Marin Bougeret

Pierre-Franc ¸ois Dutot

Klaus Jansen

Christina Robenek

Denis Trystram

Tight approximation for scheduling parallel jobs on identical clusters

We consider the Multiple Cluster Scheduling Problem (M CSP), where the objective is to schedule n parallel rigid jobs on N identical clusters, minimizing the maximum completion time (makespan). M CSP is 2-inapproximable (unless P = N P), and several approximation algorithms have already been proposed. However, ratio 2 has only been reached by algorithms that use extremely costly and complex subroutines as "black boxes" which are polynomial and yet impractical due to prohibitive constants.

Our objective within this work is to determine a reasonable restriction of M CSP where the inapproximability lower bound could be tightened in almost linear time. Thus, we consider a restriction of M CSP where jobs do not require strictly more than half of the processors of a cluster, and we provide a 2-approximation running in O(log(nh max)n(N + log(n))), where h max is the processing time of the longest job. This approximation is the best possible, as this restriction (and even simpler ones) remains 2-inapproximable.

Introduction

Problem statement

In new parallel computing platforms, several clusters share their computing resources in order to distribute the workload. Each cluster is composed of a set of identical processors connected by a local interconnection network. Jobs are submitted in successive packets called batches. The objective is to minimize the time when all the jobs of a batch are completed, to start the following batch as soon as possible. Many such computational systems are available all over the world, and the efficient management of the resources is a crucial problem. Let us start by defining formally the Multiple Cluster Scheduling Problem (M CSP). Definition 1 (M CSP) We are given n parallel rigid jobs J j , 1 ≤ j ≤ n, and N clusters. A job J j requires q j processors during p j units of time, and each cluster owns m identical processors. The objective is to schedule all the jobs in the clusters, minimizing the maximum completion time (makespan) under the following constraints:

1. the q j processors allocated to job J j must belong to the same cluster (as proposed in [START_REF] Dutot | Scheduling on hierarchical clusters using malleable tasks[END_REF])

2. at any time, the total number of processors used in any cluster must be lower or equal to m M CSP is closely related to the Multiple Strip Packing Problem (M SP P) where the objective is to pack n rectangles in N strips, minimizing the maximum reached height. The only difference between these two problems is the "contiguous" constraint. Indeed, in M SP P rectangles must be allocated contiguously, which in terms of job scheduling amounts to force jobs to use consecutive indexes of processors (see Figure 1).

Of course, the results for M CSP generally do not apply to M SP P , as algorithms may schedule jobs in a non con-tiguous way. The converse is also not clear, as ratio of approximation algorithms for M SP P may not be preserved when considering M CSP (optimal value of an M CSP instance may be strictly better than the corresponding one for M SP P). However, as we can notice in Figure 2, many results for M SP P directly apply to M CSP , as the proposed algorithms build contiguous schedules that are compared to non-contiguous optimal solutions.

We refer to the packing context in this paper, so that the solutions can be described using the classical vocabulary of packing problems. Thus, the problem treated in this paper (M CSP) consists in packing n rectangles in N strips of width 1, minimizing the maximum reached height, and without contiguous constraints 1 .

Related Work

As shown in [START_REF] Zhuk | Approximate algorithms to pack rectangles into several strips[END_REF] using a gap reduction from 2 partition, M CSP (and M SP P) are 2-inapproximable in polynomial time unless P = N P, even for N = 2. The main positive results for M CSP are summarized below, in Figure 2

Fast algorithm this paper

Figure 2. Main results

We distinguish the 3-approximation [START_REF] Schwiegelshohn | Online scheduling in grids[END_REF] and the 5 2approximation [START_REF] Bougeret | Approximating the non-contiguous multiple organization packing problem[END_REF] that have a low computational complexity (these algorithms are usable on real size instances) from the 2-approximation [START_REF] Bougeret | Approximation algorithm for multiple strip packing[END_REF] and the 2 + ǫ-approximation [START_REF] Ye | On-Line Multiple-Strip Packing[END_REF].

