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ABSTRACT
This work provides an analysis of checkpointing strategies
for minimizing expected job execution times in an environ-
ment that is subject to processor failures. In the case of
both sequential and parallel jobs, we give the optimal solu-
tion for exponentially distributed failure inter-arrival times,
which, to the best of our knowledge, is the first rigorous
proof that periodic checkpointing is optimal. For non-ex-
ponentially distributed failures, we develop a dynamic pro-
gramming algorithm to maximize the amount of work com-
pleted before the next failure, which provides a good heuris-
tic for minimizing the expected execution time. Our work
considers various models of job parallelism and of parallel
checkpointing overhead. We first perform extensive simula-
tion experiments assuming that failures follow Exponential
or Weibull distributions, the latter being more representa-
tive of real-world systems. The obtained results not only
corroborate our theoretical findings, but also show that our
dynamic programming algorithm significantly outperforms
previously proposed solutions in the case of Weibull fail-
ures. We then discuss results from simulation experiments
that use failure logs from production clusters. These results
confirm that our dynamic programming algorithm signifi-
cantly outperforms existing solutions for real-world clusters.

Keywords: Fault-tolerance, checkpointing, sequential job,
parallel job.

1. INTRODUCTION
Resilience is a key challenge for post-petascale high-per-

formance computing (HPC) systems [11, 25] since failures
are increasingly likely to occur during the execution of paral-
lel jobs that enroll increasingly large numbers of processors.
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For instance, the 45,208-processor Jaguar platform is re-
ported to experience on the order of 1 failure per day [21, 2].
Faults that cannot be automatically detected and corrected
in hardware lead to failures. In this case, rollback recov-
ery is used to resume job execution from a previously saved
fault-free execution state, or checkpoint. Rollback recovery
implies frequent (usually periodic) checkpointing events at
which the job state is saved to resilient storage. More fre-
quent checkpoints lead to higher overhead during fault-free
execution, but less frequent checkpoints lead to a larger loss
when a failure occurs. The design of efficient checkpointing
strategies, which specify when checkpoints should be taken,
is thus key to high performance.

We study the problem of finding a checkpointing strategy
that minimizes the expectation of a job’s execution time, or
expected makespan. In this context, our novel contributions
are as follows. For sequential jobs, we provide the optimal
solution for exponential failures and an accurate dynamic
programming algorithm for general failures. The optimal
solution for exponential failures, i.e., periodic checkpoint-
ing, is widely known in the “folklore” but, to the best of
our knowledge, we provide the first rigorous proof. Our dy-
namic programming algorithm provides the first accurate
solution of the expected makespan minimization problem
with Weibull failures, which are representative of the behav-
ior of real-world platforms [13, 26, 20]. For parallel jobs, we
consider a variety of execution scenarios with different mod-
els of job parallelism (embarrassingly parallel jobs, generic
parallel jobs, and typical numerical kernels such as matrix
product or LU decomposition), and with different models of
the overhead of checkpointing a parallel job (which may or
may not depend on the total number of processors in use).
In the case of Exponential failures we provide the optimal
solution. In the case of general failures, since minimizing the
expected makespan is computationally difficult, we instead
provide a dynamic programming algorithm to maximize the
amount of work successfully completed before the next fail-
ure. This approach turns out to provide a good heuristic so-
lution to the expected makespan minimization problem. In
particular, it significantly outperforms previously proposed
solutions in the case of Weibull failures.

Sections 2 and 3 give theoretical results for sequential and
parallel jobs, respectively. Section 4 presents our simulation
methodology. Sections 5 and 6 discuss simulation results
when using synthetic failure distributions and when using
real-world failure data, respectively. Section 7 reviews re-
lated work. Finally, Section 8 concludes the paper with a
summary of our findings and a discussion of future direc-



tions. Due to lack of space, all technical proofs are omitted
but available in a companion research report [5].

2. SEQUENTIAL JOBS

2.1 Problem statement
We consider an application, or job, that executes on one

processor. We use the term processor to indicate any indi-
vidually scheduled compute resource (a core, a multi-core
processor, a cluster node) so that our work is agnostic to
the granularity of the platform. The job must complete W
units of (divisible) work, which can be split arbitrarily into
separate chunks. The job state is checkpointed after the ex-
ecution of every chunk. Defining the sequence of chunk sizes
is therefore equivalent to defining the checkpointing dates.
We use C to denote the time needed to perform a check-
point. The processor is subject to failures, each causing a
downtime period, of duration D, followed by a recovery pe-
riod, of duration R. The downtime accounts for software
rejuvenation (i.e., rebooting [16, 9]) or for the replacement
of the failed processor by a spare. Regardless, we assume
that after a downtime the processor is fault-free and begins
a new lifetime at the beginning of the recovery period. This
period corresponds to the time needed to restore the last
checkpoint. Note that although C and R can fluctuate de-
pending on cluster and network load, as in most works in the
field we assume they are constant. We asssume coordinated
checkpointing [30], meaning that no message logging/replay
is needed when recovering from failures. Finally, we assume
that failures can happen during recovery or checkpointing,
but not during a downtime (otherwise, the downtime period
could be considered part of the recovery period).

We study two optimization problems:
• Makespan: Minimize the job’s expected makespan;
• NextFailure: Maximize the expected amount of work

completed before the next failure.
Solving Makespan is our main goal. NextFailure amounts
to optimizing the makespan on a “failure-by-failure” basis,
selecting the next chunk size as if the next failure were to im-
ply termination of the execution. Intuitively, solving Next-
Failure should lead to a good approximation of the solution
to Makespan, at least for large job sizes W. Therefore, we
use the solution of NextFailure in cases for which we are
unable to solve Makespan directly. We give formal defini-
tions for both problems in the next section.

2.2 Formal problem definitions
We consider the processor from time t0 onward. Failures

occur at times (tn)n≥1, with tn = t0 +
∑n
m=1Xm, where

the random variables (Xm)m≥1 are iid (independent and
identically distributed). Given a current time t > t0, we
define n(t) = min{n|tn ≥ t}, so that Xn(t) corresponds to
the inter-failure interval in which t falls. We use Psuc(x|τ)
to denote the probability that the processor does not fail
for the next x units of time, knowing that the last failure
occurred τ units of time ago. In other words, if X = Xn(t)
denotes the current inter-arrival failure interval,

Psuc(x|τ) = P(X ≥ τ + x | X ≥ τ) .

Note that we do not assume that the failure stochastic pro-
cess is memoryless.

