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Most already existing indices used to compare two strict partitions with different number of clusters are based on coincidence matrices. To extend such indices to fuzzy partitions, one can define fuzzy coincidence matrices by means of triangular norms. It has been shown this can require some kind of normalization to reinforce the corresponding indices.

We propose in this paper a generic solution to perform this normalization considering the generators of the used triangular norms. Although the solution is not index-dependant, we focus on the Rand index and some of its fuzzy counterparts.

I. INTRODUCTION

In unsupervised classification, partitioning a set X of n objects into c clusters is a common task. It results in a partition matrix U , whose general term u ik represents the membership degree of the k th object x k to the i th cluster. A partition matrix can take values in numerous spaces. We will distinguish the main ones [START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[END_REF], called the sets of possibilistic, fuzzy and crisp (or hard) partition matrices, respectively : M pcn = {U ∈ R c n : u ik ∈ [0, 1]}, M f cn = {U ∈ M pcn : c i=1 u ik = 1}, M hcn = {U ∈ M f cn : u ik u ik ∈ {0, 1}}. For sake of simplicity we identify a partition with the corresponding partition matrix. Choosing the best partition, according to the feature space of objects, the number of clusters or the parameters of a specific algorithm is a problem of great interest. A solution consists in computing a concordance measure between a partition and the data called internal index [START_REF] Wang | On fuzzy cluster validity indices[END_REF]. When one wants to evaluate the agreement with an expert-assessed and supposed ground-truth reference partition, an external index will be preferred [START_REF] Borgelt | Finding the number of fuzzy clusters by resampling[END_REF]. This last approach is generalized to the comparison of two partitions obtained, for instance, with two different algorithms or the same algorithm with two different parameterizations and has lead to the definition of numerous relational indices, topic of this paper. Historically defined for crisp partitions, numerous indices were recently proposed for the comparison of fuzzy partitions, in order to take into account the non-exclusive membership of objects to clusters. We will distinguish indices relying on a direct approach from those extending crisp indices. Among the first ones, let us cite those constructed from a measure of similarity based on the comparison of the whole set of α-cuts of the two partitions [START_REF] Bodjanova | Comparison of fuzzy partitions based on their α-cuts[END_REF], a pseudo-distance between rows of partitions matrices viewed as fuzzy sets [START_REF] Hüllermeier | A fuzzy variant of the rand index for comparing clustering structures[END_REF], or a simple and intuitive extension of the transfer distance to the fuzzy case [START_REF] Campello | Generalized external indexes for comparing data partitions with overlapping categories[END_REF]. Most of the crisp indices are based on the contingency matrix of pairs of objects belonging or not to the same cluster in both partitions to be compared, defined from the coincidence matrices of the two partitions. Most of fuzzy indices of the second type aim at extending the definition of the crisp coincidence matrices with fuzzy set theory tools that allow to model set-theoretic operations [START_REF] Borgelt | Finding the number of fuzzy clusters by resampling[END_REF]. A majority of authors has used triangular norms for this purpose [START_REF]A fuzzy extension of the rand index and other related indexes for clustering and classification assessment[END_REF]. Unfortunately, this kind of construction can lead to counterintuitive values for the coincidence matrix elements, so that they have to be normalized. In this paper, we propose a generic solution to perform this normalization considering either the additive or the multiplicative generator of the used triangular norm. The remaining part of this paper is organized as follows.

In Section II, we first recall the basics of relative indices based on contingence matrices for crisp partitions and give the definition of one of them, specifically the Rand index. Then, two particular extensions to fuzzy partitions are reviewed, both based on a fuzzy contingency matrix defined by means of triangular norms. Section III is concerned by the normalization problem of fuzzy coincidence matrices. The generic solution we propose is given, the derivation for most of triangular norms is provided, and the behavior of the resulting Rand indices is discussed considering simple examples of strict, fuzzy and possibilistic partitions. In Section IV, we report experimental results which show the pertinence of the proposed solution. The conclusion and some perspectives for future work are drawn in Section V.