At a first sight, the best results seem to be the 2approximation in [START_REF] Bougeret | Approximation algorithm for multiple strip packing[END_REF] and the 2 + ǫ-approximation in [START_REF] Ye | On-Line Multiple-Strip Packing[END_REF]. However, the 2-approximation requires using a high running time algorithm when the number of clusters is lower than a huge constant N 0 . Thus, any exponential dependency in N 0 is hidden, and the value of this constant (N 0 ≈ 10 4) makes this algorithm practically impossible to use. Moreover, the 2 + ǫ-approximation requires solving the famous P ||C max problem (which is makespan minimization when scheduling sequential jobs on identical machines) with a ratio 1 + ǫ 2 . Thus, to give a rough idea, applying this technique with ǫ = 1 3 would lead to a Ω(n 36) algorithm, using the PTAS of [START_REF] Hochbaum | Using dual approximation algorithms for scheduling problems theoretical and practical results[END_REF]. 2

Motivations and contributions

As explained above, the two previous results of [START_REF] Bougeret | Approximation algorithm for multiple strip packing[END_REF][START_REF] Ye | On-Line Multiple-Strip Packing[END_REF] require both extremely high running time, and do not provide any insight on M CSP because of these black boxes subroutines. Thus, we followed in [START_REF] Bougeret | Approximating the non-contiguous multiple organization packing problem[END_REF] another approach by looking for fast and direct algorithms for M CSP . Our previous 5 2 -approximation in [START_REF] Bougeret | Approximating the non-contiguous multiple organization packing problem[END_REF] is based on the discarding technique presented in Section 2.2. What we call discarding technique is a classical framework in scheduling problems. The idea is to define properly a set of negligeable items (items are rectangles here), and to prove that it is possible to add these items only at the end of the algorithm without degrading the approximation ratio. Thus, the effort can be focused on the set I ′ of remaining large items, that are generally more structured.

The 5 2 -approximation was obtained through a basic application of this technique (i.e. with a set I ′ containing only really huge rectangles, in this case rectangles whose width is larger than 1 2). As we believe that the discarding technique of Section 2.2 is well suited for M CSP , we apply it again using a more challenging set I ′ . A natural direction would be to improve the 5 2 ratio for M CSP by targeting a fixed ratio ρ < 5 2 . Typically, one could target ρ = 7 3 by defining the small jobs as those whose length is lower than 1 3 (instead of 1 2). However, as the relative performance improvement is getting smaller, and the difficulty of these "ratio tailored" proofs is likely to increase rapidly, we consider here a different approach.

Our objective is to find a reasonable restriction of M CSP where the inapproximability lower bound could be tightened in almost linear time. In this spirit, we study a restriction of M CSP where all rectangles have a width lower than 1 2 , meaning that jobs submitted to the clusters do not require strictly more than half of the processors. We provide for this problem a very fast 2-approximation running in O(log(nh max)n(N + log(n))), where h max is the maximum height of any rectangle. It turns out that this result is the best possible approximation, as this restriction of M CSP (and even simpler ones, where the width of rectangles is lower than 1 c , c ∈ N, c ≥ 2) remains 2inapproximable unless P = N P.

General principles

In this section, we generalize the framework used in the 5 2 -approximation of [START_REF] Bougeret | Approximating the non-contiguous multiple organization packing problem[END_REF]. This framework will be applied in Section 3 to get the 2-approximation.

Preliminaries

Recall that our objective is to (non contiguously) pack a set I of n rectangles r j into N strips of width 1. Rectangle r j has a height h j and a width w j . We denote by s(r j) = w j h j the surface of r j . These notations are extended to W (X), H(X) and S(X) (where X is a set of rectangles), which denote the sum of the widths (resp. heights, surfaces) of rectangles in X.

A layer is a set of rectangles packed one on top of the other in the same strip (as depicted Figure 3). The height of layer Lay is H(Lay), the sum of the height of all the rectangles in Lay. A shelf is a set of rectangles that are packed in the same strip, such as the bottom level of all the rectangles is the same. Even if it is not relevant for the noncontiguous case, we consider for the sake of simplicity that in a shelf, the right side of any rectangle (except the right most one) is adjacent to the left side of the next rectangle in the shelf. Given a shelf sh (sh denotes the set of rectangles in the shelf), the value W (sh) is called the width of sh.

Packing a shelf at level l means that all the rectangles of the shelf have their bottom at level l. A bin is a rectangular area that can be seen as a reserved space in a particular strip for packing rectangles. As the width of a bin is always 1, we define a bin by giving its height h b , its bottom level l b and the index i b of the strip it belongs to. Packing a shelf sh in a bin b means that sh is packed in strip S i b at level l b . Moreover we always guarantee that the height of any rectangle of sh is lower than h b .

