Marin Bougeret
email: bougeret@imag.fr

Pierre Francois Dutot
email: dutot@imag.fr

Klaus Jansen

Christina Robenek

Denis Trystram
email: trystram@imag.fr

Scheduling jobs on heterogeneous platforms ⋆

In the context of grid scheduling we consider a scheduling scenario, where parallel jobs have to be scheduled non-preemptively on heterogeneous computational platforms of processors. The speed of the processors may differ among the platforms and the jobs are submitted simultaneously or over the time and cannot run across multiple platforms. We focus on the target of minimizing the total makespan, i.e. the global latest finishing time of a job. In this paper we present an AFPTAS for the problem without release times and show how to generalize our result to malleable jobs and jobs with release times.

Introduction

For solving problems that include large-scale computation grid computing gets more and more important. The efficient coordination of those computations appearing as atomic jobs on distributed resources is a difficult task. To get theoretical insights one first need to think of an adequate model that realizes the main principles of grid computing. In this paper we focus on a scheduling scenario, where parallel jobs have to be scheduled non-preemptively on heterogeneous computational platforms of processors. In order to complete extensive computations as fast as possible we are interested in minimizing the total makespan, i.e. the global latest finishing time of a job. The jobs are submitted simultaneously or over the time and cannot run across multiple platforms. In the following we describe our basic model where we consider heterogeneous platforms with different speeds and parallel jobs without release times (SPP). Later we fit this model to take malleable jobs and release times into account. Model. In our setting we have n jobs {J 1 , . . . , J n } that have to be scheduled on N platforms P ℓ , ℓ ∈ {1, . . . , N }. A platform P ℓ contains a set M ℓ of m ℓ identical processors. We assume the platforms to be sorted by non-decreasing order of their number of processors (or machines), i.e. m 1 ≤ m 2 ≤ . . . ≤ m N . To each platform is assigned a speed value s ℓ ∈ R > 0. Every job J j is described by a pair (p j , q j) of the length of a job p j (number of operations) and a number of parallel processors q j (degree of parallelism), that J j requires when executed. We assume q j ≤ m N = max ℓ m ℓ for all jobs, if not there is no feasible schedule. Since sometimes we will identify jobs with rectangles we call q j the width of job J j . Consequently, the area (or work) of a job is p j q j and for a list of jobs or rectangles L we denote with A(L) the total area of the jobs (or rectangles) in L. A job J j is only allowed to be scheduled within one platform, its processing time in platform P ℓ is t ℓ j := pj s ℓ if q j ≤ m ℓ else t ℓ j = ∞. We assume furthermore (by scaling) min ℓ s ℓ = 1 and define t max := max j,ℓ {t ℓ j |t ℓ j < ∞}, which is less than p max := max j p j (as min ℓ s ℓ = 1). Our objective is to find a non-preemptive schedule of all jobs into the platforms minimizing C max := max ℓ C max (ℓ), where C max (ℓ) denotes the completion time of a feasible schedule in P ℓ . For an instance J of SPP let OPT(J) denote the optimum value for C max . For a minimization problem as SPP we say that an algorithm B has absolute ratio α, if sup J B(J) /OP T (J) ≤ α, and asymptotic ratio α, if α ≥ lim sup OP T (J)→∞ B(J) /OP T (J), respectively. A minimization problem admits an (asymptotic) polynomial-time approximation scheme ((A)PTAS), if there exists a family of polynomial-time approximation algorithms {B ε |ε > 0} of (asymptotic) (1 + ε)-approximations. We call an approximation scheme fully polynomial ((A)FPTAS), if the running time of every algorithm B ε is bounded by a polynomial in the size of the input |J| and 1 ε . Related work. For N = 1 the problem is equivalent to scheduling n parallel jobs on m identical machines. The well-known List Algorithm of Garey and Graham [START_REF] Garey | Bounds for Multiprocessor Scheduling with Resource Constraints[END_REF] achieves absolute ratio 2 for this problem. For the case that the number of machines is polynomially bounded in the number of jobs a (1.5 + ε)approximation for the contiguous case and a (1 + ε)-approximation for the noncontiguous case were given in [START_REF] Jansen | Approximation algorithms for scheduling parallel jobs: Breaking the approximation ratio of 2[END_REF]. For malleable job scheduling there are several results, as e.g. in [START_REF] Du | Complexity of scheduling parallel task systems[END_REF], [START_REF] Jansen | Linear-time approximation schemes for scheduling malleable parallel tasks[END_REF], [START_REF] Jansen | Scheduling malleable parallel tasks: An asymptotic fully polynomial time approximation scheme[END_REF] and [START_REF] Mounié | Efficient approximation algorithms for scheduling malleable tasks[END_REF].

