
HAL Id: hal-00738499
https://hal.science/hal-00738499v1

Submitted on 4 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tight approximation for scheduling parallel jobs on
identical clusters

Marin Bougeret, Pierre-Francois Dutot, Klaus Jansen, Christina Robenek,
Denis Trystram

To cite this version:
Marin Bougeret, Pierre-Francois Dutot, Klaus Jansen, Christina Robenek, Denis Trystram. Tight ap-
proximation for scheduling parallel jobs on identical clusters. IPDPSW: International Parallel and Dis-
tributed Processing Symposim, May 2012, Shangai, China. pp.878-885, �10.1109/IPDPSW.2012.108�.
�hal-00738499�

https://hal.science/hal-00738499v1
https://hal.archives-ouvertes.fr

Tight approximation for scheduling parallel jobs on identical clusters

Marin Bougeret∗, Pierre-François Dutot†, Klaus Jansen‡,

Christina Robenek,‡Denis Trystram†¶

Abstract

We consider the Multiple Cluster Scheduling Problem

(MCSP), where the objective is to schedule n parallel

rigid jobs onN identical clusters, minimizing the maximum

completion time (makespan). MCSP is 2-inapproximable
(unless P = NP), and several approximation algorithms

have already been proposed. However, ratio 2 has only

been reached by algorithms that use extremely costly and

complex subroutines as ”black boxes” which are polyno-

mial and yet impractical due to prohibitive constants.

Our objective within this work is to determine a rea-

sonable restriction of MCSP where the inapproximabil-

ity lower bound could be tightened in almost linear time.

Thus, we consider a restriction of MCSP where jobs do

not require strictly more than half of the processors of

a cluster, and we provide a 2-approximation running in

O(log(nhmax)n(N +log(n))), where hmax is the process-

ing time of the longest job. This approximation is the best

possible, as this restriction (and even simpler ones) remains

2-inapproximable.

1 Introduction

1.1 Problem statement

In new parallel computing platforms, several clusters

share their computing resources in order to distribute the

workload. Each cluster is composed of a set of identical

processors connected by a local interconnection network.

Jobs are submitted in successive packets called batches. The

objective is to minimize the time when all the jobs of a batch

are completed, to start the following batch as soon as possi-

ble. Many such computational systems are available all over

the world, and the efficient management of the resources is

a crucial problem. Let us start by defining formally theMul-

tiple Cluster Scheduling Problem (MCSP).

∗LIRMM, Montpellier
‡Department of Computer Science, University Kiel, Germany
†Grenoble University
¶Institut Universitaire de France

qj (or wj)

(or hj)

pj

J1

Figure 1. Example for 9 jobs and 2 clusters of

a feasible solution forMCSP and not feasible

for MSPP .

Definition 1 (MCSP) We are given n parallel rigid jobs

Jj , 1 ≤ j ≤ n, and N clusters. A job Jj requires qj pro-

cessors during pj units of time, and each cluster owns m
identical processors. The objective is to schedule all the

jobs in the clusters, minimizing the maximum completion

time (makespan) under the following constraints:

1. the qj processors allocated to job Jj must belong to

the same cluster (as proposed in [5])

2. at any time, the total number of processors used in any

cluster must be lower or equal tom

MCSP is closely related to the Multiple Strip Pack-

ing Problem (MSPP) where the objective is to pack n
rectangles in N strips, minimizing the maximum reached

height. The only difference between these two problems

is the ”contiguous” constraint. Indeed, in MSPP rectan-

gles must be allocated contiguously, which in terms of job

scheduling amounts to force jobs to use consecutive indexes

of processors (see Figure 1).

Of course, the results forMCSP generally do not apply

to MSPP , as algorithms may schedule jobs in a non con-

1

tiguous way. The converse is also not clear, as ratio of ap-

proximation algorithms for MSPP may not be preserved

when consideringMCSP (optimal value of anMCSP in-

stance may be strictly better than the corresponding one for

MSPP). However, as we can notice in Figure 2, many re-

sults forMSPP directly apply toMCSP , as the proposed

algorithms build contiguous schedules that are compared to

non-contiguous optimal solutions.

We refer to the packing context in this paper, so that the

solutions can be described using the classical vocabulary

of packing problems. Thus, the problem treated in this pa-

per (MCSP) consists in packing n rectangles in N strips

of width 1, minimizing the maximum reached height, and

without contiguous constraints1.

