Section 2 the construction of
the kernel estimator underlying kerfdr’s approach. Then in Section 3, we study a randomly
weighted kernel estimator of the unknown density f and establish an upper bound of its
pointwise quadratic risk. This estimator is similar in essence to the one underlying kerfdr

algorithm and whose properties are out of reach because of its iterative form. In a second
part (Section 4), we introduce a new iterative algorithm for estimating f by maximizing a
smoothed likelihood, and establish that it possesses a descent property. In Section 5, we
rely on our different estimators to estimate the local false discovery rate and present some
simulations to compare their performances. All the proofs have been postponed to Section 6.
Moreover, some of the more technical proofs have been further postponed to Appendix A.

2 Motivating procedure: kerfdr algorithm

2.1 Estimator’s basis

We start by explaining a natural construction of a kernel estimator of f . Since f is com-
pletely unspecified, it has to be estimated in a nonparametric way, for example by a kernel
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estimator. For any hypothesis, we introduce a (latent) random variable Zi that equals 0 if
the null hypothesis Hi is true and 1 otherwise,

∀i = 1, . . . , n Zi =

{

0 if Hi is true,
1 otherwise.

(4)

Since f corresponds to the density of the observations distributed under the alternative hy-
pothesis, a weighted kernel estimator seems to be suited. Intuitively, it would be convenient
to introduce a weight for each observation Xi, meant to select this observation only if it
comes from f . Equivalently, the weights are used to select the indexes i such that Zi = 1.
Thus, a natural kernel estimate of f would be

f1(x) =
1

h

n
∑

i=1

Zi
∑n

k=1 Zk
K1

(x−Xi

h

)

, x ∈ [0, 1],

where K1 denotes a kernel function (namely a real-valued integrable function such that
∫

K1(u)du = 1) and h > 0 is the bandwidth. However, f1 is not an estimator and cannot
be directly used since the random variables Zi are unknown. A natural approach is to
replace them with their conditional expectation given the data {Xi}1≤i≤n, namely with the
posterior probabilities τ(Xi) = E(Zi|Xi) defined by

∀x ∈ [0, 1], τ(x) = E(Zi|Xi = x) =
(1− θ)f(x)

g(x)
= 1− θ

g(x)
. (5)

This leads to the following definition

∀x ∈ [0, 1], f2(x) =
1

h

n
∑

i=1

τ(Xi)
∑n

k=1 τ(Xk)
K1

(x−Xi

h

)

. (6)

Once again, the weight τi = τ(Xi) depends on the unknown parameters θ and f and thus
f2 is not an estimator but rather an oracle. Thus it is natural to replace the posterior
probabilities τi by estimators to obtain a randomly weighted kernel estimator of f . This is
what is done, in an iterative way, by kerfdr algorithm below and further pursued in our
approach developed in Section 3.

2.2 kerfdr procedure

Let us first recall the kerfdr algorithm proposed by Robin et al. (2007) as an approximation
to the estimator suggested by (6). This algorithm constructs an iterative sequence {f̂ (s)}s≥0

of estimates of density f . Let us be given a preliminary estimator θ̂ of proportion θ. We
define a weighted sequence τ̂ and a weighted kernel estimator f̂ which depend on each other,
by

τ̂i =
(1− θ̂)f̂(xi)

θ̂ + (1− θ̂)f̂(xi)
and f̂(x) =

1

h

n
∑

i=1

τ̂i
∑n

k=1 τ̂k
K
(x−Xi

h

)

,

where K is a kernel and h > 0 a bandwidth. In the following, we let

Ki(·) =
1

h
K
( · −Xi

h

)

.
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Algorithm 1: kerfdr algorithm
// Initialization;
Set τ̂0i ∼ U

(

[0, 1]
)

, i = 1, 2, . . . , n.

while maxi |τ̂ (s)i − τ̂
(s−1)
i |/τ̂ (s−1)

i ≥ ǫ do

// Update estimation of f ;
f̂ (s)(xi) =

∑

j τ̂
(s−1)
j Kj(xi)/

∑

k τ̂
(s−1)
k

// Update estimation of g;
ĝ(s)(xi) = θ̂ + (1− θ̂)f̂ (s)(xi)

// Update of weights;

τ̂
(s)
i = (1− θ̂)f̂ (s)(xi)/ĝ(s)(xi)

s← s+ 1;

// Return;
f̂ (s)(·) =∑i τ̂

(s−1)
i Ki(·)/

∑

k τ̂
(s−1)
k

Now, kerfdr algorithm is described below as Algorithm 1.
This algorithm has some em flavor (Dempster et al., 1977). Actually, updating the

weights τ̂ (s)i is equivalent to expectation-step, and f̂ (s)(x) can be seen as an average of
{Ki(x)}1≤i≤n so that updating the estimator f̂ may look like a maximization-step. How-
ever, the algorithm does not optimize any given criterion. Besides, it does not increase the
observed data likelihood function.

The relation between f̂ (s) and τ̂ (s) implies that the sequence {τ̂ (s)}s≥0 satisfies τ̂ (s) =
ψ(τ̂ (s−1)), where

ψ : [0, 1]n\{0} → [0, 1]n, ψi(u) =

∑

i uibij
∑

i uibij +
∑

i ui
, with bij =

1− θ̂
θ̂
× Ki(xj)

φ(xj)
.

Thus, if the sequence {τ̂ (s)}s≥0 is convergent, it has to converge towards a fixed point
of ψ. Robin et al. (2007) prove that under some mild conditions, the estimator described
in Algorithm 1 is self-convergent, meaning that as the number of iterations s increases, the
sequence f̂ (s) converges towards the function

f3(x) =
1

h

n
∑

i=1

τ̂∗i
∑

k τ̂
∗
k

K
(x−Xi

h

)

,

where τ̂∗i is the (unique) limit of {τ̂ (s)i }s≥0. Note that contrarily to f2, function f3 is a
randomly weighted kernel estimator of f . However, nothing is known about the convergence
of f3 nor f̂ (s) towards the true density f when n tends to infinity (while the bandwidth

h = hn tends to 0). Indeed, the weights {τ̂ (s)i }s≥0 used by the kernel estimator f̂ (s) form
an iterative sequence. Thus it is very difficult to study the convergence properties of this
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weight sequence or of the corresponding estimator. In the following Section 3, we propose
another randomly weighted kernel estimator, whose weights are slightly different from those
used in the construction of f̂ s. More precisely, those weights are not defined iteratively but
they mimic the sequence of weights {τ̂ (s)i }s≥0.

3 Weighted kernel estimation of the unknown density f

As already said, Equation (6) suggests to replace the posterior probabilities τi by estimators
to obtain a randomly weighted kernel estimator of f . Specifically, let θ̂ be a given estimator
of the proportion θ and ĝn be a nonparametric estimator of the density g. We propose here
to rely on a (direct) kernel estimator of the density g

ĝn(x) =
1

nh

n
∑

i=1

K2

(x−Xi

h

)

, (7)

where K2 is a kernel to be chosen later. We then propose an estimator of the posterior
probability τ(x) defined by

∀x ∈ [0, 1], τ̂(x) = 1− θ̂

ĝn(x)
. (8)

By defining the weight

τ̂i = τ̂(Xi) = 1− θ̂

g̃n(Xi)
, where g̃n(Xi) =

1

(n − 1)h

n
∑

j 6=i

K2

(Xi −Xj

h

)

, (9)

we get a randomly weighted kernel estimator of the density f

∀x ∈ [0, 1], f̂n(x) =
1

h

n
∑

i=1

τ̂i
∑n

k=1 τ̂k
K1

(x−Xi

h

)

. (10)

Note that it is not necessary to use the same kernel in defining ĝn and f̂n. However in
practise, the choice of the kernel has a negligible influence on the performances of a kernel
estimator. We provide below the properties of convergence of the estimator f̂n. In fact, these
naturally depend on the properties of the plug-in estimators θ̂ and ĝn. We are interested
here in controlling the pointwise quadratic risk of estimator f̂n. This is possible on a class of
densities f that are regular enough. In the following, we let Pg and Eg respectively denote
probability and expectation of iid random variables with density g. In the same way, we
denote by Pθ,f and Eθ,f the probability and corresponding expectation in the more specific
model (2). Moreover, ⌊x⌋ denotes the largest integer strictly smaller than x. Now, we recall
that the order of a kernel is defined as its first nonzero moment (Tsybakov, 2009) and we
recall below the definition of Hölder classes of functions.