The utilization u π i (l) of a packing π in strip S i at level l (sometimes simply denoted by u(l) or u i (l)) is the sum of the width of all the rectangles packed in S i that cut the horizontal line-level l (see Figure 3). Of course we have 0 ≤ u π i (l) ≤ 1 for any l and i. Let us now describe three useful basic procedures. The CreateLayer(X, h) procedure creates a layer Lay (using rectangles of X) of height at most h, using a Best Fit (according to the height) policy (BFH). Thus, CreateLayer(X, h) adds at each step the highest rectangle that fits. Of course, the layer produced by the procedure is such that H(Lay) ≤ h. Moreover, notice that we will always pack the layers in the strips with the narrowest rectangles on the top. CreateShelf (X, w) creates a shelf sh (using rectangles of X) of width at most w, using the Best Fit (according to the width) policy (BFW). Thus, CreateShelf (X, w) adds at each step the widest rectangle that fits. Of course, the shelf produced by the procedure is such that W (sh) ≤ w. Throughout the paper, we consider that the sets of jobs used as parameters in the algorithms are modified after the calls.

Let us now state a standard lemma about the efficiency of the "best fit" policies.

Lemma 2 Let Sh denote the shelf created by

CreateShelf (X, w). If the k widest rectangles of X are added to Sh, then W (Sh) > k k+1 w.

Proof Let x be the cardinality of X. Let us assume that

w i ≥ w i+1 for 1 ≤ i < x. Let i 0 ≥ k + 1 be the first index such that r i0 is not in Sh. Let a = Σ i0-1 i=1 w i . We have W (Sh) ≥ a ≥ (i 0 -1)w i0 > (i 0 -1)(w -a) leading to a > i0-1 i0 w ≥ k k+1 w.

Discarding technique

How to pack all rectangles in three steps

Discarding techniques are common for solving packing and scheduling problem. As mentioned before, the idea is to define properly a set of small items (rectangles here), and to prove that adding these small items only at the end of the algorithm will not degrade the approximation ratio. Thus, the effort can be focused on the remaining large items. In this section we present an adaptation of this general technique to the context of non-contiguous multiple strip packing. Thus, we will define a set of big rectangles I ′ ⊂ I, and the larger the set I ′ , the better the approximation ratio (as the remaining small rectangles become really negligible). In order to partition rectangles according to their height, we use the well-known dual approximation technique [START_REF] Hochbaum | A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach[END_REF].

We denote by v the guess of the optimal value. Given an instance I, let L W D = {w j > α} be the set of wide rectangles, L H = {h j > βv} be the set of high rectangles, and I ′ = L W D ∪ L H be the set of the big rectangles, with 0 < α < 1 and 0 < β < 1. Let r(α, β) = 1 1-α + β be the approximation ratio we target (the origin of this formula will be explained in Section 2.2.2). We also need the following definition. Definition 3 A packing is x-compact if and only if for every strip S i there exists a level l i such that for all l ≤ l i , u i (l) > x and u i restricted to l > l i is non-increasing. Figure 4 provides an example showing a (1-α) compact packing, and why step c) is simple. Indeed, adding as soon as possible a small rectangle r j (h j ≤ βv and w j ≤ α) to a (1α) compact packing cannot exceed v(11-α + β). Let us now describe the three main steps of our approach. Notice that what we call a preallocation is a normal packing (i.e. that defines the bottom level of each rectangle, which is sufficient) that is based on simple structures like shelves and layers. We will prove that to get a r(α, β) = (11-α + β) ratio, it is sufficient to: a) construct a preallocation π 0 of I ′ that fits in r(α, β)v, and such that rectangles of L W D ⊂ I ′ are already packed in a (1α)-compact way b) turn π 0 into a (1-α)-compact packing π 1 by repacking rectangles of I ′ \ L W D using the list algorithm LS π0 of Lemma 4 c) add the small remaining rectangles (I \ I ′) using algorithm LS (see Lemma 5)

l 3 = l 4 l 1 l 2 α ≤ α ≤ βv r j S 1 S 2 S 3 S 4
Step a) is the most difficult one. Thus, Section 3 is entirely devoted to the construction of π 0 (targeting α = 1 3 and β = 1 2). Of course, building the preallocation becomes harder when α and β are small, as the number of rectangles of I ′ increases and r(α, β) decreases. Roughly speaking, the simple shapes of rectangles of I ′ allows us to construct π 0 with a simple structure. We will denote by π i 0 the set of rectangles packed by π 0 in S i .

Proving steps b) and c)

We now prove that applying steps b) and c) leads to a r(α, β) ratio. In this section, we suppose that we are given a guess v, and a packing π 0 (called the preallocation) of I ′ = L W D ∪ L H that fits in r(α, β)v, and such that rectangles of L W D ⊂ I ′ are already packed in a (1α)-compact way. We consider step b): how to turn π 0 into a (1α)compact packing.