1.2 Related Work

As shown in [11] using a gap reduction from 2 partition,
MCSP (andMSPP) are 2-inapproximable in polynomial

time unless P = NP , even for N = 2. The main positive

results forMCSP are summarized below, in Figure 2.

Problem Ratio Remarks Source

MCSP ,

MSPP
2ρ Need solving P ||Cmax

with a ratio ρ
[10]

MCSP 5/2 Fast algorithm [3]

MCSP ,

MSPP
2 Need applying the PTAS

of [1] for a constant (≈
104) number of clusters

[2]

MCSP ,

MSPP
AFPTAS Additive constant in

O(1
ǫ2
), and in O(1) for

large values of N

[2]

MCSP 3 Fast (and decentralized)

algorithm handling

clusters of different size

[9]

MCSP 2 Requiresmaxj wj ≤
1
2

Fast algorithm

this paper

Figure 2. Main results

We distinguish the 3-approximation [9] and the 5
2 -

approximation [3] that have a low computational complex-

ity (these algorithms are usable on real size instances) from

the 2-approximation [2] and the 2 + ǫ-approximation [10].

At a first sight, the best results seem to be the 2-
approximation in [2] and the 2 + ǫ-approximation in [10].

However, the 2-approximation requires using a high run-

ning time algorithm when the number of clusters is lower

than a huge constantN0. Thus, any exponential dependency

in N0 is hidden, and the value of this constant (N0 ≈ 104)

1Therefore, when trying to pack a rectangle of width wj at level l of

a strip, we only need to check if the occupation at level l is lower than

1−wj .

makes this algorithm practically impossible to use. More-

over, the 2 + ǫ-approximation requires solving the famous

P ||Cmax problem (which is makespan minimization when

scheduling sequential jobs on identical machines) with a ra-

tio 1 + ǫ
2 . Thus, to give a rough idea, applying this tech-

nique with ǫ = 1
3 would lead to a Ω(n36) algorithm, using

the PTAS of [6]. 2

1.3 Motivations and contributions

As explained above, the two previous results of [2, 10]

require both extremely high running time, and do not pro-

vide any insight on MCSP because of these black boxes

subroutines. Thus, we followed in [3] another approach

by looking for fast and direct algorithms for MCSP . Our

previous 5
2 -approximation in [3] is based on the discarding

technique presented in Section 2.2. What we call discard-

ing technique is a classical framework in scheduling prob-

lems. The idea is to define properly a set of negligeable

items (items are rectangles here), and to prove that it is pos-

sible to add these items only at the end of the algorithm

without degrading the approximation ratio. Thus, the effort

can be focused on the set I ′ of remaining large items, that

are generally more structured.

The 5
2 -approximation was obtained through a basic ap-

plication of this technique (i.e. with a set I ′ containing only
really huge rectangles, in this case rectangles whose width

is larger than 1
2). As we believe that the discarding tech-

nique of Section 2.2 is well suited for MCSP , we apply it

again using a more challenging set I ′. A natural direction

would be to improve the 5
2 ratio for MCSP by targeting

a fixed ratio ρ < 5
2 . Typically, one could target ρ = 7

3 by

defining the small jobs as those whose length is lower than
1
3 (instead of 1

2). However, as the relative performance im-

provement is getting smaller, and the difficulty of these ”ra-

tio tailored” proofs is likely to increase rapidly, we consider

here a different approach.

Our objective is to find a reasonable restriction of

MCSP where the inapproximability lower bound could be

tightened in almost linear time. In this spirit, we study a

restriction of MCSP where all rectangles have a width

lower than 1
2 , meaning that jobs submitted to the clusters

do not require strictly more than half of the processors. We

provide for this problem a very fast 2-approximation run-

ning in O(log(nhmax)n(N + log(n))), where hmax is the

maximum height of any rectangle. It turns out that this

result is the best possible approximation, as this restric-

tion of MCSP (and even simpler ones, where the width

of rectangles is lower than 1
c
, c ∈ N, c ≥ 2) remains 2-

inapproximable unless P = NP .

2Even if some recent advances in the PTAS design for P ||Cmax al-

lowed to decrease the asymptotic depedencies in 1
ǫ
(like 2

O(1

ǫ2
log3(1

ǫ
))
)

in [8], the running time of these algorithms remain high due to constants.

2

2 General principles

In this section, we generalize the framework used in the
5
2 -approximation of [3]. This framework will be applied in

Section 3 to get the 2-approximation.