If N = 1 and the jobs are assigned to processors of consecutive addresses, the problem corresponds directly to strip packing. For strip packing classical shelf-based algorithms are given in [START_REF] Coffman | Performance bounds for level-oriented two-dimensional packing algorithms[END_REF]. Further results are given in [START_REF] Schiermeyer | Reverse-fit: A 2-optimal algorithm for packing rectangles[END_REF], [START_REF] Steinberg | A strip-packing algorithm with absolute performance bound 2[END_REF] and [START_REF] Harren | A 5/3 + ε approximation for strip packing[END_REF]. An important result is an AFPTAS for strip packing with additive constant O(1 /ε 2 h max) given by Kenyon and Rémila in [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF], where h max denotes the height of the tallest rectangle (i.e. the length of the longest job). This constant was improved by Jansen and Solis-Oba, who presented in [START_REF] Jansen | New approximability results for 2-dimensional packing problems[END_REF] an APTAS with additive constant h max .

The problem SPP is also closely related to the generalized multiple strip packing (MSP) where rectangles have to be packed into strips of infinite height and different widths. Here one wants to find a packing that minimizes the maximum of the heights used in every strip. It corresponds to the case that all platforms are identical and the jobs need to be scheduled on contiguous processors. For MSP Zhuk [START_REF] Zhuk | Approximate algorithms to pack rectangles into several strips[END_REF] showed that there is no polynomial time approximation algorithm with absolute ratio better than 2 (unless P = N P). Later, Ye et al. [START_REF] Ye | On-line multiple-strip packing[END_REF] obtained an algorithm for MSP with ratio 2 + ε. In [START_REF] Bougeret | Approximation algorithms for multiple strip packing[END_REF] we presented a tight 2-approximation and an AFPTAS for MSP. Keep in mind that because of the contiguity constraint algorithms for SPP cannot be directly applied to the generalized MSP, but vice versa. However, in general approximation ratios are not preserved, but the optimal value for generalized MSP is an upper bound of the optimal value for SPP.

Schwiegelshohn et al. [START_REF] Schwiegelshohn | Online scheduling in grids[END_REF] achieved ratio 3 scheduling parallel jobs on heterogeneous platforms with identical speeds without release times, and ratio 5 with release times. Tchernykh et al. presented in [START_REF] Tchernykh | Two level job-scheduling strategies for a computational grid[END_REF] an algorithm with absolute ratio 10 without release times. For scheduling parallel jobs on identical platforms, we proposed recently a low cost approximation algorithm with absolute ratio 5 /2 in [START_REF] Bougeret | A low cost 5/2 approximation for scheduling rigid jobs on multiple organizations[END_REF]. We were able to improve our result to a fast 5 /2-approximation for heterogeneous platforms with identical speeds and under the additional constraint that every job can be scheduled in each platform [START_REF] Bougeret | A fast 5/2approximation algorithm for hierarchical scheduling[END_REF]. Our results. In this paper we present an AFPTAS for SPP with additive factor O(1 /ε 2 p max).

Theorem 1. For every accuracy ε there exists an approximation algorithm with running time polynomial in the size of the input |J| and 1 /ε that produces for every instance J of SPP a schedule of length at most (1+ε)OPT(J)+O(1 /ε 2 p max).