For each problem stated in the previous section, a solution
is fully defined by a function f(ω|τ) that returns the size of

the next chunk to execute given the amount of work ω that
has not yet been executed successfully (f(ω|τ) ≤ ω ≤ W)
and the amount of time τ elapsed since the last failure. f is
invoked at each decision point, i.e., after each checkpoint or
recovery. Our goal is to determine a function f that defines
an optimal solution. Assuming a unit-speed processor with-
out loss of generality, the time needed to execute a chunk of
size ω is ω + C if no failure occurs.

Definition of Makespan– For a given amount of work ω
and a time elapsed since the last failure τ , we define T (ω|τ)
as the random variable that quantifies the time needed for
executing ω units of work. Given a solution function f , let
ω1 = f(ω|τ) denote the size of the first chunk. We can write
the following recursion:

T (0|τ) = 0
T (ω|τ) =

ω1 + C + T (ω − ω1|τ + ω1 + C)

if the processor does not fail during

the next ω1 + C units of time,

Twasted(ω1 + C|τ) + T (ω|R)

otherwise.

(1)

The two cases above are explained as follows:
• If the processor does not fail during the execution and

checkpointing of the first chunk (i.e., for ω1 + C time
units), there remains to execute a work of size ω − ω1

and the time since the last failure is τ + ω1 + C;
• If the processor fails before successfully completing

the first chunk and its checkpoint, then some addi-
tional delays are incurred, as captured by the variable
Twasted(ω1+C|τ). The time wasted corresponds to the
execution up to the failure, a downtime, and a recov-
ery during which a failure may happen. We compute
Twasted in the next section. Regardless, once a suc-
cessful recovery has been completed, there still remain
ω units of work to execute, and the time since the last
failure is simply R.

We define Makespan formally as: find f that minimizes

E(T (W|τ0)), where E(X) denotes the expectation of the ran-
dom variable X, and τ0 the time elapsed since the last failure
before t0.

Definition of NextFailure– For a given amount of work ω
and a time elapsed since the last failure τ , we define W (ω|τ)
as the random variable that quantifies the amount of work
successfully executed before the next failure. Given a solu-
tion function f , let ω1 = f(ω|τ) denote the size of the first
chunk. We can write the following recursion:

W (0|τ) = 0
W (ω|τ) =

ω1 +W (ω − ω1|τ + ω1 + C)

if the processor does not fail during

the next ω1 + C units of time,

0 otherwise.

(2)

This recursion is simpler than the one for Makespan be-
cause a failure during the computation of the first chunk
means that no work (i.e., no fraction of ω) will have been suc-
cessfully executed before the next failure. We define Next-
Failure formally as: find f that maximizes E(W (W|τ0)).

2.3 Solving Makespan



A challenge for solving Makespan is the computation of
Twasted(ω1 +C|τ). We rely on the following decomposition:

Twasted(ω1 + C|τ) = Tlost(ω1 + C|τ) + Trec , where

• Tlost(x|τ) is the amount of time spent computing be-
fore a failure, knowing that the next failure occurs
within the next x units of time, and that the last fail-
ure has occurred τ units of time ago.
• Trec is the amount of time needed by the system to

recover from the failure (accounting for the fact that
other failures may occur during recovery).

Proposition 1. The Makespan problem is equivalent to
finding a function f minimizing the following quantity:

E(T (W|τ)) =

Psuc(ω1 + C|τ)
(
ω1+C +E(T (W−ω1|τ+ω1+ C))

)
+(1− Psuc(ω1 + C|τ))

(
E(Tlost(ω1 + C|τ))

+E(Trec) + E(T (W|R))
) (3)

where ω1 = f(W|τ) and where E(Trec) is given by

E(Trec) = D +R+
1− Psuc(R|0)

Psuc(R|0)
(D + E(Tlost(R|0))).

2.3.1 Results for the Exponential distribution
In this section we assume that the failure inter-arrival

times follow an Exponential distribution with parameter λ,
i.e., each Xn = X has probability density fX(t) = λe−λtdt
and cumulative distribution FX(t) = 1 − e−λt for all t ≥ 0.
The advantage of the Exponential distribution, exploited
time and again in the literature, is its “memoryless” prop-
erty: the time at which the next failure occurs does not
depend on the time elapsed since the last failure occurred.
Therefore, in this section, we simply write T (ω), Tlost(ω),
and Psuc(ω) instead of T (ω|τ), Tlost(ω|τ), and Psuc(ω|τ).

Lemma 1. With the Exponential distribution:

E(Tlost(ω)) =
1

λ
− ω

eλω − 1
and

E(Trec) = D +R+
1− e−λR

e−λR
(D+E(Tlost(R))).

The memoryless property makes it possible to solve the Ma-
kespan problem analytically:

Theorem 1. Let W be the amount of work to execute
on a processor with failure inter-arrival times that follow
an Exponential distribution with parameter λ. Let K0 =

λW
1+L(−e−λC−1)

where L, the Lambert function, is defined as

L(z)eL(z) = z. Then the optimal strategy to minimize the
expected makespan is to split W into K∗ = max(1, bK0c) or
K∗ = dK0e same-size chunks, whichever leads to the smaller
value. The optimal expectation of the makespan is:

E(T ∗(W)) = K∗
(
eλR

(
1

λ
+D

))(
eλ(

W
K∗ +C)−1

)
.

Although periodic checkpoints have been widely used in
the literature, Theorem 1 is, to the best of our knowledge,
the first proof that the optimal deterministic strategy uses
a finite number of chunks and is periodic. The proof (fully
detailed in [5]) is technical and proceeds along the following
steps:

Algorithm 1: DPMakespan (x,b,y,τ0)

if x = 0 then
return 0

if solution[x][b][y] = unknown then
best←∞; τ ← bτ0 + yu
for i = 1 to x do

exp succ ← first(DPMakespan(x−i, b, y+i+ C
u
, τ0))

exp fail ← first(DPMakespan(x, 0, R
u
, τ0))

cur ← Psuc(iu+ C|τ)(iu+ C + exp succ)

+(1− Psuc(iu+ C|τ))
(
E(Tlost(iu+ C, τ))

+E(Trec) + exp fail
)

if cur < best then
best← cur; chunksize ← i

solution[x][b][y]← (best , chunksize)
return solution[x][b][y]

• all possible executions for any given f use the same
sequence of chunk sizes;
• the optimal strategy uses only a finite number of chunk

sizes;
• by a convexity argument, the expected makespan is

minimized when all these chunk sizes are equal; and
• the optimization problem is solved by differentiating

the objective function.
Note that the checkpointing strategy in Theorem 1 can be
shown to be optimal among all deterministic and non-deter-
ministic strategies, as a consequence of Proposition 4.4.3
in [24].