Definition 1. Fix β > 0, L > 0 and denote by H(β,L) the set of functions ψ : [0, 1] → R

that are l-times continuously differentiable on [0, 1] with l = ⌊β⌋ and satisfy

| ψ(l)(x)− ψ(l)(y) |≤ L | x− y |β−l, ∀x, y ∈ [0, 1].

The set H(β,L) is called the (β,L)-Hölder class of functions.
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We denote by Σ(β,L) the set

Σ(β,L) =
{

ψ : ψ ≥ 0,

∫

R

ψ(x)dx = 1 and ψ ∈ H(β,L)
}

.

According to the proof of Theorem 1.1 in Tsybakov (2009), we remark that

sup
ψ∈Σ(β,L)

‖ψ‖∞ < +∞.

In order to obtain the rate of convergence of the kernel density estimator f̂n to f , we
introduce the following assumptions:

(A1) The kernel K is a right-continuous function.

(A2) K is of bounded variation.

(A3) The kernel K is of order l = ⌊β⌋ and satisfies

∫

K(u)du = 1,

∫

K2(u)du <∞, and
∫

|u|β|K(u)|du <∞.

(B1) f is a uniformly continuous density function.

(C1) The bandwidth h is of order αn−1/(2β+1), α > 0.

Note that there exist kernels satisfying Assumptions (A1)-(A3) (see for instance Sec-
tion 1.2.2 in Tsybakov, 2009). Note also that if f ∈ Σ(β,L), it automatically satisfies
Assumption (B1).

Remark 1. i) We first remark that if kernel K2 satisfies Assumptions (A1), (A2) and
if Assumptions (B1) and (C1) hold, then the kernel density estimator ĝn defined
by (7) converges uniformly almost surely to g (Wied and Weißbach, 2012). In other
words

‖ĝn − g‖∞ a.s−−−→
n→∞

0.

ii) If kernel K2 satisfies Assumption (A3) and if Assumption (C1) holds, then for all
n ≥ 1

sup
x∈[0,1]

sup
f∈Σ(β,L)

Eθ,f(|ĝn(x)− g(x)|2) ≤ Cn
−2β

2β+1 ,

where C = C(β,L, α,K2) (see Theorem 1.1 in Tsybakov, 2009).

In the following theorem, we give the rate of convergence to zero of the pointwise
quadratic risk of the estimator f̂n defined by (10).
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Theorem 1. Assume that kernel K1 satisfies Assumption (A3), K1 ∈ L4(R) and kernel K2

satisfies Assumptions (A1)-(A3). If θ̂ converges almost surely towards θ and the bandwidth
h = αn−1/(2β+1) with α > 0, then for any δ > 0, the pointwise quadratic risk of f̂n satisfies

sup
x∈[0,1]

sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

Eθ,f (|f̂n(x)− f(x)|2) ≤ C1 sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

[

Eθ,f

(

|θ̂ − θ|
)4
]

1

2

+C2n
−2β

2β+1 ,

where C1, C2 are two positive constants depending only on β,L, α, δ and K1,K2.

The proof of this theorem is postponed to Section 6.1. It works as follows: we first start
by proving that the pointwise quadratic risk of f2 (which is not an estimator) is of order
n−2β/(2β+1). Then we compare the estimator f̂n with the function f2 to conclude the proof.
In Section 6.2, we prove the following corollary.

Corollary 1. Under the assumptions of Theorem 1, using the estimator θ̂ proposed in
Celisse and Robin (2010), we obtain that for any fixed value (θ, f), there is some positive
constant C such that

sup
x∈[0,1]

Eθ,f(|f̂n(x)− f(x)|2) ≤ Cn
−2β

2β+1 .

Note that the rate n−β/(2β+1) is the usual nonparametric minimax rate over the class
Σ(β,L) of Hölder densities. However, the corollary states nothing about uniform conver-
gence of f̂n(x) with respect to the parameter value (θ, f) since the convergence of the
estimator θ̂ is not known to be uniform.

4 Maximum smoothed likelihood estimator of the unknown

density f

In this section, following the lines of Levine et al. (2011), we construct an iterative estimator
sequence of the density f that relies on the maximisation of a smoothed likelihood. Assume
that the kernel K is positive and symmetric on R. We define its rescaled version Kh(x) =
h−1K(h−1x). We consider a linear smoothing operator S : L1([0, 1]) → L1([0, 1]) defined as

Sf(x) =
∫ 1

0

Kh(u− x)f(u)
∫ 1
0 Kh(s− u)ds

du.

We remark that if f is a density on [0, 1] then Sf is also a density on [0, 1]. Let us consider
a submodel of model (2) restricted to

F = {densities f on [0, 1] such that log f ∈ L1([0, 1])}.

We denote by S∗ : L1([0, 1])→ L1([0, 1]) the operator

S∗f(x) =
∫ 1
0 Kh(u− x)f(u)du
∫ 1
0 Kh(s− x)ds

.
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Note the difference between S and S∗. The operator S∗ is in fact the adjoint operator of S.
Then for a density f ∈ F , we approach it by a nonlinear smoothing operator N defined as

N f(x) = exp{(S∗(log f))(x)}, x ∈ [0, 1].

Note that N f is not necessarily a density. Now, instead of the classical log-likelihood, we
consider (the opposite of) a smoothed version of it as our criterion, namely

ln(θ, f) =
−1
n

n
∑

i=1

log[θ + (1− θ)N f(Xi)].

In this section, we denote by g0 the true density of the observations Xi. For any fixed value
of θ, up to the additive constant

∫ 1
0 g0(x) log g0(x)dx, the smoothed log-likelihood ln(θ, f)

converges almost surely towards l(θ, f) defined as

l(θ, f) :=

∫ 1

0
g0(x) log

g0(x)

θ + (1− θ)N f(x)dx.

This quantity may be viewed as a penalized Kullback-Leibler divergence between the true
density g0 and its smoothed approximation for parameters (θ, f). Indeed, let D(a | b) denote
the Kullback-Leibler divergence between (positive) measures a and b, defined as

D(a | b) =
∫ 1

0

{

a(x) log
a(x)

b(x)
+ b(x)− a(x)

}

dx.

Note that in the above definition, a and b are not necessarily probability measures. Moreover
it can be seen that we still have the property D(a|b) ≥ 0 with equality if and only if a = b
(Eggermont, 1999). We now obtain

l(θ, f) = D(g0|θ + (1− θ)N f) + (1− θ)
(

1−
∫ 1

0
N f(x)dx

)

.

The second term in the right-hand side of the above equation acts as a penalization term
(Eggermont, 1999; Levine et al., 2011). Our goal is to construct an iterative sequence of
estimators of f that possesses a descent property with respect to the criterion l(θ, ·) (for
fixed value θ). We start by describing such a procedure, relying on the knowledge of the
parameters (thus an oracle procedure) in the next section. Then in Section 4.2, we derive
the procedure without this knowledge, obtaining an iterative sequence of estimators.