II. CONTINGENCY INDICES A. Strict Indices

The (n × n) coincidence matrix Ψ U of (x k , x l ) pairs of objects of general term ψ U,kl , associated with a crisp partition U ∈ M hcun , is defined by:

Ψ U = t U U. (1) 
Given another crisp partition V ∈ M hcvn associated with Ψ V , the contingency matrix C of q = n (n-1) 2 different pairs of objects, crossing U and V , is defined by:

C(U, V ) = n 11 n 10 n 01 n 00 (2) 
where n α β (α, β = 0, 1) represent the number of pairs (k, l), k < l such that ψ U,kl = α AND ψ V,kl = β. Is is easy to show that n 00 + n 01 + n 11 + n 10 = q.

From the contingency matrix, numerous indices have been defined to compare two strict partitions, e.g. in [START_REF] Brun | Model-based evaluation of clustering validation measures[END_REF], [START_REF] Brouwer | Extending the rand, adjusted rand and jaccard indices to fuzzy partitions[END_REF]. The most known and probably most controversial one is the Rand Index, taking values in [0,1] and defined by:

RI(U, V ) = n 00 + n 11 n 00 + n 01 + n 11 + n 10 . (3) 
which is maximum when U = V since n 11 = q.

Example 1: Consider two partitions U h = 1 1 0 0 0 1 and

V h = 0 1 0 1 0 1 in M h23 . We have C(U h , U h ) = 1 0 0 2 and C(U h , V h ) = 0 1 1 1 which result in Rand index values of RI(U h , U h ) = 1 and RI(U h , V h ) = 0.33 as expected.
The main problem of RI is that its expected value E(RI) is not null when both partitions are drawn at random, a behavior obviously due to a certain number of agreements brought by chance. For crisp partitions, the Adjusted Rand Index [START_REF] Hubert | Comparing partitions[END_REF] overcomes this drawback and is generally preferred. However, it is based on E(RI) under an assumption which only holds for integer values, making it formally valid for crisp partitions comparison but not valid for fuzzy or possibilistic partitions, so we will use the classical RI instead. Many other indices exist, e.g. in [START_REF]A fuzzy extension of the rand index and other related indexes for clustering and classification assessment[END_REF], [START_REF] Acciani | Comparing fuzzy data sets by means of graph matching technique[END_REF], [START_REF] Di Nuovo | On external measures for validation of fuzzy partitions[END_REF].

B. Extended Indices by Means of Triangular Norms

A triangular norm (t-norm) is a commutative, associative and monotonic function ⊤ : [0, 1] 2 → [0, 1], satisfying ⊤(a, 1) = a. Some extensions also use the triangular conorm (t-conorm) which is the dual operator ⊥ of a t-norm with respect to the usual fuzzy complement. Basic and main parametrized families of couples (⊤ λ , ⊥ λ ) are given in Table I, see [START_REF] Klement | Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms[END_REF] for an extensive review. Parametric couples allow to control the way the values are aggregated and special values of λ make the couples correspond to some basic ones. For instance, taking λ = 1, both ⊤ AA1 and ⊤ H1 t-norms reduce to ⊤ P , and both ⊤ SS1 and ⊤ Y1 t-norms reduce to ⊤ L . For a fuzzy partition U ∈ M f cun , the general term ψ U,kl of the associated coincidence matrix (1) is no more a sum of binary products with output in {0, 1} but in [0,1]. Since the product is a particular t-norm (⊤ P ), the most common approach consists in extending the product to any t-norm ⊤. Following Borgelt's notations [START_REF] Borgelt | Finding the number of fuzzy clusters by resampling[END_REF], one can replace

Ψ U by Ψ ⊤ U , of general term ψ ⊤ U,kl = cu i=1 ⊤(u ik , u il ). (4) 
Thus, all strict comparison indices own their fuzzy extension, computed from a fuzzy contingency matrix C ⊤ (U, V ), whose elements n ⊤ α β (α, β = 0, 1) are no more integers but fuzzy cardinalities defined by: 