2.3.2 Results for arbitrary distributions
Solving the Makespan problem for arbitrary distributions

is difficult because, unlike in the memoryless case, there is no
reason for the optimal solution to use a single chunk size [27].
In fact, the optimal solution is very likely to use chunk sizes
that depend on additional information that becomes avail-
able during the execution (i.e., failure occurrences to date).
Using Proposition 1, we can write

E(T ∗(W|τ)) =

min
0<ω1≤W

 Psuc(ω1 + C|τ)
(
ω1+C+E(T ∗(W−ω1|τ+ω1+C))

)
+(1− Psuc(ω1 + C|τ))×

(E(Tlost(ω1 + C|τ))+E(Trec)+E(T ∗(W|R))

which can be solved via dynamic programming. We intro-
duce a time quantum u, meaning that all chunk sizes ωi are
integer multiples of u. This restricts the search for an op-
timal execution to a finite set of possible executions. The
trade-off is that a smaller value of u leads to a more accu-
rate solution, but also to a higher number of states in the
algorithm, hence to a higher compute time.

Proposition 2. Using a time quantum u, and for any
failure inter-arrival time distribution, DPMakespan (Algo-
rithm 1), called with parameters (W/u, 1, 0, τ0), computes

an optimal solution to Makespan in time O(W
u

3
(1 + C

u
)a),

where a is an upper bound on the time needed to compute
E(Tlost(ω|t)), for any ω and t.

Algorithm 1 provides an approximation of the optimal so-
lution to the Makespan problem.We evaluate this approxi-
mation experimentally in Section 5, including a direct com-
parison with the optimal solution in the case of Exponential
failures (in which case the optimal can be computed via
Theorem 1).



Algorithm 2: DPNextFailure (x,n,τ0)

if x = 0 then
return 0

if solution[x][n] = unknown then
best←∞
τ ← τ0 + (W − xu) + nC
for i = 1 to x do

work = first(DPNextFailure(x− i, n+ 1, τ0))
cur ← Psuc(iu+ C|τ)× (iu+ work)
if cur < best then

best← cur; chunksize ← i
solution[x][n]← (best, chunksize)

return solution[x][n]

2.4 Solving NextFailure

Weighting the two cases in Equation 2 by their probabil-
ities of occurrence, we obtain the expected amount of work
successfully computed before the next failure:

E(W (ω|τ))=Psuc(ω1 +C|τ)(ω1 +E(W (ω−ω1|τ+ω1 +C))).

Here, unlike for Makespan, the objective function to be
maximized can easily be written as a closed form, even for ar-
bitrary distributions. Developing the expression above leads
to the following result:

Proposition 3. The NextFailure problem is equiva-
lent to maximizing the following quantity:

E(W (W|τ0)) =

K∑
i=1

ωi ×
i∏

j=1

Psuc(ωj + C|tj) ,

where tj = τ0 +
∑j−1
`=1(ω` + C) is the total time elapsed

(without failure) before the start of the execution of chunk
ωj, and K is the (unknown) target number of chunks.

Unfortunately, there does not seem to be an exact solu-
tion to this problem. However, just as for the Makespan
problem, the recursive definition of E(W (W|τ)) lends itself
naturally to a dynamic programming algorithm. The dy-
namic programming scheme is simpler because the size of
the i-th chunk is only needed when no failure has occurred
during the execution of the first i − 1 chunks, regardless of
the value of the τ parameter. More formally:

Proposition 4. Using a time quantum u, and for any
failure inter-arrival time distribution, DPNextFailure (Al-
gorithm 2), called with parameters (W/u, 0, τ0), computes

an optimal solution to NextFailure in time O(W
u

3
).

3. PARALLEL JOBS

3.1 Problem statement
We now turn to parallel jobs that can execute on any

number of processors, p. We consider the following relevant
scenarios for checkpointing/recovery overheads and for par-
allel execution times.

Checkpointing/recovery overheads – Checkpoints are
synchronized over all processors. We use C(p) and R(p) to
denote the time for saving a checkpoint and for recovering
from a checkpoint on p processors, respectively (we assume
that the downtime D does not depend on p). Assuming that
the application’s memory footprint is V bytes, with each
processor holding V/p bytes, we consider two scenarios:

• Proportional overhead: C(p) = R(p) = αV/p for some
constant α. This is representative of cases in which the
bandwidth of the network card/link at each processor
is the I/O bottleneck.
• Constant overhead: C(p) = R(p) = αV , which is rep-

resentative of cases in which the bandwidth to/from
the resilient storage system is the I/O bottleneck.

Parallel work – LetW(p) be the time required for a failure-
free execution on p processors. We use three models:
• Embarrassingly parallel jobs: W(p) =W/p.
• Generic parallel jobs: W(p) =W/p+ γW. As in Am-

dahl’s law [1], γ < 1 is the fraction of the work that is
inherently sequential.
• Numerical kernels: W(p) = W/p + γW2/3/

√
p. This

is representative of a matrix product or a LU/QR fac-
torization of size N on a 2D-processor grid, where
W = O(N3). In the algorithm in [3], p = q2 and
each processor receives 2q blocks of size N2/q2. Here
γ is the communication-to-computation ratio of the
platform.

We assume that the parallel job is tightly coupled, mean-
ing that all p processors operate synchronously through-
out the job execution. These processors execute the same
amount of work W(p) in parallel, chunk by chunk. The to-
tal time (on one processor) to execute a chunk of size ω,
and then checkpointing it, is ω + C(p). For the Makespan
and NextFailure problems, we aim at computing a func-
tion f such that f(ω|τ1, . . . , τp) is the size of the next chunk
that should be executed on every processor given a remain-
ing amount of work ω ≤ W(p) and given a system state
(τ1, . . . , τp), where τi denotes the time elapsed since the last
failure of the i-th processor. We assume that failure arrivals
at all processors are iid .

An important remark on rejuvenation.
Two options are possible for recovering after a failure.

Assume that a processor, say P1, fails at time t. A first
option found in the literature [6, 28] is to rejuvenate all
processors together with P1, from time t to t+D (e.g., via
rebooting in case of software failure). Then all processors are
available at time t+D at which point they start executing
the recovery simultaneously. In the second option, only P1

is rejuvenated and the other processors are kept idle from
time t to t+D. With this option any processor other than
P1 may fail between t and t + D and thus may be itself in
the process of being rejuvenated at time t+D.