4.1 An oracle iterative procedure to approximate f

In this section, we fix the value of θ or consider θ as a given estimator. Let us denote by
ln(f) the smoothed log-likelihood ln(θ, f) and by l(f) the limit function l(θ, f). Our goal
is to construct an iterative algorithm which ensures that the value of l(·) decreases at each
iteration. Specifically, we construct a sequence of densities {f t}t≥0 such that

l(f t)− l(f t+1) ≥ cD(f t+1 | f t) ≥ 0,
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where c is a positive constant depending on θ, the bandwidth h and the kernel K. Let us
first introduce a weight function

∀f ∈ F ,∀x ∈ [0, 1], ωf (x) =
(1− θ)N f(x)

θ + (1− θ)N f(x) ,

and an operator G : F → L1([0, 1])

G(f)(x) = αf

∫ 1

0

Kh(u− x)ωf (u)g0(u)
∫ 1
0 Kh(s− u)ds

du, x ∈ [0, 1],

where α−1
f =

∫ 1
0 ωf (u)g0(u)du.

Remark 2. We remark that G(f) is automatically a density on [0, 1]. Moreover, for every
density f ∈ F , we have G(f) = Sϕ where

ϕ(x) =
ωf(x)g0(x)

∫ 1
0 ωf (u)g0(u)du

, x ∈ [0, 1].

We iteratively define a sequence of densities {f t}t≥0 in F as

f t+1(x) = G(f t)(x) = αt

∫ 1

0

Kh(u− x)ωt(u)g0(u)
∫ 1
0 Kh(s− u)ds

du, x ∈ [0, 1], (11)

where

αt =
1

∫ 1
0 ωt(u)g0(u)du

and ωt(x) =
(1− θ)N f t(x)

θ + (1− θ)N f t(x) .

Note that the sequence {f t}t≥0 does not define an estimator sequence as it depends on the
true density g0 which is unknown. This is why we call it an oracle. We shall define an
estimating sequence {f̂ t}t≥0 as a second step in Section 4.2. Let us now denote by

m = inf
x∈[−1,1]

Kh(x) and M = sup
x∈[−1,1]

Kh(x),

then m and M are two positive constants depending on the bandwidth h and the kernel K.
We note that for all x ∈ [0, 1],

m ≤
∫ 1

0
Kh(u− x)du ≤ min(M, 1).

We also introduce
B = {Sϕ;ϕ density on [0, 1]}.

According to Remark 2, every function f t belongs to B. For all f ∈ B, we remark that
m ≤ f(·) ≤ M/m. As a consequence, we obtain that the sequence {l(f t)}t≥0 is lower
bounded (by

∫

g0 log g0 −m). We now state the descent property on the sequence {f t}t≥0.
Its proof may be found in Section 6.2.
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Proposition 1. Any iterative sequence of densities {f t}t≥0 defined as f t+1 = G(f t), with
f0 ∈ F satisfies the descent property

l(f t)− l(f t+1) ≥ cD(f t+1 | f t) ≥ 0,

where c is a positive constant depending on θ, the bandwidth h and the kernel K.

Note that the sequence {l(f t)}t≥0 is decreasing and lower bounded, thus it is convergent.
Moreover, each sequence {f t}t≥0 converges (simply) to a local minimum of l.

Remark 3. If f∗ is a global minimum of l then f∗ is a fixed point of G. Indeed, we have

0 ≥ l(f∗)− l(G(f∗)) ≥ cD(G(f∗) | f∗) ≥ 0.

It entails that D(G(f∗) | f∗) = 0 and thus f∗ = G(f∗). Note that the converse is not true:
a fixed point of G is not necessarily a minimum of the criterion l.

Now, by using convexity arguments, we can further prove the uniqueness of a minimum
of l and thus the (simple) convergence of the sequence {f t}t≥0 to this minimum.

Corollary 2. The criterion l has a unique minimum f⋆ on B. Moreover, any iterative
sequence of densities {f t}t≥0 defined as f t+1 = G(f t), with f0 ∈ F converges simply to f⋆.

We conclude the study of the convergence properties of the sequence {f t}t≥0 by further
establishing its uniform convergence below. The proof of this proposition and of the former
corollary may be found in Section 6.2.

Proposition 2. If there exists a constant L depending on h such that for all x, y ∈ [−1, 1]

|Kh(x)−Kh(y)| ≤ L|x− y|,

then the sequence of densities {f t}t≥0 converges uniformly to f⋆.

Note that the previous assumption may be satisfied by many different kernels. For
instance, if K is the density of the standard normal distribution, then this assumption is
satisfied with

L =
1

h2
√
2π
e−1/2.

4.2 Estimation procedure

As previously said, the sequence {f t}t≥0 is an oracle as it depends on the knowledge of the
true density g0 that is unknown. We now want to construct an estimating sequence {f̂ t}t≥0

of the sequence of functions {f t}t≥0. Relying on a Monte-Carlo method to approximate the
integral involved in the definition (11) of f t, we propose an iterative algorithm to estimate
the density f : given an initial value ω̂0 = (ω̂0(1), . . . , ω̂0(n)) ∈ (0, 1)n of the weights, iterate
the following steps for t = 0, 1, 2, . . .

f̂ t+1(x) =
1

∑n
i=1 ω̂t(Xi)

n
∑

i=1

Kh(x−Xi)ω̂t(Xi)
∫ 1
0 Kh(s −Xi)ds

=

n
∑

i=1

ω̂t(Xi)
∑n

k=1 ω̂t(Xk)

Kh(x−Xi)
∫ 1
0 Kh(s−Xi)ds

,
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and

ω̂t+1(Xi) =
(1− θ)N f̂ t+1(Xi)

θ + (1− θ)N f̂ t+1(Xi)
.

The procedure is summarized in Algorithm 2. Its properties are described in Proposi-
tion 3 whose proof is very similar to the proof of Proposition 1 and therefore omitted.

Algorithm 2: Smoothed-likelihood kernel algorithm
// Initialization;
Set ω̂0 = (ω̂0(1), . . . , ω̂0(n)) ∈ [0, 1]n.

while maxi |ω̂t(i)− ω̂t−1(i)|/ω̂t−1(i) ≥ ǫ do

// Update estimation of f ;
f̂ t(Xi) =

∑

j 6=i
ω̂t−1(j)∑n

k=1
ω̂t−1(k)

Kh(Xi−Xj)∫
1

0
Kh(s−Xj)ds

// Update of weights;

ω̂t(i) =
(1−θ)N f̂ t(Xi)

θ+(1−θ)N f̂ t(Xi)

t← t+ 1;

// Return;
f̂ t(·) =∑n

i=1
ω̂t−1(i)∑n

k=1
ω̂t−1(k)

Kh(·−Xi)∫ 1

0
Kh(s−Xi)ds

Proposition 3. For any initial value of the weights ω̂0 ∈ (0, 1)n, the sequence of estimators
{f̂ t}t≥0 satisfies

ln(f̂
t)− ln(f̂ t+1) ≥ cD(f̂ t+1 | f̂ t) ≥ 0,

where c is a positive constant depending on θ, the bandwidth h and the kernel K.

As a consequence and since ln is lower bounded, the sequence {f̂ t}t≥0 converges to a
local minimum of ln as t increases. Moreover, we recall that as the sample size n increases,
the criterion ln converges (up to a constant) to l. Thus, the outcome of Algorithm 2 is an
approximation of the minimizer f⋆ of l.

5 Estimation of local false discovery rate and simulation study

5.1 Estimation of local false discovery rate

In this section, we study the estimation of local false discovery rate (ℓFDR) by using the
previously introduced estimators of the density f and compare these different approaches
on simulated data. Let us recall the definition (3) of the local false discovery rate

ℓFDR(x) = P(Hi being true |X = x) =
θ

θ + (1− θ)f(x) , x ∈ [0, 1].
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For a given estimator θ̂ of the proportion θ and an estimator f̂ of the density f , we obtain
a natural estimator of the local false discovery rate for observation xi

ℓ̂FDR(xi) =
θ̂

θ̂ + (1− θ̂)f̂(xi)
. (12)

Let us now denote by f̂wk the weighted kernel estimator of f constructed in Section 2.1,
by f̂kerfdr the estimator of f presented in Algorithm 1 and by f̂msl the maximum smoothed
likelihood estimator of f presented in Algorithm 2. Note that f̂kerfdr is available through the
R package kerfdr. We also let ℓ̂FDRm,m ∈ {wk, kerfdr,msl} be the estimators of ℓFDR
induced by a plug-in of the estimators f̂m in (12). We compute the root mean squared error
(RMSE) between the estimates and the true values

RMSEm =
1

S

S
∑

s=1

√

√

√

√

1

n

n
∑

i=1

{ℓ̂FDRm(xi)− ℓFDR(xi)}2,

for m ∈ {wk, kerfdr,msl} and where s = 1, . . . , S denotes the simulation index (S being the
total number of repeats). The quality of the estimates provided by method m is measured
by the mean RMSEm: the smaller the RMSEm, the better the performance of the method.