Standard ⊤ M (a, b) = min(a, b) Produit ⊤ P (a, b) = a b Łukasiewicz ⊤ L (a, b) = max(a + b -1, 0) Aczel-Alsina ⊤ AA λ (a, b) = e -(-ln a) λ +(-ln b) λ 1/λ λ ∈ R ⋆ + Dombi ⊤ D λ (a, b) = 1 + 1-a a λ + 1-b b λ 1/λ -1 λ ∈ R ⋆ + Frank ⊤ F λ (a, b) = ln 1 + (λ a -1) (λ b -1) λ-1 ln λ λ ∈ R +⋆ \[1] Hamacher ⊤ H λ (a, b) = a b (λ + (1 -λ) (a + b -a b)) λ ∈ R+ Schweizer-Sklar ⊤ SS λ (a, b) = max a λ + b λ -1, 0 1/λ λ ∈ R ⋆ Sugeno-Weber ⊤ SW λ (a, b) = max a+b-1+λab 1+λ , 0 λ ∈] -1, +∞[ Yager ⊤ Y λ (a, b) = max 1 -((1 -a) λ + (1 -b) λ ) 1/λ , 0 λ ∈ R ⋆ + n ⊤ α β (Ψ ⊤ U , Ψ ⊤ V ) = n k=2 k-1 l=1 ⊤ (1 -α) + (2 α -1) ψ ⊤ U,kl , (1 -β) + (2 β -1) ψ ⊤ V,kl (5) 
Note that (4) does not restrict to fuzzy partitions but also holds to any partition in M pcun or M hcun . If U and V are crisp partitions, the Ψ U and Ψ V are binary, C ⊤ (U, V ) = C(U, V ), and the resulting indices are exactly the strict ones, i.e. RI ⊤ (U, V ) = RI(U, V ). For comparison purpose, we need to briefly recall the set-theoretic based extension of the contingency matrix C(U, V ) proposed by Campello [START_REF]A fuzzy extension of the rand index and other related indexes for clustering and classification assessment[END_REF].

Since n α β are the cardinalities of sets U α ∪ V β , where U 1 (U 0 ) is the set of pairs of objects belonging to the same cluster (different clusters) in U , and V 1 (V 0 ) the counterpart for V , the author proposes to model the belongingness to clusters, union of sets and cardinality of sets by use of a t-norm, a t-conorm and the sigma count operator. Thus,

C(U, V ) is extended to C f (U, V ) by: n f α β (U, V ) = n k=2 k-1 l=1 ⊤ ⊥ c U i, j = 1; α = 1, j = i; α = 0, j = i U ij α (k, l), ⊥ c V i, j = 1; β = 1, j = i; β = 0, j = i V ij β (k, l) (6) 
where U ii 1 and V ii 1 are the fuzzy sets of pairs (k, l) of objects belonging to the i th cluster in U and V respectively, and U ij 0 and V ij 0 the fuzzy sets of pairs (k, l) of objects belonging to the i th and j th clusters (with i = j, such as they are in different clusters) in U and V respectively, see details in [START_REF]A fuzzy extension of the rand index and other related indexes for clustering and classification assessment[END_REF]. As for the previous construction, all strict comparison indices own their fuzzy counterpart, in particular the Rand Index to which the author refers as Fuzzy Rand Index. We will denote it RI ⊤ f for writing convenience. Note that RI ⊤ f (U, U ) = 1 only if U ∈ M hcun , so it is recommended to use this index to compare a fuzzy partition to a crisp reference one. Recently, Campello's construction has been strongly criticized, in particular because the underlying topological relationships existing in partitions are not taken into account [START_REF] Hüllermeier | A fuzzy variant of the rand index for comparing clustering structures[END_REF]. Regardless of the pertinence of this fact, we will use it as a reference, because it is the most different (by construction) but comparable approach (contingency matrix) to Borgelt's and our ones, while the alternative in [START_REF] Hüllermeier | A fuzzy variant of the rand index for comparing clustering structures[END_REF] is not. To conclude this section, one should notice that nothing prohibits the use of different (families of) t-norms and tconorms for the computations of the intermediate terms involved in both Borgelt's and Campello's constructions leading respectively to the RI ⊤ and RI f ⊤ indices, either to counterpart/reinforce the behavior of each operator or to underline some situation. This could be the topic of a whole study, and since it would result in an important number of combinations, we restrict ourselves to a single t-norm (and the corresponding dual t-conorm if needed) at a time.