Let us consider a platform with p processors that expe-
rience iid failures according to a Weibull distribution with
scale parameter λ and shape parameter k, i.e., with cumula-

tive distribution F (t) = 1−e−
tk

λk , and mean µ = λΓ(1+ 1
k

).
Define a platform failure as the occurrence of a failure at any
of the processors. When rejuvenating all processors after
each failure, platform failures are distributed according to
a Weibull distribution with scale parameter λ

p1/k
and shape

parameter k. The MTBF for the platform is thus D + µ

p1/k

(note that the processor-level MTBF is D+µ). When reju-
venating only the processor that failed, the platform MTBF
is simply D+µ

p
. If k = 1, which corresponds to an Exponen-

tial distribution, rejuvenating all processors leads to a higher
platform MTBF and is beneficial. However, if k < 1, rejuve-
nating all processors leads to a lower platform MTBF than
rejuvenating only the processor that failed because D � µ

p
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Figure 1: Impact of the two rejunevation options on
the platform MTBF for a Weibull distribution with
shape parameter 0.70, a processor-level MTBF of 125
years, and a downtime of 60 seconds.

in practical settings. This is shown on an example in Fig-
ure 1, which plots the platform MTBF vs. the number of
processors. This behavior is easily explained: for a Weibull
distribution with shape parameter k < 1, the probability

P(X > t + x|X > t) strictly increases with t. In other
words, a processor is less likely to fail the longer it remains
in a fault-free state. It turns out that failure inter-arrival
times for real-life systems have been modeled well by Weibull
distributions whose shape parameter are strictly lower than
1 (either 0.7 or 0.78 in [13], 0.50944 in [20], and between
0.33 and 0.49 in [26]). The overall conclusion is then that
rejuvenating all processors after a failure, albeit commonly
used in the literature, is likely not appropriate for large-scale
platforms. Furthermore, even for Exponential distributions,
rejuvenating all processors is not meaningful for hardware
failures. Therefore, in the rest of this paper we assume that
after a failure only the failed processor is rejuvenated1.

3.2 Solving Makespan

In the case of the Exponential distribution, due to the
memoryless property, the p processors used for a job can
be conceptually aggregated into a virtual “macro-processor”
with the following characteristics:
• Failure inter-arrival times follow an Exponential dis-

tribution of parameter λ′ = pλ;
• The checkpoint and recovery overheads are C(p) and
R(p), respectively.

A direct application of Theorem 1 yields the optimal solution
of the Makespan problem for parallel jobs:

Proposition 5. Let W(p) be the amount of work to exe-
cute on p processors whose failure inter-arrival times follow
iid Exponential distributions with parameter λ. Let K0 =

pλW(p)

1+L(−e−pλC(p)−1)
. Then the optimal strategy to minimize

the expected makespan time is to split W(p) into K∗ =
max(1, bK0c) or K∗ = dK0e same-size chunks, whichever

minimizes ψ(K∗) = K∗(epλ(
W(p)
K∗ +C(p)) − 1).

Interestingly, although we know the optimal solution with
p processors, we are not able to compute the optimal ex-
pected makespan analytically. Indeed, E(Trec), for which

1For the sake of completeness, we consider both rejuvenation
options for Exponential failures in the companion research
report [5]. We observe similar results for both options.

we had a closed form in the case of sequential jobs, becomes
quite intricate in the case of parallel jobs. This is because
during the downtime of a given processor another proces-
sor may fail. During the downtime of that processor, yet
another processor may fail, and so on. We would need to
compute the expected duration of these “cascading” failures
until all processors are simultaneously available.

For arbitrary distributions, i.e., distributions without the
memoryless property, we cannot tractably extend the dy-
namic programming algorithm DPMakespan. This is be-
cause one would have to memorize the evolution of the time
elapsed since the last failure for all possible failure scenarios
for each processor, leading to a number of states exponen-
tial in p. Fortunately, the dynamic programming approach
for solving NextFailure can be extended to the case of a
parallel job, as seen in Section 3.3. This was our motiva-
tion for studying NextFailure in the first place, and in
the case of non-exponential failures, we use the solution to
NextFailure as a heuristic solution for Makespan.

3.3 Solving NextFailure

For solving NextFailure using dynamic programming,
there is no need to keep for each processor the time elapsed
since its last failure as parameter of the recursive calls. This
is because the τ variables of all processors evolve identi-
cally: recursive calls only correspond to cases in which no
failure has occurred. Formally, the goal is to find a func-
tion f(ω|τ) = ω1 that maximizes E(W (ω|τ1, . . . , τp)), where

E(W (0|τ1, . . . , τp)) = 0 and

E(W (ω|τ1, . . . , τp)) =
ω1+E(W (ω−ω1|τ1+ ω1 + C(p), . . . , τp+ω1 + C(p))

if no processor fails during the next ω1+C(p)
units of time

0 otherwise.
Using a straightforward adaptation of DPNextFailure,

which computes the probability of success

Psuc(x|τ1, . . . , τp) =

p∏
i=1

P(X ≥ x+ τi|X ≥ τi),

we obtain:

Proposition 6. Using a time quantum u, for any failure
inter-arrival time distribution, DPNextFailure computes
an optimal solution to NextFailure with p processors in

time O(pW
u

3
).

Even if a linear dependency in p, due to the computation
of Psuc, seems a small price to pay, the above computational
complexity is not tractable. Typical platforms in the scope
of this paper (Jaguar [4], Exascale platforms) consist of tens
of thousands of processors. The DPNextFailure algorithm
is thus unusable, especially since it must be invoked after
each failure. In what follows we propose a method to reduce
its computational complexity.

Rather than working with the set of all p τi values, we ap-
proximate this set. With distributions such as the Weibull
distribution, the smallest τi’s have the highest impact on
the overall probability of success. Therefore, we keep in the
set the exact nexact smallest τi values. Then we approxi-
mate the p − nexact remaining τi values using only napprox

“reference” values τ≈1 , ..., τ≈napprox
. To each processor Pi

whose τi value is not one of the nexact smallest τi values,
we associate one of the reference values. We can then sim-
ply keep track of how many processors are associated to each



reference value, thereby vastly reducing computational com-
plexity. We pick the reference values as follows. τ≈1 is the
smallest of the remaining p − nexact exact τi values, while
τ≈napprox

is the largest. (Note that if processor Pi has never

failed to date then τi = τ≈napprox
.) The remaining napprox−2

reference values are chosen based on the distribution of the
(iid) failure inter-arrival times. Assuming that X is a ran-
dom variable distributed according to this distribution, then,
for i ∈ [2, napprox − 1], we compute τ≈i as

τ≈i = quantile

(
X,

napprox − i
napprox − 1

P(X ≥ τ≈1 )

+
i− 1

napprox − 1
P(X ≥ τ≈napprox

)

)
.