Lemma 4 (Step b)) Let π 0 be the preallocation of

I ′ con- structed in Step a). Let π 1 = π 0 ∩ L W D denote π 0 when keeping only rectangles of L W D . Recall that π 1 is already a (1 -α)-compact packing of rectangles of L W D .
Then, we can complete π 1 into a (1α)-compact packing π 1 of I ′ , such that the height of π 1 is lower or equal to the height of π 0 .

Proof Let us define the LS π0 algorithm that adds rectangles of I ′ \ L W D . Let us consider a single strip S i . Let π i 0 denote π 0 restricted to S i , and π i 1 denote π 1 restricted to S i . Let X = {r 1 , . . . , r p } be the set of preallocated rectangles of I ′ \ L W D that we have to add to S i . We assume that lvl(j) ≤ lvl(j + 1), where lvl(j) is the bottom level of r j in π 0 .

For our considered strip S i , the LS π0 algorithm executes AddAsap(r j , π i 1), for 1 ≤ j ≤ p, where AddAsap(r, π i 1) adds rectangle r to π 1 (in S i) at the smallest possible level. Notice first that adding with AddAsap a rectangle r j with w j ≤ α to a (1α)-compact packing creates another (1α)-compact packing. Thus it is clear that π 1 is (1α)compact.

For any 1 ≤ j ≤ p, let (π i 1 , j) denote the packing in S i just before adding r j with AddAsap, and let (π i 0 , j) denote the packing π i 0 ∩ (L W D ∪ {r 1 , . . . , r j-1 }). Let us prove by induction on j ∈ {1, . . . , p} that u (π i 1 ,j) (l) ≤ u (π i 0 ,j) (l), for any l ≥ lvl(j). The definition of π 1 implies the property for j = 1 (packings are identical). Let us suppose that the property holds for j, and prove it for j + 1. Let l ≥ lvl(j + 1). The induction property for rank j implies that r j is added by AddAsap at a level lower or equal to lvl(j). Thus, if r j intersects l in (π i 1 , j + 1), then it also occurs in (π i 0 , j + 1). Thus in this case we have

u (π i 1 ,j+1) (l) = u (π i 1 ,j) (l) + w j ≤ u (π i 0 ,j) (l) + w j = u (π i 0 ,j+1) (l) If r j does not intersect l in (π i 1 , j), then clearly u (π i 1 ,j+1) (l) = u (π i 1 ,j) (l) ≤ u (π i 0 ,j) (l) ≤ u (π i 0 ,j+1) (l)
Thus we proved that for any 1 ≤ j ≤ p we have u (π i 1 ,j) (l) ≤ u (π i 0 ,j) (l) for any l ≥ lvl(j), implying that every r j is added by AddAsap at a level lower or equal to lvl(j). Thus, the height of π 1 is lower or equal to the height of π 0

We now prove in Lemma 5 that after adding rectangles in step c), the height of the packing does not exceed r(α, β)v = (11-α + β)v. This explains why the height of the pre-allocation should also be bounded by r(α, β)v.

Lemma 5 (Step c))

Let π 1 be a (1-α)-compact packing of I ′ . Adding to π 1 rectangles of I \ I ′ with a List Scheduling algorithm (LS) leads to a packing π having height lower than max(height(π 1), v(11-α + β)).

Proof The LS algorithm scans all the strips from level 0, and at any level adds any rectangle of I \ I ′ that fits. Notice that the final packing π is (1α)-compact, since we add rectangles r j with w j ≤ α to an (1α)-compact packing.

Let us assume that the height of π is due to a rectangle r j ∈ I \ I ′ that starts at level s. This implies that when packing r j we had l i ≥ s for any strip i (with l i defined as in Definition 3). According to this definition we have u i (l) > 1α for any l ≤ l i . Thus, we have

S(I) > N i=1 l i (1 -α) ≥ N (1 -α)s, implying that s < v 1
1-α , and thus that of height of π is lower or equal to s + max j∈I\I ′ h j ≤ v(11-α + β).

Thus, we now apply this framework with α = 1 3 and β = 1 2 to get a 2-approximation.

2-approximation

Hardness

As explained before, the 2 + ǫ-approximation in [10] and the 2-approximation we recently proposed in [START_REF] Bougeret | Approximation algorithm for multiple strip packing[END_REF] are rather complexity results than practical algorithms. We aim at constructing a low cost algorithm that could be used in a practical context. Thus, we are considering a restriction of M CSP where the inapproximability bound could be tightened with a fast algorithm, and we consider that all the rectangles have a width lower or equal to 1 /2.