In practical applications the jobs are usually small compared to the optimum so that an algorithm with a good asymptotic ratio is more applicable than one with a worse absolute ratio. If p max ≤ ε 3 OPT(J) for an instance J, the makespan of the schedule constructed by our algorithm is very close to the optimum (≤ (1 + ε)OP T (J) + O(1/ε 2 p max) ≤ (1 + cε)OP T (J)) for a constant c ∈ R ≥0 , while an absolute 2 or 3-approximation may be quite far away. To our best knowledge this is also the first result for platform scheduling that takes different speed values among the platforms into account. Since the platforms may have different numbers of processors the AFPTAS in [START_REF] Bougeret | Approximation algorithms for multiple strip packing[END_REF] does not apply for SPP, because it is based on cutting a solution for a single strip and distributing it well-balanced. Additionally, we do not assume that every job fits in every platform. Thus, the algorithm in [START_REF] Bougeret | A fast 5/2approximation algorithm for hierarchical scheduling[END_REF] does also not apply. The algorithm and its analysis are given in Section 2. Since we assign each job to processors of consecutive addresses our algorithm also applies to the generalized MSP. Moreover, in Section 4 we show how our model and the algorithm can be slightly modified to achieve an AFPTAS for scheduling malleable jobs in heterogeneous platforms with different speeds. In Section 5 we give an AFPTAS for SPP with release times. Due to space reduction missing proofs can be found in the appendix.

An AFPTAS for SPP

Our algorithm is based on an LP -relaxation where migration and preemption are allowed. That is a job is allowed to be split into fractions that are executed in different platforms (if they fit). Emanating from the solution of the LP we compute a unique assignment of almost all jobs to the platforms. This is done by skillful rounding the fractions of jobs using a result of Lenstra et al. [START_REF] Lenstra | Approximation algorithms for scheduling unrelated parallel machines[END_REF]; i.e. the number of remaining fractional jobs per platform will be bounded by O(1 /ε 2). Remarkably, the rounding technique needs except an (approximate) solution of the LP no extra information about the speed values. For each platform we reschedule the obtained integral jobs with an approximation algorithm for strip packing [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF] and schedule the fractional jobs behind them. An overview of the algorithm is given in Figure 1.

Algorithm 1

1: Solve a linear program relaxation of the problem (1) and get a fractional schedule where preemption and migration are allowed. 2: Group the fractional jobs corresponding to the LP-solution as described in steps 1-4 in Section 2.2 according their widths and for every platform P ℓ obtain sets L ℓ wide and L ℓ narrow of wide and narrow fractional rectangles, respectively. 3: Via a general assignment problem (2) round the fractional rectangles and obtain sets of rounded rectangles Lℓ wide , Lℓ narrow and fractional rectangles F ℓ for ℓ ∈ {1, . . . , N }. 4: for all ℓ ∈ {1, . . . , N } do 5:

Pack Lℓ wide ∪ Lℓ narrow with the approximation algorithm for strip packing in [14] into platform P ℓ .

6:

Schedule the fractional jobs in F ℓ greedily on top of the schedule corresponding to the packing obtained before. 7: end for

Relaxed Schedule

Let J be an instance of SPP and let T be the makespan of an optimum schedule for J. To simplify the structure of the schedule instead of handling the specific processing times t ℓ j we consider each platform as a two-dimensional bin of width m ℓ and height T s ℓ and schedule the jobs concerning their lengths p j within this bin. Furthermore, we abandon the constraint that a job has to be scheduled nonpreemptively and within only one platform. We represent the schedule of a job J j = (p j , q j) as a (finite) sequence of pairs (I i , Q i) i∈I(j) , I(j) ⊂ N, where every I i ⊂ [0, T] is a time interval and every Q i is a set of processors so that there is a uniquely defined platform P ℓi ∈ {1, . . . , N } with Q i ⊂ M ℓi and |Q i | = q j . Additionally, we assume that the following conditions hold:

(i) the time intervals for job J j within the same platform do not overlap except maybe at the endpoints, i.e. for all ℓ ∈ {1, . . . , N }

i,i ′ ∈I(j),i =i ′ ℓi=ℓ=ℓ i ′ • I i ∩ • I i ′ = ∅, where • A denotes the interior of a set A. (ii) N ℓ=1 s ℓ {i∈I(j)|Qi⊂M ℓ } |I i | ≥ p j (covering constraint
). (iii) at any time for every processor there is at most one job running on it. Keep in mind that under this constraints a job is allowed to be split among the platforms and may be executed in two different platforms at the same time, but never in parallel with itself within the same platform (except for a discrete time, when one piece starts and another ends). It can be executed on two different (not necessary disjoint) subsets of processors within the same platform during different time intervals, where only the endpoints of the time intervals may overlap. An example how such a relaxed schedule can look like is given in Figure 1:

Assume that T = 10/s ℓ1 and job J j needs to be scheduled on q j = 3 processors for p j = 7.5 operations. So in P ℓ1 it is scheduled on processors {7, 8, 9} during time [0, 1/s ℓ1] and on processors {2, 3, 4} during time [5/s ℓ1 , 7/s ℓ1]. In P ℓ2 it is scheduled on processors {1, 2, 3} during time [0, 3/s ℓ2] and in P ℓ3 it is scheduled on processors {3, 4, 5} during time [3.5/s ℓ3 , 5/s ℓ3]. This gives 1 + 2 = 3 operations in P ℓ1 , 3 operations in P ℓ2 and 1.5 operations in P ℓ3 (this fulfills the covering constraint). The relaxed schedule can be formulated via the linear T s ℓ1 = 10

P ℓ1 T s ℓ2 P ℓ2 T s ℓ3 P ℓ3 Job J j , p j = 7.5, q j = 3 Fig. 1. Relaxed schedule program below: For each platform in P ℓ , 1 ≤ ℓ ≤ N we introduce configura- tions C ℓ . A configuration C ℓ is a function C ℓ : {1, . . . , n} -→ {0, 1}, so that {j∈{1,...,n}|C ℓ (j)=1} q j ≤ m ℓ .
It tells us which jobs can be scheduled in parallel in platform P ℓ . By definition, the number q(ℓ) of different configurations for P ℓ is bounded by 2 n . Let C ℓ = {C ℓ 1 , . . . , C ℓ q(ℓ) } denote the set of all configurations for a platform P ℓ . In the LP below the variable x C ℓ k indicates the length of configuration C ℓ k . That means that the jobs in {j ∈ {1, . . . , n}|C ℓ k (j) = 1} are executed in platform P ℓ during x C ℓ k operation steps.

q(ℓ) k=1 x C ℓ k = s ℓ T ℓ ∈ {1, . . . , N } N ℓ=1 {k∈{1,...,q(ℓ)}|C ℓ k (j)=1} x C ℓ k ≥ p j j ∈ {1, . . . , n} x C ℓ k ≥ 0 k ∈ {1, . . . , q(ℓ)}, ℓ ∈ {1, . . . , N } (1)
The first N constraints ensure that the makespan C max (ℓ) in each platform P ℓ does not exceed T . The next n constraints are covering constraints for the n jobs. They make sure that every job is executed sufficiently long. We describe how to solve the LP efficiently in the full version of this article.

Lemma 1. If T is the makespan of an optimum schedule for SPP(J), the linear program above (1) is a relaxation of SPP(J).

Rounding the Fractional Solution.

In this section we round the jobs in order to get a unique assignment of every job to a subset of processors of a platform. Consider an approximate solution (x C ℓ k) of the LP-relaxation. We introduce a new variable x ℓ j ∈ [0, p j] that indicates the length of the fraction of job J j that is scheduled on P ℓ . Formally this is x ℓ j = {k∈{1,...,q(ℓ)}|C ℓ k (j)=1} x C ℓ k , the sum of the length of all configurations in P ℓ in which J j appears. We can assume for all jobs J j the equality N ℓ=1 x ℓ j = p j , if not we simply delete job J j from appropriate configurations or replace a configuration by two "shorter" configurations (one with job J j and one without, their total length is the same as the one of the original configuration). For all fractions x ℓ j of a platform P ℓ we build rectangles (x ℓ j , q j) of height x ℓ j and width q j . In the following steps the rectangles of every platform P ℓ are grouped geometrically.

y ℓ y ℓ j,2 H ℓ M 2H ℓ M 3H ℓ M G ℓ 1 G ℓ 2 G ℓ 3
Rectangle (x ℓ j , q j), a fraction of J j .