We have implemented DPNextFailure with nexact = 10
and napprox = 100. For the simulation scenario detailed in
Section 5.2.2, we have studied the precision of this approxi-
mation by evaluating the relative error incurred when com-
puting the probability using the approximated state rather
than the exact one, for chunks of size 2−i times the MTBF of
the platform, with i ∈ {0..6} and failure inter-arrival times
following a Weibull distribution. It turns out that the larger
the chunk size, the less accurate the approximation. Over
the whole execution of a job in the settings of Section 5.2.2
(i.e., for 45,208 processors), the worst relative error is lower
than 0.2% for a chunk of duration equal to the MTBF of the
platform. In practice, the chunks used by DPNextFailure
are far smaller, and the approximation of their probabilities
of success is thus far more accurate.

The running time of DPNextFailure is proportional to
the work size W. If W is significantly larger than the plat-
form MTBF, which is very likely in practice, then with high
probability a failure occurs before the last chunks of the solu-
tion produced by DPNextFailure are even considered for
execution. In other words, a significant portion of the solu-
tion produced by DPNextFailure is unused, and can thus
be discarded without a significant impact on the quality of
the end result. In order to further boost the execution time
of DPNextFailure, rather than invoking it on the size of
the remaining work ω, we invoke it for a work size equal to
min(ω, 2 × MTBF/p), where MTBF is the processor-level
mean time between failures (MTBF/p is thus the platform
mean time between failures). We use only the first half of
the chunks in the solution produced by DPNextFailure so
as to avoid any side effects due the truncated ω.

With all these optimizations, DPNextFailure runs in
a few seconds even for the largest platforms in our exper-
iments. In all the application execution times reported in
Sections 5 and 6 the execution time of DPNextFailure is
taken into account.

4. SIMULATION FRAMEWORK
In this section we detail our simulation methodology. We

use both synthetic and real-world failure distributions. The
source code and all simulation results are publicly available
at: http://graal.ens-lyon.fr/~fvivien/checkpoint.

4.1 Heuristics
Our simulator implements the following eight checkpoint-

ing policies (recall that MTBF/p is the mean time between
failures of the whole platform):

• Young is the periodic checkpointing policy with pe-

riod
√

2× C(p)× MTBF
p

given in [31].

• DalyLow is the first order approximation given in [10].
This is a periodic policy with period:√

2× C(p)× (MTBF
p

+D +R(p)).

• DalyHigh is the periodic policy (high order approxi-
mation) given in [10].
• Bouguerra is the periodic policy given in [6].
• Liu is the non-periodic policy given in [20].
• OptExp is the periodic policy whose period is given

in Proposition 5.
• DPNextFailure is the dynamic programming algo-

rithm that maximizes the expectation of the amount
of work completed before the next failure occurs.
• DPMakespan is the dynamic programming algorithm

that minimizes the expected makespan. For parallel
jobs, DPMakespan makes the false assumption that
all processors are rejuvenated after each failure (with-
out this assumption this heuristic cannot be used).

Our simulator also implements LowerBound, an omni-
scient algorithm that knows when the next failure will hap-
pen and checkpoints just in time, i.e., C(p) time units before
the failure. The makespan of LowerBound is thus an abso-
lute lower bound on the makespan achievable by any policy,
and is unattainable in practice. Along the same line, the
simulator implements PeriodLB, which implements a nu-
merical search for the optimal period by evaluating each can-
didate period on 1,000 randomly generated scenarios (which
would have a prohibitive computational cost in practice).
To build the candidate periods, the period computed by
OptExp is multiplied and divided by 1 + 0.05 × i with
i ∈ {1, ..., 180}, and by 1.1j with j ∈ {1, ..., 60}. Peri-
odLB corresponds to the periodic policy that uses the best
period found by the search.

We point out that DalyLow, DalyHigh, and OptExp
compute the checkpointing period based solely on the MTBF,
implicitly assuming that failures are exponentially distributed.
For the sake of completeness we nevertheless include them
in all our simulations, simply using the MTBF value even
when failures are not exponentially distributed.

Performance evaluation – We compare heuristics using
average makespan degradation, defined as follows. Given
an experimental scenario (i.e., parameter values for failure
distribution and platform configuration), we generate a set
{tr1, . . . , tr250} of 250 traces. For each trace tri and each
heuristic heur j , we compute the achieved makespan, res(i,j).
The makespan degradation for heuristic heur j on trace tri
is defined as v(i,j) = res(i,j)/minj 6=0{res(i,j)} (where heur0

is LowerBound). We compute the average degradation for
heuristic heur j as

∑250
i=1 v(i,j)/250. Standard deviations are

small and thus not plotted on figures (see the companion
research report [5] for standard deviations values).

4.2 Platforms
We target three types of platforms: One-processor, Petas-

cale, and Exascale. For Petascale we choose as reference the
Jaguar supercomputer [4], which contains ptotal = 45, 208
processors. We consider jobs that use between 1,024 and
45,208 processors. We then corroborate the Petascale results
by running simulations of Exascale platforms with ptotal =
220 processors. For all three platform types, we determine
the job sizeW so that a job using the whole platform would



ptotal D C,R MTBF W
1-proc 1 60 s 600 s 1 h, 1 d, 1 w 20 d
Peta 45, 208 60 s 600 s 125 y, 500 y 1, 000 y

Exa 220 60 s 600 s 1250 y 10, 000 y

Table 1: Parameters used in the simulations (C, R
and D chosen according to [14, 8]). The first line
corresponds to one-processor platforms, the second
to Petascale platforms, and the third to Exascale
platforms.

use it for a significant amount of time in the absence of fail-
ures, namely ≈ 20 days for the One-processor platform, ≈ 8
days for Petascale platforms, and ≈ 3.5 days for Exascale
platforms. All relevant parameters are listed in Table 1.

4.3 Generation of failure scenarios
Synthetic failure distributions – To choose failure dis-
tribution parameters that are representative of realistic sys-
tems, we use failure statistics from the Jaguar platform.
Jaguar is said to experience on the order of 1 failure per
day [21, 2]. Assuming a 1-day platform MTBF gives us a
processor MTBF equal to ptotal

365
≈ 125 years, where ptotal =

45, 208 is the number of processors of the Jaguar platform.
To verify that our results are consistent over a range of pro-
cessor MTBF values, we also consider a processor MTBF of
500 years. We then compute the parameters of Exponential
and Weibull distributions so that they lead to this MTBF
value (recall that MTBF = µ + D ≈ µ, where µ is the
mean of the underlying distribution). Namely, for the Ex-
ponential distribution we set λ = 1

MTBF
and for the Weibull

distribution, which requires two parameters k and λ, we set
λ = MTBF/Γ(1 + 1/k). We first fix k = 0.7 based on the
results of [26], and then vary it between 0.15 and 1.0.