Theorem 6

The M CSP where every rectangle has a width lower (or equal) to 1 2 has no polynomial algorithm with a ratio strictly better than 2, unless P = N P . Proof As in [START_REF] Zhuk | Approximate algorithms to pack rectangles into several strips[END_REF] for the general version, we construct a gap reduction from 2-partition. Let {x 1 , . . . , x n } ⊂ N n and a such that n i=1 = 2a. Without loss of generality, let us assume that for any i, x i < a. In order to only have items with size at least two, we define x ′ i = 2x i for any i, and a ′ = 2a. We construct the following instance I MSP : N = 2 strips, each of size 2a ′ -1. The set of rectangles is {r 1 , . . . , r n , r n+1 , r n+2 }, with w i = x ′ i for 1 ≤ i ≤ n, w n+1 = w n+2 = a ′ -1, and h i = 1 for 1 ≤ i ≤ n + 2. We have w i ≤ 2a ′ -1 2 for any i, as all the x i are strictly lower than a. Notice than any solution of I MSP that packs r n+1 and r n+2 is the same strip has a height of at least 2, as the available width of size 1 in that strip cannot be used by any rectangle.

Obviously, if there is a 2-partition, then Opt(I MSP) = 1. Otherwise, as r n+1 and r n+2 cannot be packed together, we have Opt(I MSP) = 2

The previous proof can easily be adapted for any non-trivial restriction on the size of the widest rectangle. Therefore, the fast 2-approximation presented in this section is the best possible result, even for more restricted versions of the MCSP.

Decomposition

We follow the ideas presented in Section 2, and thus we re-use the notion of layer, shelf, bin, and the procedures named CreateLayer and CreateShelf.

Again, we use the dual approximation technique [START_REF] Hochbaum | A polynomial approximation scheme for scheduling on uniform processors: Using the dual approximation approach[END_REF], and we denote by v the guess of the optimal value. Conforming to the dual approximation technique, we will prove that either we pack I with a resulting height lower than 2v, or v < Opt. Then, we will perform a binary search on v to turn the dual approximation algorithm into a classical approximation algorithm. Notice that for the sake of simplicity we did not add the "reject" instructions in the algorithm. Thus we consider in all the proof that v ≥ Opt, and it is implicit that if one of the claimed properties is wrong during the execution, the considered v should be rejected.

Recall that all rectangles have w j ≤ 1 2 . Let us define the following sets:

• let L W D = {r j |w j > 1 /3} be the set of wide rectangles

• let L XH = {r j |h j > 2v /3} be the set of very high rectangles

• let L H = {r j | 2v /3 ≥ h j > v /2}
be the set of high rectangles

• let L B = (L XH ∪ L H) ∩ L W D
be the set of huge rectangles, and b = Card(L B).

• let I ′ = L W D ∪ L XH ∪ L H
Notice that we only consider the values v such that

W (L XH ∪ L H) ≤ N and H(L W D) ≤ 2N v.
As expected, the set I ′ corresponds in our framework to the set of big rectangles for α = 1 3 and β = 1 2 . The construction of the preallocation π 0 of I ′ is presented from Section 3.3 to 3.5. The final steps to turn π 0 into a 2 3compact packing π 1 and to turn π 1 into the final packing π are quickly described in Section 3.6, as they follow the steps presented in Section 2.2.

We now provide a two phases algorithm that builds the preallocation π 0 of the rectangles of I ′ . Phase 1 (Section 3.3) preallocates rectangles of L W D , and phase 2 (Section 3.5) preallocates rectangles of L H ∪ L XH .

Phase 1

Phase 1 packs the rectangles of L W D by calling for each strip (until L W D is empty) two times CreateLayer(L W D , 2v). Let us denote by Lay 2i-1 and Lay 2i the layers created in strip S i . Let us say that Lay 2i-1 is packed left justified, and Lay 2i is packed right justified. Moreover, each layer is repacked in non increasing order of the widths, such that the narrowest rectangles are packed on the top.