Fig. 2. Constructing L ′ℓ wide 1. Choose ε ′ := ε /3 and partition the rectangles into wide and narrow rectangles, L ℓ wide := {(x ℓ j , q j)|q j > ε ′ m ℓ } and L ℓ narrow := {(x ℓ j , q j)|q j ≤ ε ′ m ℓ }. 2. Build a stack of the rectangles in L ℓ wide ordered by non-increasing width. The total height of the stack is denoted with H ℓ . 3. Set M := (1 /ε ′2). Divide the stack into M groups G ℓ i by drawing M -1 horizontal lines at height iH ℓ /M for i ∈ {1, . . . , M -1} through it. If the interior of a rectangle intersects a horizontal line, cut the rectangle along this line and introduce two new rectangles, so that every rectangle can be assigned to exactly one group. Let L ′ℓ wide denote the modified list of rectangles (see Figure 2). With y ℓ j,i ∈ [0, p j] we denote the fraction of job j that is assigned to G ℓ i . Let z ℓ j,i = y ℓ j,i/p j ∈ [0, 1] denote the scaled fraction. 4. Compute A(L ℓ narrow) = (x ℓ j ,qj)∈L ℓ narrow x ℓ j q j and locate the corresponding rectangles on top of the stack as group G ℓ 0 . Let y ℓ j,0 ∈ [0, p j] denote the fraction of a narrow job J j that is assigned to G ℓ 0 and and let z ℓ j,0 = y ℓ j,0/p j ∈ [0, 1].

If we were able to round the variables z ℓ j,i to integer values {0, 1} (without losing too much), this would imply a unique assignment of every rectangle to exactly one group of a platform. Re-identifying the rectangles with jobs, where we identify the height of a rectangle with the length of a job, this would also imply a unique assignment of every job to a platform. We achieve such a rounding of the variables z ℓ j,i via the following general assignment problem, so that there remain at most M + 1 fractionally assigned rectangles per platform.

n j=1 z ℓ j,0 p j q j ≤ A(L ℓ narrow) ℓ ∈ {1, . . . , N } n j=1 z ℓ j,i p j ≤ H ℓ M i ∈ {1, . . . , M }, ℓ ∈ {1, . . . , N } N ℓ=1 M i=0 z ℓ j,i ≥ 1 j ∈ {1, . . . , n} z ℓ i,j ∈ [0, 1] (2)
The above formulation is related to the problem of scheduling jobs on parallel unrelated machines with (M + 1)N machines. Each group G ℓ i corresponds to a machine. Lenstra et al. showed in [START_REF] Lenstra | Approximation algorithms for scheduling unrelated parallel machines[END_REF] that a feasible solution (z ℓ i,j) of this problem can be rounded to a feasible solution (z ℓ i,j) of the corresponding integer program formulation in polynomial time, so that there remains at most one fractional job zℓ i,j < 1 per machine. Hence, we get a unique assignment of almost all rectangles to the platforms P ℓ except at most M + 1 fractionally assigned rectangles per platform. Let F ℓ denote the set of rectangles with fractional variables zℓ j,i after the rounding. We will execute the corresponding jobs at the end of the schedule; their total processing time is bounded by (M + 1)t max . From now on we consider for each platform P ℓ an instance of strip packing containing a set of wide rectangles Lℓ wide := {(z ℓ j,i p j , q j)|z ℓ j,i = 1, i > 0} and a set of narrow rectangles Lℓ narrow := {(z ℓ j,0 p j , q j)|z ℓ j,0 = 1}. In every platform we repack the pre-assigned rectangles in Lℓ wide ∪ Lℓ narrow using the following strip packing subroutine by Kenyon and Rémila [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF].

Strip Packing Subroutine.

For wide rectangles in Lℓ

wide we generate a list of rounded rectangles Lℓ sup with only a constant number M of different widths w 1 , . . . , w M for the rectangles: We partition the stack of Lℓ wide into M groups by drawing M horizontal lines at height i Hℓ M , i ∈ {0, 1 . . . , M -1}. Thus, we obtain at most M threshold rectangles, i.e. rectangles that intersect either with their lower bounds or with their interiors such a horizontal line. The widths of rectangles between the ith and the (i + 1)th line are rounded up to the width of the ith threshold rectangle, i ∈ {0, 1, . . . , M -1}. For rectangles above the M th line we take the width of the M th threshold rectangle. The main part of the algorithm is to produce a fractional packing for the rectangles in Lℓ sup using a linear program. In doing so we build configurations Cℓ j := {α ℓ ij : w i |i ∈ {1, . . . , M }}, i.e. multisets of widths where αℓ ij denotes the number of rectangles of width w i in Cℓ j and

M i=1 αℓ ij w i ≤ m ℓ .
Then the following LP is solved. min

q ℓ j=1 xℓ j s.t. q ℓ j=1 αℓ ij xℓ j ≥ β ℓ i for all i ∈ {1, .
. . , M } xℓ j ≥ 0 for all j ∈ {1, . . . , q ℓ }.