Log-based failure distributions – We also consider fail-
ure distributions based on failure logs from production clus-
ters. We used logs for the largest clusters among the pre-
processed logs in the Failure trace archive [17], i.e., for clus-
ters at the Los Alamos National Laboratory [26]. In these
logs, each failure is tagged by the node —and not just the
processor— on which the failure occurred. Among the 26
possible clusters, we opted for the logs of the only two clus-
ters with more than 1,000 nodes. The motivation is that
we need a sample history sufficiently large to simulate plat-
forms with more than ten thousand nodes. The two chosen
logs are for clusters 18 and 19 in the archive (referred to
as 7 and 8 in [26]). For each log, we record the set S of
availability intervals. The discrete failure distribution for
the simulation is generated as follows: the conditional prob-
ability P(X ≥ t | X ≥ τ) that a node stays up for a duration
t, knowing that it has been up for a duration τ , is set to the
ratio of the number of availability durations in S greater
than or equal to t, over the number of availability durations
in S greater than or equal to τ .

Scenario generation – Given a p-processor job, a fail-
ure trace is a set of failure dates for each processor over
a fixed time horizon h. In the one-processor case, h is
set to 1 year. In all the other cases, h is set to 11 years
and the job start time, t0, is assumed to be one-year to
avoid side-effects related to the synchronous initialization of
all nodes/processors. Given the distribution of inter-arrival
times at a processor, for each processor we generate a trace

via independent sampling until the target time horizon is
reached. Finally, for simulations where the only varying
parameter is the number of processors a ≤ p ≤ b, we first
generate traces for b processors. For experiments with p pro-
cessors we then simply select the first p traces. This ensures
that simulation results are coherent when varying p.

The two clusters used for computing our log-based failure
distributions consist of 4-processor nodes. Hence, to simu-
late a 45,208-processor platform we generate 11,302 failure
traces, one for each four-processor node.

5. SIMULATIONS WITH SYNTHETIC
FAILURES

5.1 Single processor jobs
For a single processor, we cannot use a 125-year MTBF,

as a job would have to run for centuries in order to need
a few checkpoints. Hence we study scenarios with smaller
values of the MTBF, from one hour to one week. This study,
while unrealistic, allows us to compare the performance of
DPNextFailure with that of DPMakespan.

5.1.1 Exponential failures
Table 2 shows the average makespan degradation for the

eight heuristics and the two lower bounds, in the case of
exponentially distributed failure inter-arrival times. Un-
surprisingly, LowerBound is significantly better than all
heuristics, especially for a small MTBF. It may seem surpris-
ing that PeriodLB achieves results close to but not equal
to 1. This is because although the expected optimal solu-
tion is periodic, checkpointing with the optimal period is not
always the best strategy for a given random scenario.

A first interesting observation is that the performance by
the well-known Young, DalyLow, and DalyHigh heuris-
tics is indeed close to optimal. While this result seems widely
accepted, we are not aware of previously published simula-
tion studies that have demonstrated it. Looking more closely
at the results [5] we find that, in a large neighborhood of
the optimal period, the performance of periodic policies is
almost independent of the period. This explains that the
Young, DalyLow, and DalyHigh heuristics have near op-
timal performance even if their periods differ.

In Section 2.4, we claimed that DPNextFailure should
provide a reasonable solution to the Makespan problem.
We observe that, at least in the one-processor case, DP-
NextFailure does lead to solutions that are close to those
computed by DPMakespan and to the optimal.

5.1.2 Weibull failures
Table 3 shows results when failure inter-arrival times fol-

low a Weibull distribution (note that the Liu heuristic was
specifically designed to handle Weibull distributions). Un-
like in the exponential case, the optimal checkpoint policy
may be non-periodic [27]. Results in the table show that
all the heuristics lead to results that are close to the opti-
mal. The implication is that, in the one-processor case, one
can safely use Young, DalyLow, and DalyHigh, which
only require the failure MTBF, even for Weibull failures. In
Section 5.2.2 we see that this result does not hold for multi-
processor platforms. Note that, just like in the Exponential
case, DPNextFailure leads to solutions that are close to
those computed by DPMakespan.



MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.62865 0.90714 0.979151
PeriodLB 1.00705 1.01588 1.02298

Young 1.01635 1.01590 1.02332
DalyLow 1.02711 1.01611 1.02338
DalyHigh 1.00700 1.01592 1.02373
Liu 1.01607 1.01655 1.02333
Bouguerra 1.02562 1.02329 1.02685

OptExp 1.00705 1.01611 1.02298
DPNextFailure 1.00785 1.01699 1.02851
DPMakespan 1.00737 1.01655 1.03467

Table 2: Degradation from best for a single proces-
sor with Exponential failures.

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.66417 0.90714 0.97915
PeriodLB 1.00960 1.01588 1.02298

Young 1.00965 1.01590 1.02332
DalyLow 1.01155 1.01611 1.02338
DalyHigh 1.01785 1.01592 1.02373
Liu 1.00914 1.01655 1.02333
Bouguerra 1.02936 1.02329 1.02685

OptExp 1.01788 1.01611 1.02298
DPNextFailure 1.01408 1.01699 1.02851
DPMakespan 1.00731 1.01655 1.03467

Table 3: Degradation from best for a single proces-
sor with Weibull failures.

5.2 Parallel jobs
Section 3.1 defines 3 × 2 combinations of parallelism and

checkpointing overhead models. For our experiments we
have instantiated these models as follows: W(p) is equal to

either W
p

, W
p

+ γW with γ ∈ {10−4, 10−6}, or W
p

+ γW
2/3
√
p

with γ ∈ {0.1, 1, 10}; and C(p) = R(p) = 600 seconds or
C(p) = R(p) = 600× ptotal/p seconds. Due to lack of space,
in this paper we only report results for the embarrassingly
parallel applications (W(p) = W/p) with constant check-
point overhead (C(p) = R(p) = 600 seconds). Results for
all other cases lead to the same conclusions regarding the
relative performance of the various checkpointing strategies.
We refer the reader to [5], which contains the comprehensive
set of results for all combinations of parallelism and check-
pointing overhead models.