Let N 1 denote the number of strips used in phase 1, and let i 1 denote the index of the last created layer (Lay i1 is of course in S N1). Let L 1 H and L 1 XH denote the set of remaining rectangles after phase 1 of L H and L XH , respectively. Thus, for the moment we have

π i 0 = Lay 2i ∪ Lay 2i-1 for all i ≤ N 1 . Lemma 7 If ∃i 0 < i 1 such that H(Lay i0) ≤ 3v 2 then it is straightforward to preallocate I ′ . Proof Let i 0 < i 1 such that H(Lay i0) ≤ 3v
2 . This implies that we ran out of rectangles of L W D \ (L H ∪ L XH) while creating layer i 0 . Thus, because of the BF H order there are at least two rectangles of L B in every layer Lay i , for 1 ≤ i < i 1 , implying that the width of high and very high rectangles packed in each of these layers is strictly larger than 2 /3. Thus, W (π i 0 ∩ (L H ∪ L XH)) > 4/3 > 1 for 1 ≤ i < N 1 . Thus, the total width of remaining high and very high rectangles is lower than N -(N 1 -1).

Let us prove that we can pack all the remaining rectangles of I ′ (which are included in (L H ∪ L XH)) in the remaining strips. For each i ∈ [|N 1 + 1, N |] we create two shelves in S i (one at level 0 and one at level v). If there are still some unpacked rectangles, then all the shelves are "full", that is the width of each shelf is larger than 2 /3 (as all the width of any rectangle of L H ∪ L XH is lower than 1/3). Thus, we have

W (π i 0 ∩ (L H ∪ L XH)) > 4 /3 > 1 (for N 1 + 1 ≤ i ≤ N).
This implies that the total width of remaining rectangles of L H ∪ L XH (including those in strip S N1) is now lower than 1. Thus, we can pack all of them in one shelf in S N1 .

From now we assume that H(Lay i) > 3w 2 for all i < i 1 . This implies that S(

π i 0) > v for i < N 1 . Moreover, we have 2N v ≥ H(L W D) ≥ N1-1 i=1 H(π i 0 ∩ L W D) > (N 1 - 1)2(3v /2), implying N 1 < 2 3 N + 1. It remains now to pack L 1 H ∪ L 1 XH . Notice that (L 1 H ∪ L 1 XH) ∩ L W D = ∅ (we say that (L 1 H ∪ L 1 XH
) contains purely high and very high rectangles).

Packing high and very high rectangles

Preliminaries

Let N 2 = N -N 1 denote the number of free strips after phase 1. Roughly speaking, phase 2 packs shelves of high or very high rectangles in each of the N 2 last strips and merges some high or very high rectangles with the ones packed in strip N 1 (using the M erge procedure).

In this section we present a technique to fill γ empty strips with high or very high rectangles. In the Section 3.5, we use this technique for γ = N 2 (using strips S N1+1 . . . S N) and an additional merging algorithm (that fills efficiently strip S N1) to pack L 1 H ∪ L 1 XH . Let us now introduce the procedure GreedyPack(X, seq). Given an ordered sequence of bins seq, GreedyP ack creates for each empty bin b ∈ seq a shelf of rectangles of X using CreateShelf (X, 1) and packs it into b (an example of a shelf packed in a bin is depicted Figure 3, Page 3). This procedure returns the last bin in which a shelf has been created, or null if no shelf is created. Notice that we will always use sequence of bins that have always width 1, and the same height h b such that max rx∈X h x ≤ h b .

We now define the two sequences of bins seq XH and seq H that will be used by GreedyP ack. Every bin of seq XH (resp. seq H) will (possibly) contain one shelf of rectangles of L XH (resp. L H). Notice that in a free strip it is possible to pack two bins of height v (width of bins is always 1), three bins of height 2v /3, or one bin of size v and one bin of size 2v /3. Thus, seq XH is composed of 2γ bins (b 1 , . . . , b 2γ) of height v, considering that we created two bins of height one in each of the strips S 1 , . . . S γ . More precisely, for all i we locate b 2i-1 and b 2i in S i , with b 2i-x at level v(1x) for x ∈ {0, 1}. The sequence seq H is composed of 3γ bins (b ′ 1 , . . . , b ′ 3γ) of height 2v /3, considering that we created three bins in each of the strips S γ , . . . S 1 .

It means that for all

i ≥ 1, bins b ′ 3i-2 , b ′ 3i-1 and b ′ 3i are lo- cated in S γ-i+1 , with b ′ 3i-x at level 2xv 3 for x ∈ [|0, 2|
]. This sequences of bins will be used in Lemma 9, and later in phase 2.

Finally, let us define the Add(X, S i last) procedure that packs the set of rectangles X ⊂ L H \ L W D in S i last . As one can see in Lemma 9, S i last is the last strip where Greedypack created a shelf. Thus, we assume for the moment that S i last may only contain two different shapes of packing, and define the Add procedure accordingly.