III. A SOLUTION TO THE COINCIDENCE MATRIX NORMALIZATION PROBLEM A. Motivation

Extending comparison indices as shown in the previous section may produce undesirable results. Let us consider the fuzzy coincidence matrix as defind by [START_REF] Bodjanova | Comparison of fuzzy partitions based on their α-cuts[END_REF]. Whatever the tnorm, diagonal terms ψ ⊤ U,kk representing the degree with which each x k is as in the same class as itself, are no more equal to 1. In [START_REF] Brouwer | Extending the rand, adjusted rand and jaccard indices to fuzzy partitions[END_REF], where the extension of indices to fuzzy partitions is formalized with matrices and consequently only the product is used, Brouwer proposes to replace the inner product of rows of U with the cosine-correlation. It is easy to see that it means replacing ψ ⊤ U,kl with ⊤ P in the computation of Ψ U by:

φ ⊤ P U,kl = ψ ⊤ P U,kl ψ ⊤ P U,kk ψ ⊤ P U,ll . (7) 
We denote the transformed coincidence matrix by Φ ⊤ P U . As the author notices it, this transformation does not affect the resulting comparison indices if the partitions are crisp, simply because it does not modify the coincidence matrices.

Example 2: Consider U f = 0.7 0.9 0.1 0.3 0.1 0.9 in M f 23 ; Not only the diagonal terms change because of interactions. Our proposition is to generalize this idea to the coincidence matrices extended by any t-norm.

Ψ ⊤ P U f =   0.

B. Solution and Properties

In order to obtain, from a fuzzy coincidence matrix Ψ ⊤ U , a matrix Φ ⊤ U , normalized in the sense that all its diagonal terms φ ⊤ U,kk are equal to 1, for any t-norm, one only has to find a function

K ⊤ (a) : [0, 1] → [0, 1] such that: a ⊤ K ⊤ (a), K ⊤ (a) = 1 ⇔ ⊤ K ⊤ (a), K ⊤ (a) = a. (8) 
Given (⊤, K ⊤ ), ( 7) is then easily generalized by:

φ ⊤ U,kl = ψ ⊤ U,kl ⊤ K ⊤ ψ ⊤ U,kk , K ⊤ φ ⊤ U,ll . (9) 
This transformation does not affect the indices if partitions are crisp. Indeed, if U ∈ M hcun , then ψ ⊤ U,kk = ψ ⊤ U,ll = 1 and consequently, the denominator equals 1 by [START_REF] Brun | Model-based evaluation of clustering validation measures[END_REF].

Proposition 1: For the basic standard, product and Łukasiewicz t-norms, the normalizing functions K ⊤ are :

K ⊤ M (a) = a, K ⊤ P (a) = √ a and K ⊤ L (a) = a+1 2 .
Proposition 2: Given an archimedean1 t-norm ⊤, with additive generator f ⊤ or multiplicative generator g ⊤ , the normalizing function K ⊤ such that ( 8) is

K ⊤ (a) =    f -1 ⊤ f ⊤ (a) 2 g -1 ⊤ g ⊤ (a) (10) 
where f -1 ⊤ and g -1 ⊤ are the pseudo-inverses of f ⊤ and g ⊤ . The normalizing functions of parametrized families of tnorms of Table I, obtained with their additive generator f are given in Table II, proofs being left to a long forthcoming paper. In the case where the values of λ make the t-norm to be equal (or tend) to a basic one or another, provided it is archimedean (⊤ P , ⊤ L ), the corresponding normalizing function is recognized, e.g.:

K ⊤ AA 1 (a) = a 1 2 = K ⊤ P (a), K ⊤ H 1 (a) = √ a = K ⊤ P (a), K ⊤ SS 1 (a) = a+1 2 = K ⊤ L (a), K ⊤ Y 1 (a) = 1 -1-a 2 = K ⊤ L (a)
. For values of λ out of the ranges specified in Table I, one must use the corresponding generator or compute the limits. We illustrate the first alternative by the Sugeno-Weber t-norm, which leads to the Łukasiewicz one if λ = 0. The ⊤ SW0 additive generator and its pseudo-inverse are defined by f (a) = f (-1) (a) = 1a and (10) gives: K ⊤ SW 0 (a) = 1 -1-a 2 , actually equals K ⊤ L (a). As an example of limits computation, consider the Frank t-norm which is equal to the standard, the product and the Łukasiewicz basic t-norms when λ approaches 0, 1 and +∞ respectively. By using the Taylor series if needed, it is easy to prove that:

K ⊤ F 0 (a) → a = K ⊤ M (a) if λ → 0, K ⊤ F 1 (a) → √ a = K ⊤ P (a) if λ → 1, K ⊤ F +∞ (a) → a+1 2 = K ⊤ L (a) if λ → +∞.
The same property holds for relations between parametrized families of t-norms. For example, Hamacher and Dombi t-norms are equals if their respective parameter value is λ = 0 and λ = 1. From the generator and the pseudo-inverse of ⊤ H0 , defined by f (a) = 1-a a and f -1 (a) = 1 1+a , we obtain by [START_REF] Hubert | Comparing partitions[END_REF]: 

K ⊤ H 0 (a) = 1 1+ 1-a 2a , which is equal to K ⊤ D 1 (a).