5.2.1 Exponential failures
Petascale platforms – Figure 2 shows results for Petascale
platforms. The main observation is that, regardless of the
number of processors p, the Young, DalyLow, DalyHigh
and Liu heuristics compute an almost optimal solution (i.e.,
with degradation below 1.023) indistinguishable from that
of OptExp and PeriodLB. By contrast, the degradation
of Bouguerra is only slightly higher. We see that DP-
NextFailure behaves satisfactorily: its degradation is less
than 4.8‰ worse than that of OptExp for p ≥ 213, and less
than 1.85% worse overall. We also observe that DPNext-
Failure always performs better than DPMakespan. This

is likely due to the false assumption in DPMakespan that
all processors are rejuvenated after each failure. The same
conclusions are reached when the MTBF per processor is
500 years instead of 125 years (see [5]).

Exascale platforms – Results for Exascale platforms, shown
in Figure 3, corroborates the results obtained for Petascale
platforms.

5.2.2 Weibull failures

Petascale platforms – A key contribution of this paper
is the comparison between DPNextFailure and all pre-
viously proposed heuristics for the Makespan problem on
platforms whose failure inter-arrival times follow a Weibull
distribution. Existing heuristics provide good solutions for
sequential jobs (see Section 5.1). Figure 4 shows that this is
no longer the case beyond p = 1, 024 processors as demon-
strated by growing gaps between heuristics and PeriodLB
as p increases. For large platforms, only DPNextFailure is
able to bridge this gap. For example with 45, 208 processors,
Young, DalyLow, and DalyHigh are at least 4.3% worse
than DPNextFailure, the latter being only 0.76% worse
than PeriodLB. These poor results of previously proposed
heuristics are partly due to the fact that the optimal solution
is not periodic. For instance, throughout a complete execu-
tion with 45, 208 processors, DPNextFailure changes the
size of inter-checkpoint intervals from 2, 984 seconds up to
6, 108 seconds. Bouguerra is supposed to handle Weibull
failures but has poor performance because it relies on the
assumption that all processors are rejuvenated after each
failure. Liu, which is specifically designed to handle Weibull
failures, also provides bad results for large platforms2. We
conclude that our dynamic programming approach provides
significant improvements over all previously proposed ap-
proaches for solving the Makespan problem in the case of
large platforms. The same conclusions are reached when
the MTBF per processor is 500 years instead of 125 years
(see [5]).

Number of spare processors necessary – In our simu-
lations, for a job running around 10.5 days on a 45,208 pro-
cessor platform, when using DPNextFailure, on average,
38.0 failures occur during a job execution, with a maximum
of 66 failures. This provides some guidance regarding the
number of spare processors necessary so as not to experi-
ence any job interruption, in this case circa 1‰.

Impact of the shape parameter k – We report results
from experiments in which we vary the shape parameter k of
the Weibull distribution in a view to assessing the sensitivity
of each heuristic to this parameter. Figure 5 shows average
makespan degradation vs. k. We see that, with small values
of k, the degradation is small for DPNextFailure (below
1.040 for k ≥ 0.15) , while it is dramatically larger for all
other heuristics. DPNextFailure achieves the best per-
formance over all heuristics for the range of k values seen
in practice as reported in the literature (between 0.33 and
0.78 [13, 20, 26]). Bouguerra leads to very poor solutions
because it assumes that all processors are rejuvenated after

2On most figures the curve for Liu is incomplete. Liu com-
putes the dates at which the application should be check-
pointed. In several cases the interval between two consecu-
tive dates is smaller than the checkpoint duration, C, which
is nonsensical. In such cases we do not report any result for
Liu and speculate that there may be an error in [20].
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Figure 2: Evaluation of the differ-
ent heuristics on a Petascale plat-
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Figure 3: Evaluation of the differ-
ent heuristics on an Exascale plat-
form with Exponential failures.
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Figure 4: Evaluation of the differ-
ent heuristics on a Petascale plat-
form with Weibull failures.

0.5

1

1.5

2

av
er
ag
e
m
ak
es
p
an

d
eg
ra
d
at
io
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weibull shape parameter (k)

Bouguerra
Liu

DPNextFailure

PeriodLB

OptExp

DalyHigh
DalyLow
Young

LowerBound

Figure 5: Varying the shape pa-
rameter k of the Weibull distri-
bution for a Jaguar-like platform
with 45, 208 processors.

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er
ag
e
m
ak
es
p
an

d
eg
ra
d
at
io
n

DalyHigh
DalyLow
Young

LowerBound

OptExp
Bouguerra

PeriodLB

Liu

DPNextFailure

Figure 6: Evaluation of the dif-
ferent heuristics on an Exascale
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Figure 7: Evaluation of the differ-
ent heuristics on a Petascale plat-
form with failures based on the
failure log of LANL cluster 19.

a failure, which is only acceptable for k close to 1 (i.e., for
nearly Exponential failures) but becomes increasingly harm-
ful as k becomes smaller.

Exascale platforms – Figure 6 presents results for Exas-
cale platforms. The advantage of DPNextFailure over the
other heuristics is even more pronounced than for Petascale
platforms. The average degradation from best of DPNext-
Failure for platforms with between 216 and 220 processors
is less than 1.028, the reference being defined by the inac-
cessible performance of PeriodLB.

6. SIMULATIONS WITH LOG-BASED
FAILURES

To fully assess the performance of DPNextFailure, we
also perform simulations using the failure logs of two produc-
tion clusters, following the methodology explained in Sec-
tion 4.3. We compare DPNextFailure to the Young,
DalyLow, DalyHigh, and OptExp heuristics, adapting
them by pretending that the underlying failure distribution
is Exponential with the same MTBF at the empirical MTBF
computed from the log. The same adaptation cannot be
done for Liu, Bouguerra, and DPMakespan, which are
thus not considered in this section.

Simulation results corresponding to one of the produc-
tion cluster (LANL cluster 19, see Section 4.3) are shown
in Figure 7. For the sake of readability, we do not display
LowerBound as it leads to low values ranging from 0.80 to
0.56 as p increases (which underlines the intrinsic difficulty
of the problem). As before, DalyHigh and OptExp achieve
similar performance. But their performance, alongside that
of DalyLow, is significantly worse than that of Young, es-

pecially for large p. The performance of all these heuristics
is closer to the performance of PeriodLB than in the case
of Weibull failures. The main difference with results for syn-
thetic failures is that the performance of DPNextFailure
is even better than that of PeriodLB. This is because, for
these real-world failure distributions, periodic heuristics are
inherently suboptimal. By contrast, DPNextFailure keeps
adapting the size of the chunks that it attempts to execute.
On a 45,208 processor platform, the processing time (or size)
of the attempted chunks range from as (surprisingly) low as
60 seconds up to 2280 seconds. These values may seem ex-
tremely low, but the platform MTBF in this case is only
1,297 seconds (while R+C=1,200 seconds). This is thus a
very difficult problem instance, but DPNextFailure solves
it satisfactorily. More concretely, DPNextFailure saves
more than 18,000 processor hours when using 45,208 pro-
cessors, and more than 262,000 processor hours using 32,768
processors, compared to PeriodLB.