(

) 3
The variable xℓ j indicates the height of configuration Cℓ j , β ℓ i is the total height of rectangles of width w i in Lℓ sup and q ℓ denotes the number of possible configurations. A feasible solution of the LP corresponds to a fractional strip packing. The fractional packing can be converted into an integral one. Then the narrow rectangles in Lℓ narrow are added in the remaining space next to the integral packing and on top of it with Next Fit Decreasing Height heuristic.

Analysis

In the end we re-identify the rectangles with jobs, i.e. their widths with q j and their heights with p j . Note that a packing of the rectangles of total height h ℓ in platform P ℓ corresponds to a schedule with makespan h ℓ /s ℓ . Then the fractional jobs in F ℓ are scheduled on top. To directly apply strip packing results we scale the widths of all rectangles in Lℓ sup ∪ Lℓ narrow by 1 /m ℓ . Furthermore we consider platform P ℓ as a strip of width 1 and infinite height. As we consider each platform and the allocated jobs independently, this has no impact on the solution.

Analyzing the Output

Let (x C ℓ k) be an approximate solution of (1) and let Lℓ wide ∪ Lℓ narrow contain the rectangles that have to be repacked in Step 5 of Algorithm 1 with the strip packing subroutine above. For a list of rectangles L let Lin SP (L) denote the height of an optimal fractional strip packing for the rectangles in L. By construction we have that the height of an optimal fractional strip packing for the wide and narrow rectangles in L ℓ wide ∪ L ℓ narrow into platform P ℓ , is less than the length of the schedule corresponding to the approximate solution of (1) constructed in step 1, that is Lin SP (L ℓ wide ∪ L ℓ narrow) ≤ s ℓ (1 + 3ε)Lin(J). Let "≤" denote a partial order on lists of rectangles. For a list of rectangles L let S denote the shape of a stack built as described above. We say L ≤ L ′ for two lists of rectangles, if shape S ′ covers S. It is clear that Lin SP (Lℓ wide) ≤ Lin SP (Lℓ sup), since Lℓ wide ≤ Lℓ sup . With Lemma 3 in [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF] we conclude Lin SP (Lℓ

sup) ≤ 1 + 1 M ε ′ Lin SP (Lℓ wide) and A(Lℓ sup) ≤ 1 + 1 M ε ′ A(Lℓ wide)
. We go on with step 2 and consider the stack built from L ′ℓ wide in the 3rd step of the grouping procedure in Section 2.2. We introduce a new list of rectangles L ′ℓ sup that is developed when in each group G ℓ i of the stack, i ∈ {1, . . . , M }, the width of each rectangle is rounded up to the widest width of a rectangle that is contained in this group. Remember that every rectangle in L ′ℓ wide is uniquely assigned to one of the groups G ℓ i since we introduced two new rectangles for border rectangles before. Notice that during building Lℓ wide in step 3 of Algorithm 1 we do not increase the total height of any group G ℓ i and we do not exceed the largest width of a rectangle that appears in it. Thus, we obtain Lℓ wide ≤ L ′ℓ sup . Since Lin SP (L ′ℓ wide) = Lin SP (L ℓ wide) and A(L ′ℓ wide) = A(L ℓ wide) this gives:

Lemma 2. For all ℓ ∈ {1, . . . , N } we have a) Lin SP (Lℓ

sup) ≤ 1 + 1 M ε ′ 2 Lin SP (L ℓ wide) b) A(Lℓ sup) ≤ 1 + 1 M ε ′ 2 A(L ℓ wide).
Let h ℓ sup denote the height of the packing produced by converting the fractional solution of (3) into an integral one. This is done by adding for each configuration appearing with height > 0 in the fractional solution the maximum height of a rectangle. Each basic solution of (3) has at most M non-zero entries and one can show that there are effectively at most 2M different configurations in platform P ℓ [START_REF] Kenyon | A near optimal solution to a two-dimensional cutting stock problem[END_REF]. So we conclude h ℓ sup ≤ Lin SP (Lℓ sup) + (1 + 2M) max{p j |(p j , q j) ∈ Lℓ sup }. Note that we only packed the rounded rectangles in Lℓ sup so far. Let h ℓ denote the height after adding the narrow rectangles in Lℓ narrow to platform P ℓ , ℓ ∈ {1, . . . , N }. We can now bound h ℓ : Lemma 3. For all ℓ ∈ {1, . . . , N } we have