Table II ADDITIVE GENERATORS AND PSEUDO-INVERSES OF PARAMETRIZED FAMILIES OF ARCHIMEDEAN T-NORMS, AND NORMALIZING FUNCTIONS

t-norm f (a) f -1 (a) K ⊤ (a) ⊤ AA (-ln a) λ e -a 1/λ a 1 2 1/λ ⊤ D 1-a a λ 1 + a 1/λ -1 1 + 1 2 1/λ 1-a a -1 ⊤ F ln λ-1 λ a -1 ln 1+(λ-1) e -a ln λ ln (λ-1) λ a -1 λ-1 +1 ln λ ⊤ H ln λ+(1-λ)a a λ e a +λ-1 λ √ a √ λ+(1-λ) a+(λ-1) √ a ⊤ SS 1-a λ λ (1 -λ a) 1/λ a λ +1 2 1/λ ⊤ SW 1 - ln(1+λ a) ln(1+λ) (1+λ) 1-a -1 λ √ (1+λ)(1+λ a)-1 λ ⊤ Y (1 -a) λ 1 -a 1/λ 1 -1-a 2 1/λ
The proposed generic normalization allows to transform the fuzzy cardinalities

n ⊤ α β (Ψ ⊤ U , Ψ ⊤ V )
given by ( 5) by

n ⊤ α β (Φ ⊤ U , Φ ⊤ V ).
For any (⊤, K ⊤ )-combination, one can derive new versions of every existing comparison index, provided it is based on a contingency matrix. We denote RI ⊤ K the so derived Rand index.

C. Numerical Comparisons of Crisp, Fuzzy and Possibilistic Partitions

We discuss here the influence of the normalization on the Rand index by comparing the resulting RI ⊤ K to the non normalized RI ⊤ presented in Section II. Five compatible partitions of different kind are chosen for this purpose: These matrices are chosen such that:

• U1 =   0 0 0 1 1 1 0 0 0 0 1 0   ∈ M h34 , • U2 =  
• U 1 is the closest crisp partition w.r.t. the others,

• between the two fuzzy partitions, U 2 is closer to U 1 than U 3 because it is less fuzzy, • between the two possibilistic partitions, U 4 is closer to U 1 than U 5 because of a bigger gap between its membership degrees, • the possibilistic partition U 4 is closer to U 1 than the fuzzy one U 3 for the same reason, • due to their construction, the fuzzy partitions U 2 and U 3 are quite close to the possibilistic ones U 4 = U2 2 and U 5 = U3 2 , the closeness between U 3 and U 5 being more significant because the differences between their values are even smaller.

The results obtained on all partition couples (U i , U j ) are reported in Table III, for two basic t-norms (⊤ M , ⊤ P ) and two parametric ones (⊤ H , ⊤ F ) with two values of λ. In each cell of each symmetric subtable, the upper (resp. lower) value refers to RI ⊤ (resp.

RI ⊤ K ) computed from (Ψ ⊤ Ui , Ψ ⊤ Uj )) (resp. (Φ ⊤ Ui , Φ ⊤ Uj )
normalized by the K ⊤ functions). On can observe several specific situations: 1) increased values, sometimes in a significant way (depending on the t-norm) when comparing fuzzy partitions with themselves, e.g. RI ⊤ K (U 3 , U 3 ) = 0.89 vs RI ⊤ (U 3 , U 3 ) = 0.51 with ⊤ H0 , 2) either the same behavior or a slight but not significant decrease (high magnitudes), when comparing possibilistic partitions with themselves, e.g. RI ⊤ K (U 5 , U 5 ) = 0.76 vs RI ⊤ (U 5 , U 5 ) = 0.54 with ⊤ M , and RI ⊤ K (U 4 , U 4 ) = 0.79 vs RI ⊤ (U 4 , U 4 ) = 0.89 with ⊤ P , 3) the same behavior is met when comparing close partitions of a different type, a fuzzy and a possibilistic one, e.g. RI ⊤ K (U 3 , U 5 ) = 0.90 vs RI ⊤ (U 3 , U 5 ) = 0.47 with ⊤ H0 , and RI ⊤ K (U 3 , U 5 ) = 0.85 vs RI ⊤ (U 3 , U 5 ) = 0.87 with ⊤ H5 , 4) more or less decreased values when comparing the crisp partition U 1 with the fuzzy and possibilistic ones, an extremely weakness arising for the closest partitions (U 2 , U 4 ) and becoming greater for the less close partitions (U 3 , U 5 ) for any t-norm, e.g.