2.1 Preliminaries

Recall that our objective is to (non contiguously) pack a

set I of n rectangles rj into N strips of width 1. Rectangle
rj has a height hj and a width wj . We denote by s(rj) =
wjhj the surface of rj . These notations are extended to

W (X), H(X) and S(X) (where X is a set of rectangles),

which denote the sum of the widths (resp. heights, surfaces)

of rectangles inX .

A layer is a set of rectangles packed one on top of the

other in the same strip (as depicted Figure 3). The height

of layer Lay is H(Lay), the sum of the height of all the

rectangles in Lay. A shelf is a set of rectangles that are

packed in the same strip, such as the bottom level of all the

rectangles is the same. Even if it is not relevant for the non-

contiguous case, we consider for the sake of simplicity that

in a shelf, the right side of any rectangle (except the right

most one) is adjacent to the left side of the next rectangle in

the shelf. Given a shelf sh (sh denotes the set of rectangles

in the shelf), the value W (sh) is called the width of sh.
Packing a shelf at level l means that all the rectangles of

the shelf have their bottom at level l. A bin is a rectangular

area that can be seen as a reserved space in a particular strip

for packing rectangles. As the width of a bin is always 1,
we define a bin by giving its height hb, its bottom level lb
and the index ib of the strip it belongs to. Packing a shelf

sh in a bin b means that sh is packed in strip Sib at level

lb. Moreover we always guarantee that the height of any

rectangle of sh is lower than hb.

The utilization uπ
i (l) of a packing π in strip Si at level

l (sometimes simply denoted by u(l) or ui(l)) is the sum

of the width of all the rectangles packed in Si that cut the

horizontal line-level l (see Figure 3). Of course we have

0 ≤ uπ
i (l) ≤ 1 for any l and i.

Let us now describe three useful basic procedures.

The CreateLayer(X,h) procedure creates a layer Lay
(using rectangles of X) of height at most h, using a

Best Fit (according to the height) policy (BFH). Thus,

CreateLayer(X,h) adds at each step the highest rectan-

gle that fits. Of course, the layer produced by the proce-

dure is such that H(Lay) ≤ h. Moreover, notice that we

will always pack the layers in the strips with the narrow-

est rectangles on the top. CreateShelf(X,w) creates a

shelf sh (using rectangles of X) of width at most w, using
the Best Fit (according to the width) policy (BFW). Thus,

CreateShelf(X,w) adds at each step the widest rectangle
that fits. Of course, the shelf produced by the procedure is

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

����������

��
��
��
��

hb

lb

W (sh)

b (bin)sh

lay

H(lay)

r2
r1

l
u(l) = w1 + w2

Figure 3. Example of a layer, a shelf, a bin and

of the utilization function. sh is packed in b.

such that W (sh) ≤ w. Throughout the paper, we consider
that the sets of jobs used as parameters in the algorithms are

modified after the calls.

Let us now state a standard lemma about the efficiency

of the “best fit” policies.

Lemma 2 Let Sh denote the shelf created by

CreateShelf(X,w). If the k widest rectangles of X
are added to Sh, thenW (Sh) > k

k+1w.

Proof Let x be the cardinality of X . Let us assume that

wi ≥ wi+1 for 1 ≤ i < x. Let i0 ≥ k + 1 be the first index

such that ri0 is not in Sh. Let a = Σi0−1
i=1 wi. We have

W (Sh) ≥ a ≥ (i0 − 1)wi0 > (i0 − 1)(w − a) leading to

a > i0−1
i0

w ≥ k
k+1w. �

2.2 Discarding technique

2.2.1 How to pack all rectangles in three steps

Discarding techniques are common for solving packing and

scheduling problem. As mentioned before, the idea is to de-

fine properly a set of small items (rectangles here), and to

prove that adding these small items only at the end of the al-

gorithm will not degrade the approximation ratio. Thus, the

effort can be focused on the remaining large items. In this

section we present an adaptation of this general technique to

the context of non-contiguousmultiple strip packing. Thus,

we will define a set of big rectangles I ′ ⊂ I , and the larger

the set I ′, the better the approximation ratio (as the remain-

ing small rectangles become really negligible).

In order to partition rectangles according to their height,

we use the well-known dual approximation technique [7].