5.2 Simulation study

In this section, we give an illustration of the previous results on some simulated experi-
ments. We simulate sets of p-values according to the mixture model (2). We consider four
different values for the proportion (θ = 0.7, 0.8, 0.9 and 0.95) and three different cases for
the alternative distribution f . In the first case, we simulate p-values under the alternative
with distribution

f(x) = ρ
(

1− x
)ρ−1

1[0,1](x),

where ρ = 4, as proposed in Celisse and Robin (2010). In the second case, the p-value
corresponds to the statistic T which has a mixture distribution θN (0, 1) + (1 − θ)N (µ, 1),
with µ = 2. In the third case, the p-value corresponds to the statistic T which has a mixture
density θ(1/2) exp{−|t|}+(1−θ)(1/2) exp{−|t−µ|}, with µ = 1. For each of the 4×3 = 12
configurations, we generate S = 100 samples of size n = 1000. In these experiments, we
choose to consider the estimator of θ initially proposed by Schweder and Spjøtvoll (1982),
namely

θ̂ =
#{Xi > λ; i = 1, . . . , n}

n(1− λ) ,

with parameter value λ = 0.5, as recommended by Storey and Tibshirani (2003). Figure 1
shows the RMSEs for the twelve configurations and the three different methods.

First, note that the three methods exhibit small RMSEs and are thus efficient for es-
timating ℓFDR. We note that the first method (weighted kernel, wk) tends to have lower
performances than the other two methods. Remember that we introduced it only as a
way of approaching the theoretical performances of kerfdr method. Now, the maximum
smoothed likelihood (msl) method tends to have identical performances than kerfdr, with
some cases where it outperforms kerfdr. Thus it appears as a competitive method for
ℓFDR estimation.
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Figure 1: Root mean square error (RMSE) between the true local false discovery rate and
the estimates as a function of the proportion θ. Methods: "2" = wk, "△" = kerfdr, "•"
= msl. Top left: first model, top right: second model, bottom left: third model.
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6 Proofs

6.1 Proof of Theorem 1

The proof works as follows: we first start by proving that the pointwise quadratic risk of
function f2 defined by (6) is order of n−2β/(2β+1) in the following proposition. Then we
compare the estimator f̂n with the function f2 to conclude the proof.

We shall need the following two lemmas. The proof of the first one may be found for
instance in Proposition 1.2 in Tsybakov (2009). The second one is known as Bochner’s
lemma and is a classical result in kernel density estimation. Therefore its proof is omitted.

Lemma 1. (Proposition 1.2 in Tsybakov (2009)). Let p be a density in Σ(β,L) and
K a kernel function of order l = ⌊β⌋ such that

∫

R

|u|β |K(u)|du <∞.

Then there exists a positive constant C3 depending only on β,L and K such that for all
x0 ∈ R,

∣

∣

∣

∫

R

K(u)
[

p(x0 + uh)− p(x0)
]

du
∣

∣

∣
≤ C3h

β , ∀h > 0.

Lemma 2. (Bochner’s lemma). Let g be a bounded function on R, continuous in a
neighborhood of x0 ∈ R and Q a function which satisfies

∫

R

|Q(x)|dx <∞.

Then, we have

lim
h→0

1

h

∫

R

Q
(x− x0

h

)

g(x)dx = g(x0)

∫

R

Q(x)dx.

Now, we come to the first step in the proof.

Proposition 4. Assume that the kernel K1 satisfies Assumption (A3) and the bandwidth
h = αn−1/(2β+1), with α > 0. Then the pointwise quadratic risk of function f2, defined
by (6) and depending on (θ, f), satisfies

sup
x∈[0,1]

sup
θ∈[δ,1−δ]

sup
f∈Σ(β,L)

Eθ,f(|f2(x)− f(x)|2) ≤ C4n
−2β

2β+1 ,

where C4 is a positive constant depending only on β,L, α, δ and K1.

Proof of Proposition 4. Let us denote by

Sn =

n
∑

i=1

f(Xi)

g(Xi)
.

The pointwise quadratic risk of f2 can be written as the sum of a bias term and a variance
term

Eθ,f (|f2(x)− f(x)|2) = [Eθ,f (f2(x))− f(x)]2 + Varθ,f [f2(x)].
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Let us first study the bias term. According to (6) and the definition (5) of the weights, we
have

Eθ,f [f2(x)] =
n

h
Eθ,f

[

τ1K1

(x−X1

h

)(

n
∑

k=1

τk

)−1
]

=
n

h
Eθ,f

[

f(X1)

g(X1)
K1

(x−X1

h

)

S−1
n

]

=
n

h

∫ 1

0
f(t)K1

(x− t
h

)

Eθ,f

[

(f(t)

g(t)
+ Sn−1

)−1
]

dt

= n

∫ (1−x)/h

−x/h
K1(t)f(x+ th)Eθ,f

[

(f(x+ th)

g(x+ th)
+ Sn−1

)−1
]

dt. (13)

Since the functions f and g are related by the equation g(t) = θ+(1−θ)f(t) for all t ∈ [0, 1],
the ratio f(t)/g(t) is well defined and satisfies

0 ≤ f(t)

g(t)
≤ 1

1− θ ≤ δ
−1, ∀t ∈ [0, 1], and ∀θ ∈ [δ, 1 − δ].

Then for all t ∈ [−x/h, (1 − x)/h], we get

1

Sn−1 + δ−1
≤
(

f(x+ th)

g(x+ th)
+ Sn−1

)−1

≤ 1

Sn−1
,

where the bounds are uniform with respect to t.
By combining this inequality with (13), we obtain

n

(

∫ (1−x)/h

−x/h
K1(t)f(x+ th)dt

)

Eθ,f

( 1

Sn−1 + δ−1

)

≤ Eθ,f
[

f2(x)
]

and Eθ,f
[

f2(x)
]

≤ n
(

∫ (1−x)/h

−x/h
K1(t)f(x+ th)dt

)

Eθ,f

( 1

Sn−1

)

.

Then, we apply the following lemma, whose proof is postponed to Appendix A.1.

Lemma 3. There exist some positive constants c1, c2, c3, c4 (depending on δ) such that for
n large enough,

Eθ,f

( 1

Sn

)

≤ 1

n
+
c1
n2
, (14)

Eθ,f

( 1

S2
n

)

≤ c2
n2
, (15)

Eθ,f

( 1

Sn + 2δ−1

)

≥ 1

n
− c3
n2
, (16)

and Eθ,f

( 1

S2
n

)

− E2
θ,f

( 1

δ−1 + Sn

)

≤ c4
n3
. (17)

Relying on Inequalities (14) and (16), we have for n large enough
∫ (1−x)/h

−x/h
K1(t)f(x+ th)dt− c3

n
≤ Eθ,f

[

f2(x)
]

≤
∫ (1−x)/h

−x/h
K1(t)f(x+ th)dt+

c1
n
.
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Since f(x+ th) = 0 for all t /∈ [−x/h, (1 − x)/h], we may write

∫ (1−x)/h

−x/h
K1(t)f(x+ th)dt =

∫

R

K1(t)f(x+ th)dt.

Thus, the bias of f2(x) satisfies

|b(x)| = |Eθ,f
[

f2(x)
]

− f(x)| ≤
∫

R

K1(t)|f(x+ th)− f(x)|dt+ c5
n
.