RI ⊤ K (U 1 , U 2 ) = 0.79 vs RI ⊤ (U 1 , U 2 ) = 0.82 with ⊤ P , and RI ⊤ K (U 1 , U 5 ) = 0.26 vs RI ⊤ (U 1 , U 5 ) = 0.81 with ⊤ F5 .
The above examples clearly show the interest of the normalization, which allows to rise and lower significantly the indices with pertinence, for some low cost weakenings. With ⊤ M , the values of RI ⊤ K do not differ from those obtained with RI ⊤ since U 4 and U 5 are not involved. This result is explained logically by the fact that for crisp and fuzzy partitions, we have cu i=1 u ik = 1 and thus ψ ⊤ M U,kk = 1 and finally φ ⊤ M U,kl = ψ ⊤ M U,kl . In the case of possibilistic partitions, the reinforcement or the weakening of RI ⊤ K compared to RI ⊤ depends directly on the membership degrees, and thus on the elements of the partitions. For ⊤ M and ⊤ P , one can also establish that

RI ⊤ K (U i , U 4 ) = RI ⊤ K (U i , U 2 ) and RI ⊤ K (U i , U 5 ) = RI ⊤ K (U i , U 3 
). This result comes from a trivial property of both t-norms, whose (trivial) proof is left to the reader :

RI ⊤ K (U i , U j ) = RI ⊤ K (α U i , U j ).
Since ⊤ M is the largest t-norm, the values of the induced RI ⊤ are greater than those obtained with any other t-norm. By making possible pertinent reinforcements, normalization yields to the loss of this property for RI ⊤ K . As a final result, let us consider, given a parametric t-norm of Table III, the indices as a function of λ, and let

D = |RI ⊤ (λ 1 ) -RI ⊤ (λ 2 )| and D K = |RI ⊤ K (λ 1 ) -RI ⊤ K (λ 2 )|.
For both Hamacher and Frank t-norms, D is about four times D K . This shows that, for parametrized families of t-norms, the proposed RI ⊤ K is less sensitive to the choice of λ than RI ⊤ . 

IV. EXPERIMENTAL RESULTS

A. Comparing two Fuzzy Partitions Provided by FCM

Following the work by Campello [START_REF] Campello | Generalized external indexes for comparing data partitions with overlapping categories[END_REF], we first consider a 2-dimensional data set (A) composed of 400 points drawn from a mixture of 4 overlapping normal distributions of 100 points each with means (1, 1), [START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[END_REF][START_REF] Borgelt | Finding the number of fuzzy clusters by resampling[END_REF], [START_REF] Borgelt | Finding the number of fuzzy clusters by resampling[END_REF][START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[END_REF], and (3, 3) and equal covariance matrices Σ = 1 2 I. The Fuzzy C-Means algorithm (FCM) [START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[END_REF] is used to produce a reference partition R and a collection of fuzzy c-partitions Q c to be compared to R, c varying from 2 to 12. The known true centers of the clusters are used to initialize FCM in order to obtain R. FCM is run 10 times to obtain 10 partitions Q c , for each value of c. Six t-norms are used to compute index values: ⊤ H0 , ⊤ H5 , ⊤ H100 ⊤ F0.1 , ⊤ F1 and ⊤ F100 . Values of