In the first case S i last contains a first "full" shelf (full means that the surface of the shelf is at least v /2) of rectangles of L XH at level 0, and a shelf sh of rectangles of L XH packed at level v, right justified. In this case, Add creates a shelf sh 1 using CreateShelf (X, 1 -W (sh)) and preallocate sh 1 at level v, left justified. In the second case (see Figure 5), S i last contains only a shelf of rectangles of L XH packed at level 0, right justified. In this case, Add first moves some rectangles from sh to a new shelf sh until W (sh) ≤ 2 /3. Then, Add packs (right justified) the widest of these two shelves (denoted by sh A) at level 0, and the other one (denoted by sh B) at level v. Finally, Add creates two shelves sh 1 and sh 2 using CreateShelf (X, 1 -W (sh A)) and one shelf sh 3 using CreateShelf (X, 1 -W (sh B)). Then, sh i is packed at level 2v(i-1) 3 , left justified. Notice that stacking shelves sh 1 , sh 2 , sh 3 does not exceed 2v.

We end these preliminaries with the following Lemma about the efficiency of Add. Lemma 8 Let X ⊂ L H \ L W D and S i be a strip packed as expected for Add(X, S i). Let π i 0 denote the rectangles packed in S i before the call Add(X, S i). If X = ∅ after calling the procedure, then S(π i 0 ∪ X) > v.

Proof Remember that two cases are possible according to what is already packed in S i before the call. Let us first suppose that there is one full shelf (of area strictly larger than v /2) of very high rectangles (at level 0) and another shelf sh of very high rectangles at level v. Then, X = ∅ after the call implies that W (X) > -W (sh), and we have S(

π i 0 ∪ X) > v 2 + W (sh) 2v 3 + W (X) v 2 > v.
Let us now suppose that S i contains only one shelf sh of L XH at level 0. Let sh A , sh B , sh 1 , sh 2 , sh 3 be defined as described in the Add procedure. As W (sh A) ≤ 2 3 (W (sh b) ≤ 2 3 is also true), and X ∩ L W D = ∅, sh 1 and sh 2 contain at least one rectangle, implying that W (sh 1) and W (sh 2) are strictly larger than 1-W (shA) 2 according to Lemma 2. Moreover, X = ∅ after the call implies that after creating sh 1 and sh 2 the total width of remaining rectangles of X was strictly larger than 1 -W (sh B). Putting this together, we get S(π

i 0 ∪ X) > (1 -W (sh A)) v 2 + (1 - W (sh B)) v 2 + (W (sh A) + W (sh B)) 2v 3 > v.

Filling γ empty strips with high and very high rectangles

The next lemma shows how to fill γ free strips.

Lemma 9 Let L XH ⊂ L XH \ L W D and L H ⊂ L H \ L W D
be two sets of rectangles that we have to pack. Suppose that we execute the following calls:

1. last = GreedyP ack(L XH , seq XH) 2. GreedyP ack(L H , seq H) 3. Add(L H , S i last)
where S i last denotes the strip containing the bin "last".

Then, we get the following properties:

• If L XH = ∅ after 1, then S(L XH) > (γ + 1 6)v • Otherwise, if L H = ∅ after 3, then S(L XH ∪ L H) > γv.
Remark 10 Let X such that X ∩ L W D = ∅ and let sh denote a shelf created by CreateShelf (X, 1), supposing that we did not run out of rectangle while creating the shelf. Then, according to Lemma 2, as at least three rectangles fit we have W (sh) >

i ∈ [|1, i last -1|], S(π i 0 ∩ (L XH ∪ L H)) > 2 v 2 = v. For all i ∈ [|i last + 1, γ|], S(π i 0 ∩ (L XH ∪ L H)) > 3 3v 8 > v. According to Lemma 8, L H = ∅ implies S(π i last 0 ∩ L H) > v. Thus, we get that S(L XH ∪ L H) > γv.

Phase 2

In phase 1 we preallocated L W D in strips S 1 , . . . , S N1 . Recall that each layer created in phase 1 is sorted with the narrowest rectangles on the top. It remains now to preallocate L 1 XH ∪ L 1 H in S N1 , . . . , S N .

Theorem 11 It is possible to preallocate L 1 XH ∪ L 1 H in S N1 , . . . , S N with a resulting height lower than 2v. Thus, our algorithm is a 2-approximation.

Proof Due to lack of space, we only sketch the proof of the theorem here and refer the reader to [START_REF] Bougeret | Tight approximation for scheduling parallel jobs on identical clusters[END_REF] for the complete case analysis.