Simulation results based on the failure log of the other
cluster (cluster 18, see Section 4.3) are similar, and even
more in favor of DPNextFailure (see [5]).

7. RELATED WORK
In [10], Daly studies periodic checkpointing policies on

platforms where failures inter-arrival times are exponentially
distributed. That study accounts for checkpointing and re-
covery overheads (but not for downtimes), and allows fail-
ures to happen during recoveries. Two estimates of the op-
timal period are proposed. The lower order estimate is a
generalization of Young’s approximation [31], which takes
recovery overheads into account. The higher order estimate
is ill-formed as it relies on an equation that sums up non-



independent probabilities (Equation (13) in [10]). That work
was later extended in [15], which studies the impact of sub-
optimal periods on application performance.

In [6], Bouguerra et al. study the optimal checkpointing
policy when failures can occur during checkpointing and re-
covery, with checkpointing and recovery overheads depend-
ing upon the application progress. They show that the
optimal checkpointing policy is periodic when checkpoint-
ing and recovery overheads are constant, and when failure
inter-arrival times follow either an Exponential or a Weibull
distribution. They also give formulas to compute the opti-
mal period in both cases. Their results, however, rely on
the unstated assumption that all processors are rejuvenated
after each failure and after each checkpoint. The dynamic
programming approach in [28] suffers from the same issue.

In [29], the authors claim to use an “optimal checkpoint
restart model [for] Weibull’s and Exponential distributions”
that they have designed in another paper (referenced as [1]
in [29]). However, this latter paper is not available, and we
were unable to compare our work to their solution. However,
as explained in [29] the “optimal” solution in [1] is found
using the assumption that checkpoint is periodic (even for
Weibull failures). In addition, the authors of [29] partially
address the question of the optimal number of processors
for parallel jobs, presenting experiments for four MPI appli-
cations, using a non-optimal policy, and for up to 35 pro-
cessors. Our approach is radically different since we target
large-scale platforms with up to tens of thousands of pro-
cessors and rely on generic application models for deriving
optimal solutions.

In this work, we solve the NextFailure problem to ob-
tain heuristic solutions to the Makespan problem in the
case of parallel jobs. The NextFailure problem has been
studied by many authors in the literature, often for single-
processor jobs. Maximizing the expected work successfully
completed before the first failure is equivalent to minimiz-
ing the expected wasted time before the first failure, which
is itself a classical problem. Some authors propose analyti-
cal resolution using a“checkpointing frequency function”, for
both infinite (see [19, 20]) and finite time horizons (see [23]).
However, these works use approximations, e.g., assuming
that the expected failure occurrence is exactly halfway be-
tween two checkpointing events, which do not hold for gen-
eral failure distributions. Approaches that do not rely on
a checkpointing frequency function are used in [27, 18], but
only for infinite time horizons. Finally, the dynamic pro-
graming approach proposed in [7] can handle variable check-
point costs, but assumes that processors are rejuvenated af-
ter each failure and after each checkpoint.

8. CONCLUSION
We have studied the problem of scheduling checkpoints

for minimizing the makespan of sequential and parallel jobs
on large-scale and failure-prone platforms, which we have
called Makespan. An auxiliary problem, NextFailure,
was introduced as an approximation of Makespan. Both
problems are defined rigorously in general settings. For ex-
ponential distributions, we have provided a complete ana-
lytical solution of Makespan together with an assessment
of the quality of the NextFailure approximation. We have
also designed dynamic programming solutions for both prob-
lems, that can be applied for any failure distribution.

We have obtained a number of key results via simula-
tion experiments. For Exponential failures, our approach al-
lows us to determine the optimal checkpointing policy. For
Weibull failures, we have demonstrated the importance of
using the “single processor rejuvenation” model. With this
model, we have shown that our dynamic programming al-
gorithm leads to significantly more efficient executions than
all previously proposed algorithms with an average decrease
in the application makespan of at least 4.16% for our largest
simulated Petascale platforms, and of at least 23.9% for
our largest simulated Exascale platforms. We have also
considered failures from empirical failure distributions ex-
tracted from failure logs of two production clusters. In
this settings, once again our dynamic programming algo-
rithm leads to significantly more efficient executions than
all previously proposed algorithms. Given that our results
also hold across our various application and checkpoint sce-
narios, we claim that our dynamic programming approach
provides a key step for the effective use of next-generation
large-scale platforms. Furthermore, our dynamic program-
ming approach can be easily extended to settings in which
the checkpoint and restart costs are not constants but de-
pends on the progress of the application execution.

There are several promising avenues for future work. In-
teresting questions relate to computing the optimal number
of processors for executing a parallel job. On a fault-free ma-
chine, we have assumed that the execution time of the job
decreases with the number of enrolled resources, and hence is
minimal when the whole platform is used. In the presence of
failures, this is no longer true (see the companion report [5]
for examples), and the expected makespan may be smaller
when using fewer than ptotal processors. This leads to the
idea of replicating the execution of a given job on say, both
halves of the platform, i.e., with ptotal/2 processors each.
This could be done independently, or better, by synchro-
nizing the execution after each checkpoint. The question of
which is the optimal strategy is open. Another research di-
rection comes from the fact that the (expected) makespan
is not the only worthwhile or relevant objective. Because of
the enormous energy cost incurred by large-scale platforms,
along with environmental concerns, a crucial direction for
future work is the design of checkpointing strategies that
can trade off a longer execution time for a reduced energy
consumption. Finally, it would be interesting to study how
our approach could be adapted to non-coordinated check-
pointing [12] and to multi-level checkpointing [22].

It is reasonable to expect that parallel jobs will be de-
ployed successfully on exascale platforms only by using mul-
tiple techniques together (checkpointing, migration, replica-
tion, self-tolerant algorithms). While checkpointing is only
part of the solution, it is an important part. This paper
has shown the intrinsic difficulty of designing efficient check-
pointing strategies, but it has also given promising results.
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