RI ⊤ (R, Q c ), RI ⊤ f (R, Q c ) and RI ⊤ K (R, Q c )
are computed for all resulting Q c , and the maximum value of each index out of 10 runs for each value of c is stored. As expected, all indices exhibit a local maximum at c = 4. Moreover, for all the tested t-norms, the values of RI ⊤ K overcome the values of RI ⊤ and RI ⊤ f . For the other values of c, relative positions of each index curve clearly depend on both the tnorm and λ. For instance, for c = 2, the differences between the magnitudes of the indices increase with λ in favour of RI ⊤ K , in particular with the Hamacher family, as illustrated in Fig. 1. Both RI ⊤ and RI ⊤ f curves have a similar shape, and the larger λ, the smaller the difference. Moreover, they share a tendency to drop slowly or not to drop since c becomes greater than the true number of clusters, whereas the proposed RI ⊤ K keeps a good dynamic. This behavior agrees with and strengthens what we observed in section III-C concerning its reinforcement ability.

B. Comparing a Fuzzy and a Possibilistic Partition Provided by FCM and PCM

Let us consider another data set (B), constructed similarly to data set (A), with less separated means: (1, 1), (1, 2.5), (2.5, 1) and (2.5, 2.5) and same Σ. The same procedure is used to produce the reference partition R. As well, the Possibilistic C-Means algorithm [START_REF] Bezdek | Fuzzy Models and Algorithms for Pattern Recognition and Image Processing[END_REF] is run to generate 10 possibilistic c = 4-partitions Q p . The indices RI ⊤ (R, Q p ), RI ⊤ f (R, Q p ) and RI ⊤ K (R, Q p ) are computed using the same 6 t-norms, and their maximum value out of the 10 partitions Q p for each t-norm ⊤ is reported in Table IV. For each index, the average value over each t-norm, as well as the standard deviation are also reported. The average value of RI ⊤ K is significantly smaller than the others ones (0.42 vs 0.64 and 0.70). This is explained by the 10 possibilistic partitions Q p whose values are small as compared to the values of R, so the clusters are smoother fuzzy sets. This can be connected to a previous discussion, see section III-C (case 4). Moreover, the standard deviation values show that RI ⊤ K (0.04) is less sensitive to the t-norm choice than RI ⊤ (0.18) and RI ⊤ f (0.07).

C. Sensitivity to the Fuzzifier Exponent of FCM

Let us consider the well known Fisher Iris data set composed of three classes of 50 flowers each described by 4 physical attibutes. Two classes have a substantial overlap in the feature space. The expert-assessed crisp partition is chosen as the reference one (R). Although it has been shown in [START_REF] Bezdek | Some new indexes of cluster validity[END_REF] that FCM provides best results for m lying in [1.5, 2.5], we run it to produce fuzzy partitions Q m , one for each m ∈ {2, ..., 11}. Again, the resulting indices values are computed using the same 6 t-norms. Comments on the shape and the relative positions of indices curves remain valid, see section IV-A. In particular, the larger m, the fuzzier partitions Q m and the larger the slope of RI ⊤ K , whereas RI ⊤ and RI ⊤ f approach a quite high asymptotic value, as shown in Fig. 2. As opposed to the first experiment, λ does not have so much influence on the indices magnitudes, and almost no influence on RI ⊤ K . Nevertheless, it modifies the shape of the curves. The larger λ, the smoother the drop. In this article, we propose a generic solution to perform some kind of normalization of a fuzzy coincidence matrix. It is based on the additive or the multiplicative generator of the triangular norm used to define the coincidence matrix. We derive the normalizing functions of the basic triangular norms and the main parametrized families of triangular norms. It is shown that the approach allows to correctly fullfil the demand to overcome some disagreements encountered when using non normalized coincidence matrices. The proposition enables to define new versions of any existing relative indices that are based on a contingency matrix, such as the Rand index. Results obtained on several synthetic examples and data sets show a better behavior of the so derived Rand index compared to its non normalized versions. Moreover, this statement holds for the comparison of partitions of different kind (crisp, fuzzy, possibilistic). When parametric triangular norms are used, the proposed index appears to be less sensitive to the parameter, whose adjustment can be really subtle in practice and can require a preliminary learning process.

We plan to study the empirical density of the resulting indices, according to the methodology developed in [START_REF] Youness | Comparing partitions of two sets of units based on the same variables[END_REF]. Replacing triangular norms by better adapted functions is another perspective.