By using Lemma 1 and the choice of bandwidth h, we obtain that

b2(x) ≤ C5h
2β,

where C5 = C5(β,L,K1). Let us study now the variance term of f2(x). We have

Varθ,f
[

f2(x)
]

=
1

h2
[

nVarθ,f (Y1) + n(n− 1)Covθ,f (Y1, Y2)
]

, (18)

where

Yi =
f(Xi)

g(Xi)
K
(x−Xi

h

)

S−1
n .

The variance of Y1 is bounded by its second moment and

Eθ,f(Y
2
1 ) = Eθ,f

[

(f(X1)

g(X1)

)2
K2

1

(x−X1

h

)

S−2
n

]

=

∫ 1

0

f2(t)

g(t)
K2

1

(x− t
h

)

Eθ,f

[(f(t)

g(t)
+ Sn−1

)−2]

dt.

Now, recalling that 0 ≤ f/g ≤ δ−1 and using Inequality (15) of Lemma 3, we get

Eθ,f(Y
2
1 ) ≤ h

(

∫ (1−x)/h

−x/h

f2(x+ th)

g(x+ th)
K2

1 (t)dt
)

Eθ,f

( 1

S2
n−1

)

≤ hδ−1 sup
f∈Σ(β,L)

‖f‖∞
(

∫

K2
1 (t)dt

) c2
n2

≤ C6h

n2
. (19)

We now study the covariance of Y1 and Y2

Covθ,f (Y1, Y2) = Eθ,f (Y1Y2)− E2
θ,f(Y1)

= Eθ,f

[

f(X1)f(X2)

g(X1)g(X2)
K1

(x−X1

h

)

K1

(x−X2

h

)

S−2
n

]

− E2
θ,f

[

f(X1)

g(X1)
K1

(x−X1

h

)

S−1
n

]

=

∫

[0,1]2
f(t)f(u)K1

(x− t
h

)

K1

(x− u
h

)

Eθ,f

[

(f(t)

g(t)
+
f(u)

g(u)
+ Sn−2

)−2
]

dtdu

−
(
∫ 1

0
f(t)K1

(x− t
h

)

Eθ,f

[

(f(t)

g(t)
+ Sn−1

)−1
]

dt

)2

=

∫

[0,1]2
f(t)f(u)K1

(x− t
h

)

K1

(x− u
h

)

A(t, u)dtdu,
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where

A(t, u) = Eθ,f

[

(f(t)

g(t)
+
f(u)

g(u)
+ Sn−2

)−2
]

− Eθ,f

[

(f(t)

g(t)
+ Sn−1

)−1
]

Eθ,f

[

(f(u)

g(u)
+ Sn−1

)−1
]

≤ Eθ,f

( 1

S2
n−2

)

− E2
θ,f

( 1

2δ−1 + Sn−2

)

.

Hence

Cov(Y1, Y2) ≤
∫

[0,1]2
f(t)f(u)K1

(x− t
h

)

K1

(x− u
h

)

[

Eθ,f

( 1

S2
n−2

)

− E2
θ,f

( 1

2δ−1 + Sn−2

)

]

dtdu

≤ h2
(
∫

R

f(x+ th)K1(t)dt

)2 [

Eθ,f

( 1

S2
n−2

)

− E2
θ,f

( 1

2δ−1 + Sn−2

)

]

≤ C7h
2

[

Eθ,f

( 1

S2
n−2

)

− E2
θ,f

( 1

2δ−1 + Sn−2

)

]

.

According to Inequality (17) of Lemma 3, we have

Eθ,f

( 1

S2
n−2

)

− E2
θ,f

( 1

2δ−1 + Sn−2

)

≤ c4
n3
,

hence

Covθ,f (Y1, Y2) ≤
C8h

2

n3
. (20)

By returning to Equality (18) and combining with (19) and (20), we obtain

Varθ,f
[

f2(x)
]

≤ 1

h2

[

C6h

n
+ n(n− 1)h2

C8h
2

n3

]

≤ C9

nh
.

Thus, as the bandwidth h is of order n−1/(2β+1), the pointwise quadratic risk of f2(x) satisfies

Eθ,f (|f2(x)− f(x)|2) ≤ C4n
−2β
2β+1 .

Proof of Theorem 1. First, the pointwise quadratic risk of f̂n(x) is bounded in the following
way

Eθ,f(|f̂n(x)− f(x)|2) ≤ 2Eθ,f(|f2(x)− f(x)|2) + 2Eθ,f (|f̂n(x)− f2(x)|2). (21)

According to Proposition 4, we have

Eθ,f (|f2(x)− f(x)|2) ≤ C4n
−2β

2β+1 , (22)
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and it remains to study the second term appearing in the right-hand side of (21). We write

f̂n(x)− f2(x) =
1

h

n
∑

i=1

(

τ̂i
∑

k τ̂k
− τi
∑

k τk

)

K1

(

x−Xi

h

)

=
1

h

n
∑

i=1

τ̂i − τi
∑

k τ̂k
K1

(

x−Xi

h

)

+
1

h

n
∑

i=1

τi

(

1
∑

k τ̂k
− 1
∑

k τk

)

K1

(

x−Xi

h

)

=
n

∑

k τ̂k
× 1

nh

n
∑

i=1

(τ̂i − τi)K1

(

x−Xi

h

)

+
n2

∑

k τ̂k
∑

k τk
×
∑

k(τk − τ̂k)
n

× 1

nh

n
∑

i=1

τiK1

(

x−Xi

h

)

.

Moreover, recalling the definition of the weights (9), we have for all 1 ≤ i ≤ n,

τ̂i − τi =
θ̂

g̃n(Xi)
− θ

g(Xi)
= θ̂
[ 1

g̃n(Xi)
− 1

g(Xi)

]

+
1

g(Xi)
(θ̂ − θ),

and thus get

f̂n(x)− f2(x) =
nθ̂
∑

k τ̂k
× 1

nh

n
∑

i=1

[ 1

g̃n(Xi)
− 1

g(Xi)

]

K1

(

x−Xi

h

)

+
n(θ̂ − θ)
∑

k τ̂k
× 1

nh

n
∑

i=1

1

g(Xi)
K1

(

x−Xi

h

)

+
n2θ̂

∑

k τ̂k
∑

k τk
× 1

n

∑

k

[ 1

g̃n(Xk)
− 1

g(Xk)

]

× 1

nh

n
∑

i=1

τiK1

(

x−Xi

h

)

+
n2(θ̂ − θ)
∑

k τ̂k
∑

k τk
× 1

n

∑

k

1

g(Xk)
× 1

nh

n
∑

i=1

τiK1

(

x−Xi

h

)

. (23)

Let us control the different terms appearing in this latter equality. We first remark that for
all i,

0 ≤ τi ≤ 1 and
1

g(Xi)
≤ 1

θ
≤ δ−1. (24)

Since by assumption θ̂
as−−−→

n→∞
θ ∈ [0, 1], for n large enough we also get |θ̂| < 3/2, a.s.

According to the law of large numbers and Eθ,f (τ1) = 1− θ, we also obtain that for n large
enough

δ

2
≤ 1− θ

2
≤ 1

n

n
∑

i=1

τi ≤
3(1 − θ)

2
≤ 3(1 − δ)

2
a.s. (25)

Moreover, by using a Taylor expansion of the function u 7→ 1/u with an integral form of the
remainder term, we have for all i,

∣

∣

∣

1

g̃n(Xi)
− 1

g(Xi)

∣

∣

∣
=
|g̃n(Xi)− g(Xi)|

g2(Xi)

∫ 1

0

(

1 + s
g̃n(Xi)− g(Xi)

g(Xi)

)−2

ds.
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Since convergence of ĝn to g is valid pointwise and in L∞ norm (see Remark 1), and since g̃n
is a slight modification of ĝn, we have almost surely, for n large enough and for all s ∈ [0, 1]
and all x ∈ [0, 1],

1 + s
g̃n(x)− g(x)

g(x)
≥ 1− s‖ĝn − g‖∞

θ
≥ 1− s

2
> 0.