h ℓ ≤ (1 + 7ε)Lin(J)s ℓ + O(1 /ε 2) max{p j |(p j , q j) ∈ L ℓ wide ∪ L ℓ narrow }.
The packing in each platform P ℓ corresponds to a schedule with length (referring to p j) at most (1 + 7ε)Lin(J)s ℓ + (36 ε 2 + 1) max{p j |(p j , q j) ∈ L ℓ wide ∪ L ℓ narrow }, thus we conclude that its completion time (referring to t ℓ j) is bounded by (1 + 7ε)Lin(J) + O(1 ε 2 t max). The remaining jobs in F ℓ have total processing time bounded by (M + 1)t max ∈ O(1 ε 2 t max) ≤ O(1 ε 2 p max), since t max ≤ p max as min s ℓ = 1. Adding now the remaining jobs in F ℓ to the schedule does not change the magnitude of the additive factor. With rescaling ε and since Lin(J) ≤ OPT(J) we obtain that the makespan of the produced schedule in each platform P ℓ is less than C max (ℓ) ≤ (1 + ε)OPT(J) + O(1 ε 2 p max) and conclude our main Theorem 1. Since during the repacking process we considered jobs as rectangles, we assigned every job to a set of processors with consecutive addresses. Thus we also obtain an AFPTAS for multiple strip packing for strips with different widths (in this case we have s ℓ = 1 for all ℓ ∈ {1, . . . , N }).

Running Time of the Algorithm

The time needed for solving [START_REF] Bougeret | Approximation algorithms for multiple strip packing[END_REF] approximately via max-min resource sharing (details in the full version)in step 1 is

O(N n 2 ε -6 log 2 (n) log 2 (1/ε) log(N max s ℓ)).
The number of non-zero configurations in the final solution is bounded by

O(n(ε -2 + ln n)) [15]. So step 2 takes time O(N n 2 (ε -2 + log n) log(n 2 (ε -2 + log n)) = O(N n 2 ε -2 log 2 (n) log(1/ε))
, since there are at most n 2 (ε -2 + log n) rectangles in each platform that have to be sorted. We represent the assignment problem in step 3 as a weighted bipartite graph G = (V 1 , V 2 , E), where V 1 corresponds to the N (M + 1) machines (parts of the stacks), V 2 to the jobs. There is an edge between the node representing part i of the stack for P ℓ and the node representing job J j if z ℓ j,i > 0. This assignment problem can be converted in time O

(|E||V 1 |) = O(|V 1 | 2 |V 2 |) = O(ε -2 N 2 n) into
another assignment problem, whose corresponding graph is a forest [START_REF] Plotkin | Fast approximation algorithms for fractional packing and covering problems[END_REF]. Applying the rounding technique in [START_REF] Lenstra | Approximation algorithms for scheduling unrelated parallel machines[END_REF] to the new assignment takes time in

O(|V 1 | + |V 2 |) = O(ε -2 N + n). So step 3 takes time in O(ε -2 N 2 n).
In step 5 it is sufficient to solve the corresponding linear program (3) approximatively with accuracy ε also via a max-min resource sharing problem. This can be done in time O(M (ε -2 + ln M) ln(ε -1) max{M + ε -3 , M ln ln(M ε -1)}) for every platform [START_REF] Jansen | Approximation algorithms for min-max and max-min resource sharing problems and applications[END_REF]. Since M ∈ O(ε -2) this gives for step 5 a total running time in O(N ε -7). The overall running time sums up to O(ε -7 N 2 n 2 log 2 (n) log 2 (1/ε) log(N max s ℓ)).