Example 3 :

 3 Consider U f of Ex. 2. With ⊤ H0 , we haveΨ ⊤ H U f =   0.71 0.73 0.39 0.73 0.87 0.20 0.39 0.20 0.87   and Φ ⊤ H
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 1 Figure 1. RI ⊤ (R, Qc), RI ⊤ K (R, Qc) and RI ⊤ f (R, Qc) for the data set (A), for c = 2, 12, with ⊤ H 0 (left) and ⊤ H 100 (right)
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 112 Figure 2. RI ⊤ (R, Qm), RI ⊤ K (R, Qm) and RI ⊤ f (R, Qm) for the data set (B), with different values of the fuzzifier exponent m = 2, 11, with ⊤ F 0.1 → ⊤ M (left) and ⊤ F 1 = ⊤ P (right) V. CONCLUSION

Table I BASIC

 I TRIANGULAR NORMS AND MAIN PARAMETRIZED FAMILIES.

Table III RAND

 III INDEX RI ⊤ VALUES (UP) AND NORMALIZED ONES RI ⊤ K (DOWN) FOR THE COMPARISON OF FIVE PARTITIONS WITH VARIOUS T-NORMS

	⊤ M U1	U1 1.00 1.00	U2 0.78 0.78	U3 0.32 0.32	U4 0.81 0.78	U5 0.58 0.32	⊤ H 0 U1	U1 1.00 1.00	U2 0.79 0.77	U3 0.46 0.22	U4 0.80 0.73	U5 0.66 0.21	⊤ F 0.1 U1	U1 1.00 1.00	U2 0.80 0.78	U3 0.52 0.23	U4 0.82 0.77	U5 0.74 0.23
	U2		0.70 0.70	0.42 0.42	0.67 0.70	0.55 0.42	U2		0.70 0.73	0.48 0.43	0.68 0.72	0.58 0.42	U2		0.71 0.75	0.52 0.42	0.70 0.76	0.64 0.43
	U3			0.76 0.76	0.29 0.42	0.44 0.76	U3			0.51 0.89	0.45 0.46	0.47 0.90	U3			0.50 0.88	0.52 0.43	0.51 0.88
	U4				0.74 0.70	0.56 0.42	U4				0.78 0.72	0.67 0.45	U4				0.83 0.76	0.77 0.43
	U5					0.54 0.76	U5					0.61 0.91	U5					0.73 0.88
	⊤ P U1	U1 1.00 1.00	U2 0.82 0.79	U3 0.62 0.25	U4 0.83 0.79	U5 0.78 0.25	⊤ H 5 U1	U1 1.00 1.00	U2 0.86 0.84	U3 0.76 0.30	U4 0.84 0.83	U5 0.82 0.27	⊤ F 5 U1	U1 1.00 1.00	U2 0.84 0.81	U3 0.69 0.27	U4 0.83 0.82	U5 0.81 0.26
	U2		0.75 0.79	0.59 0.42	0.74 0.79	0.70 0.42	U2		0.85 0.88	0.76 0.42	0.82 0.87	0.80 0.40	U2		0.79 0.82	0.66 0.43	0.77 0.82	0.74 0.42
	U3			0.56 0.86	0.65 0.42	0.64 0.86	U3			0.83 0.83	0.87 0.42	0.87 0.85	U3			0.67 0.83	0.76 0.42	0.76 0.83
	U4				0.89 0.79	0.86 0.42	U4				0.96 0.87	0.96 0.40	U4				0.93 0.82	0.92 0.41
	U5					0.85 0.86	U5					0.96 0.86	U5					0.92 0.84

Table IV RAND

 IV INDEX RI ⊤ , RI ⊤ f AND RI ⊤

					K VALUES WITH DIFFERENT T-NORMS
	t-norm RI ⊤	⊤ H 0 ⊤ H 5 ⊤ H 100 0.40 0.60 0.94	⊤ F 0.1 ⊤ F 1 ⊤ F 100 av. std → ⊤ M = ⊤ P → ⊤ L 0.55 0.60 0.73 0.64 0.18
	RI ⊤ f	0.54	0.63	0.73	0.55	0.57	0.62	0.70 0.07
	RI ⊤ K	0.46	0.41	0.34	0.43	0.44	0.42	0.42 0.04

a t-norm ⊤ is archimedean if ⊤(a, a) < a for all a ∈ [0, 1]