An example of the final packing is depicted Figure 6. Phase 1 optimally filled the (N 1 -1) first strips using rectangles of L W D . Phase 2 optimally filled strips N 1 + 1 to i last -1 using two shelves of very high rectangles in each strip, and optimally filled strips i last + 1 to N using three shelves of high rectangles in each strip. Strips N 1 and i last will be carefully filled according to a case by case analysis. According to Section 3.3, we know that the area packed in the N 1 -1 first strips is greater than (N 1 -1)v. The general idea is to pack L 1 XH ∪ L 1 H is to call GreedyP ack (see Lemma 9) on strips S N1+1 , . . . , S N . If L 1

XH and L 1 H are entirely packed by GreedyP ack, then all the rectangles are packed in 2v. Otherwise, we can use Lemma 9 to claim that, S(L 1 XH ∪ L 1 H) > (N -N 1)v (or (N -N 1 + 1 6)v), and the remaining rectangles are packed by carefully studying what was packed in S N1 by phase 1. Thus, we finish the proof using a case distinction according to the shape of the preallocation in S N1 .

Concluding remarks

According to the main steps defined in Section 2.2, the previous 2 phases algorithm that preallocates I ′ is sufficient to get a 2-approximation. Indeed, we simply add rectangles of I \ I ′ using list algorithms defined in Section 2.2.

Let us now sketch the analysis of the running time of the preallocation algorithm. Phase 1 and Phase 2 run in O(n log(n) + N n) as for each strip creating a layer or a shelf can be done in O(n) (by sorting wide rectangles according to their heights before phase 1, and sorting high rectangles according to their widths before phase 2). The list scheduling algorithms of Section 2.2.2 that turn π 0 into the final packing can be implemented in O(n log(n)) by using a global list (i.e. that refers to the N strips) of currently "scheduled" rectangles, instead of scanning level by level and strip by strip (which is in O(N n log(n))).

Finally, taking into account the repetitions due to the binary search on v (where 0 ≤ v ≤ nh max), the overall algorithm runs in O(log(nh max)n(N + log(n))).

Figure 1 .

 1 Figure 1. Example for 9 jobs and 2 clusters of a feasible solution for M CSP and not feasible for M SP P .

= w 1 + w 2 Figure 3 .

 23 Figure 3. Example of a layer, a shelf, a bin and of the utilization function. sh is packed in b.

Figure 4 .

 4 Figure 4. (1α) compact packing

Figure 5 .

 5 Figure 5. Example of the add procedure.

Figure 6 .

 6 Figure 6. Example of a preallocation.

 .

	Problem Ratio Remarks		Source
	M CSP ,	2ρ	Need solving P ||C max	[10]
	M SP P		with a ratio ρ	
	M CSP	5/2	Fast algorithm		[3]
	M CSP ,	2	Need applying the PTAS	[2]
	M SP P		of [1] for a constant (≈
			10 4) number of clusters
	M CSP ,	AFPTAS	Additive constant in	[2]
	M SP P		O(1 ǫ 2), and in O(1) for large values of N
	M CSP	3	Fast (and decentralized)	[9]
			algorithm	handling
			clusters of different size
	M CSP	2	Requires max j w j ≤ 1 2

 Proof [Proof oflemma 9] Let us first suppose that L XH = ∅ after step 1. It implies that after creating the first 2γ -1 shelves of width at least 3 /4 (according to Remark 10), the total remaining width of rectangles of L XH was strictly larger than 1. Thus, S(L XH) > Let us now suppose that L XH = ∅ and L H = ∅ after step 3. Let sh denote the shelf of rectangles of L XH contained in bin last. Remind that i last is the index of the strip containing last. For all

	(γ + 1 6)v.	3 4 (2γ-1) 2v 3 + 2v 3 =

3

/4 . Moreover, if X ⊂ L XH then S(sh) > v /2, and if X ⊂ L H then S(sh) > 3v /8.

Therefore, when trying to pack a rectangle of width w j at level l of a strip, we only need to check if the occupation at level l is lower than 1w j .

Even if some recent advances in the PTAS design for P ||Cmax allowed to decrease the asymptotic depedencies in 1 ǫ (like 2 O(1 ǫ 2

log 3 (1 ǫ)))in[START_REF] Jansen | An EPTAS for scheduling jobs on uniform processors: using an MILP relaxation with a constant number of integral variables[END_REF], the running time of these algorithms remain high due to constants.