3

We denote by v the guess of the optimal value. Given an

instance I , let LWD = {wj > α} be the set of wide rect-

angles, LH = {hj > βv} be the set of high rectangles,

and I ′ = LWD ∪ LH be the set of the big rectangles, with

0 < α < 1 and 0 < β < 1. Let r(α, β) = 1
1−α

+ β
be the approximation ratio we target (the origin of this for-

mula will be explained in Section 2.2.2). We also need the

following definition.

Definition 3 A packing is x-compact if and only if for every
strip Si there exists a level li such that for all l ≤ li, ui(l) >
x and ui restricted to l > li is non-increasing.

Figure 4 provides an example showing a (1−α) compact

packing, and why step c) is simple. Indeed, adding as soon

as possible a small rectangle rj (hj ≤ βv and wj ≤ α) to a
(1− α) compact packing cannot exceed v(1

1−α
+ β).

l3 = l4

l1

l2

α

≤ α

≤ βv
rj

S1 S2 S3 S4

Figure 4. (1− α) compact packing

Let us now describe the three main steps of our approach.

Notice that what we call a preallocation is a normal packing

(i.e. that defines the bottom level of each rectangle, which

is sufficient) that is based on simple structures like shelves

and layers. We will prove that to get a r(α, β) = (1
1−α

+β)
ratio, it is sufficient to:

a) construct a preallocation π0 of I ′ that fits in r(α, β)v,
and such that rectangles of LWD ⊂ I ′ are already

packed in a (1− α)-compact way

b) turn π0 into a (1−α)-compact packing π1 by repacking

rectangles of I ′ \ LWD using the list algorithm LSπ0

of Lemma 4

c) add the small remaining rectangles (I \ I ′) using algo-
rithm LS (see Lemma 5)

Step a) is the most difficult one. Thus, Section 3 is en-

tirely devoted to the construction of π0 (targeting α = 1
3

and β = 1
2). Of course, building the preallocation becomes

harder when α and β are small, as the number of rectangles

of I ′ increases and r(α, β) decreases. Roughly speaking,

the simple shapes of rectangles of I ′ allows us to construct

π0 with a simple structure. We will denote by πi
0 the set of

rectangles packed by π0 in Si.

2.2.2 Proving steps b) and c)

We now prove that applying steps b) and c) leads to a

r(α, β) ratio. In this section, we suppose that we are given

a guess v, and a packing π0 (called the preallocation) of

I ′ = LWD ∪ LH that fits in r(α, β)v, and such that rectan-
gles of LWD ⊂ I ′ are already packed in a (1−α)-compact

way. We consider step b): how to turn π0 into a (1 − α)-
compact packing.

Lemma 4 (Step b)) Let π0 be the preallocation of I ′ con-
structed in Step a). Let π̂1 = π0 ∩ LWD denote π0 when

keeping only rectangles of LWD. Recall that π̂1 is already

a (1− α)-compact packing of rectangles of LWD.

Then, we can complete π̂1 into a (1− α)-compact pack-
ing π1 of I ′, such that the height of π1 is lower or equal to

the height of π0.

Proof Let us define the LSπ0
algorithm that adds rectan-

gles of I ′ \ LWD. Let us consider a single strip Si. Let π
i
0

denote π0 restricted to Si, and π̂i
1 denote π̂1 restricted to Si.

Let X = {r1, . . . , rp} be the set of preallocated rectangles

of I ′ \ LWD that we have to add to Si. We assume that

lvl(j) ≤ lvl(j + 1), where lvl(j) is the bottom level of rj
in π0.

For our considered strip Si, the LSπ0
algorithm executes

AddAsap(rj , π̂i
1), for 1 ≤ j ≤ p, where AddAsap(r, π̂i

1)
adds rectangle r to π̂1 (in Si) at the smallest possible level.

Notice first that adding with AddAsap a rectangle rj with

wj ≤ α to a (1− α)-compact packing creates another (1−
α)-compact packing. Thus it is clear that π1 is (1 − α)-
compact.