Hence, for all x ∈ [0, 1] and large enough n,

∫ 1

0

(

1 + s
g̃n(x)− g(x)

g(x)

)−2

ds ≤
∫ 1

0

4ds

(2− s)2 = 2,

and we obtain
∣

∣

∣

1

g̃n(Xi)
− 1

g(Xi)

∣

∣

∣
≤ 2δ−2|g̃n(Xi)− g(Xi)| a.s. (26)

We also use the following lemma, whose proof is postponed to Appendix A.2.

Lemma 4. For large enough n, we have

n

|∑k τ̂k|
≤ c7 a.s. (27)

By returning to Equality (23) and combining with (24), (25), (26) and (27), we obtain

|f̂n(x)− f2(x)|2 ≤ c8

(

1

nh

n
∑

i=1

|g̃n(Xi)− g(Xi)| ×
∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)2

+c9|θ̂ − θ|2
(

1

nh

n
∑

i=1

∣

∣

∣
K1

(x−Xi

h

)∣

∣

∣

)2

(28)

+c10

(

1

n

n
∑

i=1

|g̃n(Xi)− g(Xi)|
)2(

1

nh

n
∑

i=1

K1

(x−Xi

h

)

)2

a.s.

We now successively control the expectations T1, T2 and T3 of the three terms appearing in
this upper-bound. For the first term, we have

T1 = Eθ,f





(

1

nh

n
∑

i=1

|g̃n(Xi)− g(Xi)| ×
∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)2




= Eθ,f





1

n2h2

n
∑

i,j=1

|g̃n(Xi)− g(Xi)||g̃n(Xj)− g(Xj)| ×
∣

∣

∣
K1

(x−Xi

h

)

K1

(x−Xj

h

)∣

∣

∣





=
1

nh
Eθ,f

[

1

h
|g̃n(X1)− g(X1)|2K2

1

(x−X1

h

)

]

+
n− 1

n
Eθ,f

[

1

h2
|g̃n(X1)− g(X1)||g̃n(X2)− g(X2)| ×

∣

∣

∣
K1

(x−X1

h

)

K1

(x−X2

h

)
∣

∣

∣

]

.
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Now,

T11 = Eθ,f

[

1

h
|g̃n(X1)− g(X1)|2K2

1

(x−X1

h

)

]

=

∫ 1

0
Eθ,f

(

|ĝn−1(t)− g(t)|2
)

K2
1

(x− t
h

)g(t)

h
dt (according to definition (9))

≤ C10n
−2β

2β+1

∫ 1

0
K2

1

(x− t
h

)g(t)

h
dt (according to Remark 1)

≤ C11n
−2β

2β+1 (according to Lemma 2), (29)

and in the same way

T12 =Eθ,f

[

1

h2
|g̃n(X1)− g(X1)||g̃n(X2)− g(X2)|K1

(x−X1

h

)

K1

(x−X2

h

)

]

=

∫ 1

0

∫ 1

0
Eθ,f

[∣

∣

∣

n− 2

n− 1
ĝn−2(t)− g(t) +

1

(n− 1)h
K2

(t− s
h

)∣

∣

∣

×
∣

∣

∣

n− 2

n− 1
ĝn−2(s)− g(s) +

1

(n− 1)h
K2

(s− t
h

)∣

∣

∣

]∣

∣

∣
K1

(x− t
h

)

K1

(x− s
h

)∣

∣

∣

g(t)g(s)

h2
dtds.

This last term is upper-bound by

T12 ≤
∫ 1

0

∫ 1

0
Eθ,f

[(

|ĝn−2(t)− g(t)| +
1

n− 1
g(t) +

1

(n− 1)h

∣

∣

∣
K2

( t− s
h

)
∣

∣

∣

)

×
(

|ĝn−2(s)− g(s)|+
1

n− 1
g(s) +

1

(n− 1)h

∣

∣

∣
K2

(s− t
h

)∣

∣

∣

)]

×
∣

∣

∣
K1

(x− t
h

)

K1

(x− s
h

)∣

∣

∣

g(t)g(s)

h2
dtds

≤
∫ 1

0

∫ 1

0

{

E
1/2
θ,f

[

|ĝn−2(t)− g(t)|2
]

E
1/2
θ,f

[

|ĝn−2(s)− g(s)|2
]

+ o
( 1

nh

)

}

×
∣

∣

∣
K1

(x− t
h

)

K1

(x− s
h

)∣

∣

∣

g(t)g(s)

h2
dtds

≤C12n
−2β

2β+1

[
∫ 1

0

∣

∣

∣
K1

(x− t
h

)
∣

∣

∣

g(t)

h
dt

]2

(according to Remark 1)

≤C13n
−2β

2β+1 (according to Lemma 2). (30)

Thus we get that

T1 = Eθ,f





(

1

nh

n
∑

i=1

|g̃n(Xi)− g(Xi)|
∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)2


 ≤ C14n
−2β

2β+1 . (31)

For the second term in the right hand side of (28), we have

T2 = Eθ,f



|θ̂ − θ|2
(

1

nh

n
∑

i=1

∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)2




≤ E
1/2
θ,f

[

|θ̂ − θ|4
]

E
1/2
θ,f





(

1

nh

n
∑

i=1

∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)4


 .
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The proof of the following lemma is postponed to Appendix A.3.

Lemma 5. There exist some positive constant C15 such that

Eθ,f





(

1

nh

n
∑

i=1

∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)4


 ≤ C15. (32)

This lemma entails that

T2 ≤ C15

[

Eθ,f

(

|θ̂ − θ|4
)]

1

2

. (33)

Now, we turn to the third term in the right hand side of (28). We have

T3 = Eθ,f





(

1

n

n
∑

i=1

|g̃n(Xi)− g(Xi)|
)2(

1

nh

n
∑

i=1

∣

∣

∣
K1

(x−Xi

h

)∣

∣

∣

)2




= Eθ,f





1

n4h2

n
∑

i,j,k,l=1

|g̃n(Xi)− g(Xi)||g̃n(Xj)− g(Xj)|
∣

∣

∣
K1

(x−Xk

h

)

K1

(x−Xl

h

)
∣

∣

∣



 .

By using the same arguments as for obtaining (29) and (30), we can get that

T3 ≤ C16n
−2β
2β+1 . (34)

According to (31), (33) and (34), we may conclude

Eθ,f (|f̂n(x)− f2(x)|2) ≤ C15

[

Eθ,f

(

|θ̂ − θ|4
)]

1

2

+ C17n
−2β

2β+1 . (35)

By returning to Inequality (21) and combining it with (22) and (35), we achieve that

Eθ,f (|f̂n(x)− f(x)|2) ≤ C1

[

Eθ,f

(

|θ̂ − θ|4
)]

1

2

+ C2n
−2β

2β+1 .

6.2 Other proofs

Proof of Corollary 1. We now consider the estimator θ̂n initially proposed by Celisse and Robin
(2010) and further studied in Nguyen and Matias (2012). From the proof of Theorem 3 in
Nguyen and Matias (2012), it may be easily seen that for any value γ ∈ (β/(2β + 1), 1/2),

n2γ
[

Eθ,f

(

|θ̂ − θ|
)4
]

1

2

→n→∞ 0.

Thus, there exist some constant C > 0 such that

sup
x∈[0,1]

Eθ,f(|f̂n(x)− f(x)|2) ≤ Cn
−2β

2β+1 .
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Proof of Proposition 1. We control the difference

l(f t)− l(f t+1) =

∫ 1

0
g0(x) log

θ + (1− θ)N f t+1(x)

θ + (1− θ)N f t(x) dx

=

∫ 1

0
g0(x) log

{

1− ωt(x) + ωt(x)
N f t+1(x)

N f t(x)
}

dx.