Malleable Jobs

One can also obtain an AFPTAS for scheduling malleable jobs non-preemptively by only adding a few modifications to the algorithm. To get a better overview we do not consider the platform speeds here. But remember that one can easily add speeds here by considering bins of height s ℓ T instead of T , where T denotes an optimum value for the makespan for scheduling malleable jobs in platforms. In the following we give a short instruction how to adjust our algorithm: In malleable scheduling a job J j is described by a function p j : {1, . . . , m N } -→ Q + ∪ ∞, where p j (k) is the length of job j running on k parallel processors of a platform. We introduce a configuration as a map f ℓ : {1, . . . , m ℓ } -→ {0} ∪ {1, . . . , n} that assigns a processor to a job (0 for idle time). Instead of solving (1) we can solve in a similar way the following linear program:

f ℓ ∈F ℓ x f ℓ = T ℓ ∈ {1, . . . , N } N ℓ=1 m ℓ k=1 1 p j (k) f ℓ ∈F ℓ ,|f -1 (j)=k| x f ℓ ≥ 1 j ∈ {1, . . . , n} x f ℓ ≥ 0. (4)
Consider step 2 of the algorithm. Let a ℓ i , b ℓ i be the smallest and the largest width of a rectangle in group G ℓ i and let W ℓ i,j be the set of widths job J j adopts in G ℓ i . To guarantee that we have chosen the right number of processors for a job we add the following steps before rounding the jobs via the general assignment problem:

-For i ∈ {1, . . . , M } and w ∈ W ℓ i,j let y ℓ j,i (w) denote the fraction of job j of width w that is assigned to G ℓ i . Let z ℓ j,i = w∈Wi,j y ℓ j,i (w) be the complete fraction of job j in G ℓ i . -For each part i ∈ {1, . . . , M } and job j with |W ℓ j,i | ≥ 2 compute k ℓ j,i := arg min k∈[a ℓ i ,b ℓ i] p ℓ j (k) and replace the rectangles corresponding to job j in G ℓ i by (z ℓ j,i p j (k ℓ j,i)k ℓ j,i). Note that p j (k ℓ j,i) is the smallest processing time among all processor numbers k ∈ [a ℓ i , b ℓ i]. -For each job j with |W ℓ j,0 | ≥ 2 compute k ℓ j,0 := arg min k∈[0,ε ′ m ℓ] p ℓ j (k)k and replace all rectangles corresponding to job j in G ℓ 0 by (z ℓ j,0 p j (k ℓ j,0), k ℓ j,0).

Including different speed values we define the processing time of job J j in platform P ℓ as t ℓ j (k) = pj (k) s ℓ . Note that t ℓ j (k) = ∞ is possible. We define p max := max j,k {p j (k)|p j (k) < ∞} and t max := max j,k,ℓ {t ℓ j (k)|t ℓ j (k) < ∞}. To include speed values in the linear program we change the first N constraints of LP (4) into ... = s ℓ T , since different speeds can be considered as providing length s ℓ T instead of T for the schedule. During the repacking process the algorithm remains the same and finally we achieve the following theorem Theorem 2. There is an AFPTAS for scheduling non-preemptive malleable jobs in heterogeneous platforms with different speeds with additive factor O(1 /ε 2 p max).

Release Times

Theorem 3. There is an AFPTAS for scheduling parallel jobs in heterogeneous platforms with different speeds and release times with additive factor O(1/ε 3 p max).

For a better overview we describe here the idea for the proof when all platforms run with the same speed, i.e. s ℓ = 1 for all ℓ ∈ {1, . . . , N }. The general case can be derived from it. Let r j denote the release time of job J j and Φ := max j r j . We assume that Φ > εT , otherwise it is easy. As in [START_REF] Hall | Approximation Schemes for Constrained Scheduling Problems[END_REF] we round down the release times to the next multiples of iεT i ∈ {0, 1, . . . , 1/ε} and obtain new release times r1 . . . , rn with at most R = O(1/ε) different values ρ 1 , . . . , ρ R . To recover the loss we made by rounding down we shift the final schedule by εT in the end. For every platform P ℓ we consider R new platforms Pℓ,i , i ∈ {1, . . . , R}, with m ℓ processors and create a new instance JR of SPP (without release times) with RN platforms and n jobs. A job J j can now be scheduled in platform Pℓ,i if it fits and if it is already released, i.e. q j ≤ m ℓ and rj ≤ ρ i . For each of the new platforms Pℓ,i the value of an optimal fractional schedule is at most εT .

⋆ Research supported by German Research Foundation (DFG) project JA612/12-1, "Design and analysis of approximation algorithms for two-and three-dimensional packing problems", and DGA-CNRS