By the concavity of the logarithm function, we get that

l(f t)− l(f t+1) ≥
∫ 1

0
g0(x)ωt(x) log

N f t+1(x)

N f t(x) dx

≥
∫ 1

0
g0(x)ωt(x)

[

S∗(log f t+1)(x)− S∗(log f t)(x)
]

dx

≥
∫ 1

0
g0(x)ωt(x)

(

∫ 1

0
Kh(s− x)ds

)−1
(

∫ 1

0
Kh(u− x) log

f t+1(u)

f t(u)
du
)

dx

≥
∫ 1

0

(

∫ 1

0

g0(x)ωt(x)Kh(u− x)
∫ 1
0 Kh(s − x)ds

dx
)

log
f t+1(u)

f t(u)
du

≥ 1

αt

∫ 1

0
f t+1(u) log

f t+1(u)

f t(u)
du

≥ 1

αt
D(f t+1 | f t).

We now establish a lower bound on α−1
t . As already mentioned, for all t ≥ 0, the function

f t is lower bounded by m. Since the operator N is increasing, it follows that N f t is also
lower bounded by m. Now the function

x 7→ (1− θ)x
θ + (1− θ)x

is increasing, so that we finally obtain

α−1
t =

∫ 1

0
ωt(x)g0(x)dx =

∫ 1

0

(1− θ)N f t(x)
θ + (1− θ)N f t(x)g0(x)dx ≥

(1− θ)m
θ + (1− θ)m = c.

This concludes the proof.

Proof of Corollary 2. We start by stating a lemma, whose proof is postponed to Appendix A.4.

Lemma 6. The function l : B → R is continuous with respect to the topology induced by
uniform convergence on the set of functions defined on [0, 1].

Now, it is easy to see that l is a convex function. Moreover, since the densities in B are
bounded (remember that any f ∈ B satisfies m ≤ f(·) ≤ M/m), it comes that B ⊂ F and
since S is linear, the set B is convex. Existence and uniqueness of the minimum f⋆ of l in
B thus follows, as well as the simple convergence of the iterative sequence {f t}t≥0 to this
unique minimum.
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Proof of Proposition 2. For all x, y ∈ [0, 1] and for all t, we have

|f t(x)− f t(y)| =
1

∫ 1
0 ωt(u)g0(u)du

∣

∣

∣

∫ 1

0

[Kh(u− x)−Kh(u− y)]ωt(u)g0(u)
∫ 1
0 Kh(s− u)ds

du
∣

∣

∣

≤ 1
∫ 1
0 ωt(u)g0(u)du

∫ 1

0

|Kh(u− x)−Kh(u− y)|ωt(u)g0(u)
m

du

≤ L

m
|x− y|.

Furthermore, for all x ∈ [0, 1] and for all t

m ≤ f t(x) = 1
∫ 1
0 ωt(u)g0(u)du

∫ 1

0

Kh(u− x)ωt(u)g0(u)
∫ 1
0 Kh(s− u)ds

du ≤ M

m
,

so that the sequence {f t} is uniformly bounded and equicontinuous. By the Arzelà-Ascoli
theorem, there exists a subsequence {f tk} of {f t} which converges uniformly to some limit.
However, this uniform limit must be the simple limit of the sequence, namely the minimum
f⋆ of l. Now, uniqueness of the uniform limit value of the sequence {f t}t≥0 entails its
convergence.
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A Proofs of technical lemmas

A.1 Proof of Lemma 3

Proof. We first show (15). According to the law of large numbers, since Eθ,f
(

f(X1)/g(X1)
)

=
1, we have

Sn
n

=
1

n

n
∑

i=1

f(Xi)

g(Xi)

as−−−→
n→∞

1. (36)

Hence
n2

S2
n

=
(Sn
n

)−2 as−−−→
n→∞

1.

By the dominated convergence theorem, there exists a constant c2 > 0 such that for n large
enough

Eθ,f
[ 1

S2
n

]

=
1

n2
Eθ,f

[n2

S2
n

]

≤ c2
n2
,

establishing (15). Let us now prove (14). By using a Taylor’s expansion, we have

1

Sn
=

1

n
× 1

1 + (Sn

n − 1)
=

1

n

[

2− Sn
n

+
(Sn
n
− 1
)2 1

(1 + γn(
Sn

n − 1))3

]

,

where γn ∈]0, 1[ depends on Sn. Combining this with (36), we obtain

1

(1 + γn(
Sn

n − 1))3
as−−−→

n→∞
1.

Thus, there exist some positive constants c, c′ such that for n large enough,

1

n

[

2− Sn
n

+ c′
(Sn
n
− 1
)2
]

≤ 1

Sn
≤ 1

n

[

2− Sn
n

+ c
(Sn
n
− 1
)2
]

a.s. (37)

This implies in particular that

Eθ,f

[ 1

Sn

]

≤ 1

n

[

2− Eθ,f [Sn]

n
+ cEθ,f

[

(
Sn
n
− 1)2

]

]

=
1

n
+
c

n
Eθ,f

[

(
Sn
n
− 1)2

]

.

In addition,

Eθ,f

[

(
Sn
n
− 1)2

]

= Var
(Sn
n

)

=
1

n
Var

(

f(X1)

g(X1)

)

.

Remember that the ratio f/g is bounded (by δ−1) and thus has finite variance. Hence, there
exists a positive constant c1 such that for n large enough

Eθ,f
[ 1

Sn

]

≤ 1

n
+
c1
n2
.

We now prove (16). By using again a Taylor expansion, we have

1

Sn + δ−1
=

1

Sn
× 1

1 + 1/(δSn)
=

1

Sn
− 1

δS2
n

× 1

[1 + βn/(δSn)]2
,
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where βn ∈]0, 1[ depends on Sn. We also have

1

[1 + βn/(δSn)]2
as−−−→

n→∞
1.

Thus, there exists a positive constant c′′ such that for n large enough

Eθ,f

[ 1

Sn + δ−1

]

= Eθ,f

[ 1

Sn
− 1

δS2
n

× 1

[1 + βn/(δSn)]2

]

≥ Eθ,f

[ 1

Sn

]

− Eθ,f

[ c′′

S2
n

]

a.s.

According to (37), we have

Eθ,f

[ 1

Sn

]

≥ 1

n

[

2− Eθ,f [Sn]

n
+ c′Eθ,f

[

(
Sn
n
− 1)2

]

]

=
1

n
+
c′

n2
Var

(

f(X1)

g(X1)

)

,

and it is proved above that

Eθ,f

[ 1

S2
n

]

≤ c2
n2
.

Thus we obtain Inequality (16), namely

Eθ,f

[ 1

Sn + δ−1

]

≥ 1

n
− c3
n2
.

Finally, we show (17). In the same way as we proved (16) above, we have for large enough
n,

Eθ,f

[ 1

Sn + 2δ−1

]

≥ 1

n
− c′3
n2

> 0

and thus

E2
θ,f

[ 1

Sn + 2δ−1

]

≥ 1

n2

(

1− 2c′3
n

+
c′23
n2

)

≥ 1

n2

(

1− 2c′3
n

)

. (38)

According to Inequality (37) (containing only positive terms for n large enough), we have

1

S2
n

≤ 1

n2

[

4 +
S2
n

n2
+ c2

(Sn
n
− 1
)4
− 4

Sn
n

+ 4c
(Sn
n
− 1
)2
− 2c

Sn
n

(Sn
n
− 1
)2
]

(as)

≤ 1

n2

[

4 +
S2
n

n2
+ c2

(Sn
n
− 1
)4
− 4

Sn
n

+ 4c
(Sn
n
− 1
)2
]

a.s.

Since

Eθ,f [Sn] = n, Eθ,f [S
2
n] = nVar

(

f(X1)

g(X1)

)

+ n2 and Eθ,f

[

(Sn
n
− 1
)2
]

=
1

n
Var

(

f(X1)

g(X1)

)

,

we have

Eθ,f

[ 1

S2
n

]

≤ 1

n2

[

4 +
Eθ,f [S

2
n]

n2
+ c2Eθ,f

[(Sn
n
− 1
)4]

− 4
Eθ,f [Sn]

n
+ 4cEθ,f

[(Sn
n
− 1
)2]
]

≤ 1

n2

[

4 +
1

n
Var

(

f(X1)

g(X1)

)

+ 1 + c2Eθ,f

[(Sn
n
− 1
)4]

− 4 +
4c

n
Var

(

f(X1)

g(X1)

)]

≤ 1

n2

[

1 +
C4

n
+ c2Eθ,f

[(Sn
n
− 1
)4]
]

. (39)
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Combining (38) and (39), we get that

Eθ,f

[ 1

S2
n

]

− E2
θ,f

[ 1

Sn + 2δ−1

]

≤ C

n3
+
c2

n2
Eθ,f

[(Sn
n
− 1
)4]

. (40)

We now upper-bound the quantity Eθ,f
[

(Sn

n − 1)4
]

. Let us denote by

Ui =
f(Xi)

g(Xi)
− 1.

We have

(

Sn
n
− 1

)4

=
1

n4

(

n
∑

i=1

Ui

)4

=
1

n4

n
∑

i=1

U4
i +

1

n4

n
∑

i 6=j

U3
i Uj +

1

n4

n
∑

i 6=j

U2
i U

2
j +

1

n4

n
∑

i 6=j 6=k

U2
i UjUk +

+
1

n4

n
∑

i 6=j 6=k 6=l

UiUjUkUl.

Since the random variables Ui are iid with mean zero, we obtain

Eθ,f

[

(Sn
n
− 1
)4
]

=
1

n4
[

nEθ,f(U
4
1 ) + n(n− 1)Eθ,f (U

2
1U

2
2 )
]

= O
( 1

n2

)

. (41)

Finally, according to (40) and (41) we have

Eθ,f

[ 1

S2
n

]

− E2
θ,f

[ 1

Sn + 2δ−1

]

= O
( 1

n3

)

.

A.2 Proof of Lemma 4

Proof. We write

1
∑

k τ̂k
=

1
∑

k τk +
∑

k(τ̂k − τk)
=

1
∑

k τk
−
∑

k(τ̂k − τk)
(
∑

k τk)
2
×
∫ 1

0

(

1 + s

∑

k(τ̂k − τk)
∑

k τk

)−2

ds.

Let us establish that ‖τ̂ − τ‖∞,[0,1] = supx∈[0,1] |τ̂(x)− τ(x)| converges almost surely to zero.
Indeed,

τ̂(x)− τ(x) = (θ − θ̂) 1

g(x)
+ θ̂

(

1

g(x)
− 1

g̃n(x)

)

and using the same argument as for establishing (26), we get that for n large enough and
for all x ∈ [0, 1],

|τ̂(x)− τ(x)| ≤ |θ̂ − θ|
θ

+ 2|θ̂|‖ĝn − g‖∞
θ2

≤ δ−1|θ̂ − θ|+ 2δ−2‖ĝn − g‖∞.
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By using consistency of θ̂n and Remark 1, we obtain that ‖τ̂ − τ‖∞,[0,1] converges almost
surely to zero. Now,

∀s ∈ [0, 1], 1 + s

∑

k(τ̂k − τk)
∑

k τk
≥ 1− s

n‖τ̂k − τk‖∞,[0,1]
∑

k τk

≥ 1− s
2‖τ̂k − τk‖∞,[0,1]

θ

≥ 1− s

2
> 0 a.s.

We obtain that

n

|∑k τ̂k|
≤ n

∑

k τk
+
n
∑

k |τ̂k − τk|
(
∑

k τk)
2
×
∫ 1

0

(

1 + s

∑

k(τ̂k − τk)
∑

k τk

)−2

ds

≤ n
∑

k τk
+
n2‖τ̂ − τ‖∞,[0,1]

(
∑

k τk)
2

×
∫ 1

0

(

1− s

2

)−2
ds

≤ 2

1− θ +
8‖τ̂ − τ‖∞,[0,1]

(1− θ)2 ≤ c7 a.s.

A.3 Proof of Lemma 5

Proof. In order to prove (32), let us consider iid random variables U1, . . . , Un defined as

Ui =
∣

∣

∣
K1

(

x−Xi

h

)

∣

∣

∣
.

For all 1 ≤ p ≤ 4, we have

Eθ,f(U
p
i ) =

∫

∣

∣

∣
Kp

1

(

x− t
h

)

∣

∣

∣
g(t)dt = h

∫

∣

∣Kp
1 (t)

∣

∣g(x + th)dt ≤ C15h.

We then write
( 1

nh

n
∑

i=1

∣

∣

∣
K1

(x−Xi

h

)
∣

∣

∣

)4
=

1

n4h4

(

∑

i

Ui

)4
, (42)

where
(

∑

i

Ui

)4
=
∑

i

U4
i +

∑

i 6=j

U3
i Uj +

∑

i 6=j

U2
i U

2
j +

∑

i 6=j 6=k

U2
i UjUk +

∑

i 6=j 6=k 6=l

UiUjUkUl.

And for all choice of the bandwidth h > 0 such that nh→∞,

Eθ,f

[(

∑

i

Ui

)4]

=nEθ,f(U
4
1 ) + n(n− 1)Eθ,f (U

3
1U2) + n(n− 1)Eθ,f (U

2
1U

2
2 )+

+ n(n− 1)(n − 2)Eθ,f (U
2
1U2U3) + n(n− 1)(n − 2)(n − 3)Eθ,f (U1U2U3U4)

=nEθ,f(U
4
1 ) + n(n− 1)Eθ,f (U

3
1 )Eθ,f (U1) + n(n− 1)E2

θ,f (U
2
1 )+

+ n(n− 1)(n − 2)Eθ,f (U
2
1 )E

2
θ,f(U1) + n(n− 1)(n − 2)(n − 3)E4

θ,f (U1)

≤C15n
4h4. (43)

According to (42) and (43) we obtain the result.



30 V. H. Nguyen and C. Matias

A.4 Proof of Lemma 6

Proof. Let f be a function in B and {fn} be a sequence of densities on [0, 1] such that
‖fn− f‖∞ −−−→

n→∞
0. Let us recall that every f ∈ B satisfies the bounds m ≤ f ≤M/m. We

have

| l(fn)− l(f) | =
∣

∣

∣

∫ 1

0
g0(x) log

θ + (1− θ)N f(x)
θ + (1− θ)N fn(x)

dx
∣

∣

∣

≤
∫ 1

0
g0(x)

∣

∣

∣
log
{

1 +
(1− θ)[N fn(x)−N f(x)]

θ + (1− θ)N fn(x)
}∣

∣

∣
dx,

and

| N fn(x)−N f(x) | = N f(x)
∣

∣

∣
exp

∫ 1
0 Kh(u− x)[log fn(u)− log f(u)]du

∫ 1
0 Kh(s − x)ds

− 1
∣

∣

∣

≤ M

m

∣

∣

∣
exp

∫ 1
0 Kh(u− x)[log fn(u)− log f(u)]du

∫ 1
0 Kh(s− x)ds

− 1
∣

∣

∣
.

For |x| < ǫ small enough, we have | log(1 + x)| ≤ 2|x| and | exp(x) − 1| ≤ 2|x|. Combining
with the fact that f is bounded, we get that

∣

∣

∣

∫ 1

0
Kh(u− x)[log fn(u)− log f(u)]du | ≤

∫ 1

0
Kh(u− x)

∣

∣

∣
log
{

1 +
fn(u)− f(u)

f(u)

}

∣

∣

∣
du

≤ 2‖fn − f‖∞

and thus

‖N fn −N f‖∞ ≤
4M

m2
‖fn − f‖∞.

We finally obtain
| l(fn)− l(f) |≤ C‖fn − f‖∞,

where C is a constant depending on h,K and θ.
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