For any 1 ≤ j ≤ p, let (π̂i
1, j) denote the packing in Si

just before adding rj with AddAsap, and let (π
i
0, j) denote

the packing πi
0 ∩ (LWD ∪ {r1, . . . , rj−1}). Let us prove by

induction on j ∈ {1, . . . , p} that u(̂πi

1
,j)(l) ≤ u(πi

0
,j)(l), for

any l ≥ lvl(j). The definition of π̂1 implies the property for

j = 1 (packings are identical). Let us suppose that the prop-
erty holds for j, and prove it for j + 1. Let l ≥ lvl(j + 1).
The induction property for rank j implies that rj is added

by AddAsap at a level lower or equal to lvl(j). Thus, if rj

intersects l in (π̂i
1, j + 1), then it also occurs in (πi

0, j + 1).
Thus in this case we have

u(̂πi

1
,j+1)(l) = u(̂πi

1
,j)(l) + wj

≤ u(πi

0
,j)(l) + wj

= u(πi

0
,j+1)(l)

If rj does not intersect l in (π̂i
1, j), then clearly

u(̂πi

1
,j+1)(l) = u(̂πi

1
,j)(l) ≤ u(πi

0
,j)(l) ≤ u(πi

0
,j+1)(l)

Thus we proved that for any 1 ≤ j ≤ p we have

u(̂πi

1
,j)(l) ≤ u(πi

0
,j)(l) for any l ≥ lvl(j), implying that

4

every rj is added by AddAsap at a level lower or equal to

lvl(j). Thus, the height of π1 is lower or equal to the height

of π0

�

We now prove in Lemma 5 that after adding rectan-

gles in step c), the height of the packing does not exceed

r(α, β)v = (1
1−α

+ β)v. This explains why the height of

the pre-allocation should also be bounded by r(α, β)v.

Lemma 5 (Step c)) Let π1 be a (1−α)-compact packing of
I ′. Adding to π1 rectangles of I \ I ′ with a List Scheduling

algorithm (LS) leads to a packing π having height lower

thanmax(height(π1), v(
1

1−α
+ β)).

Proof The LS algorithm scans all the strips from level 0,
and at any level adds any rectangle of I \ I ′ that fits. Notice
that the final packing π is (1 − α)-compact, since we add

rectangles rj with wj ≤ α to an (1− α)-compact packing.

Let us assume that the height of π is due to a rectan-

gle rj ∈ I \ I ′ that starts at level s. This implies that

when packing rj we had li ≥ s for any strip i (with li
defined as in Definition 3). According to this definition

we have ui(l) > 1 − α for any l ≤ li. Thus, we have

S(I) >
∑N

i=1 li(1 − α) ≥ N(1 − α)s, implying that

s < v 1
1−α

, and thus that of height of π is lower or equal to

s+maxj∈I\I′hj ≤ v(1
1−α

+ β). �

Thus, we now apply this framework with α = 1
3 and

β = 1
2 to get a 2-approximation.

3 2-approximation

3.1 Hardness

As explained before, the 2 + ǫ-approximation in [10]

and the 2-approximation we recently proposed in [2] are

rather complexity results than practical algorithms. We aim

at constructing a low cost algorithm that could be used in a

practical context. Thus, we are considering a restriction of

MCSP where the inapproximability bound could be tight-

ened with a fast algorithm, and we consider that all the rect-

angles have a width lower or equal to 1/2.

Theorem 6 TheMCSP where every rectangle has a width

lower (or equal) to 1
2 has no polynomial algorithm with a

ratio strictly better than 2, unless P = NP .

Proof As in [11] for the general version, we construct a

gap reduction from 2-partition. Let {x1, . . . , xn} ⊂ Nn

and a such that
∑n

i=1 = 2a. Without loss of generality,

let us assume that for any i, xi < a. In order to only have

items with size at least two, we define x′
i = 2xi for any i,

and a′ = 2a. We construct the following instance IMSP :

N = 2 strips, each of size 2a′ − 1. The set of rectangles

is {r1, . . . , rn, rn+1, rn+2}, with wi = x′
i for 1 ≤ i ≤ n,

wn+1 = wn+2 = a′− 1, and hi = 1 for 1 ≤ i ≤ n+2. We

have wi ≤ 2a′−1
2 for any i, as all the xi are strictly lower

than a. Notice than any solution of IMSP that packs rn+1

and rn+2 is the same strip has a height of at least 2, as the
available width of size 1 in that strip cannot be used by any

rectangle.

Obviously, if there is a 2-partition, then Opt(IMSP) =
1. Otherwise, as rn+1 and rn+2 cannot be packed together,

we have Opt(IMSP) = 2 �

The previous proof can easily be adapted for any non-trivial

restriction on the size of the widest rectangle. Therefore,

the fast 2-approximation presented in this section is the

best possible result, even for more restricted versions of the

MCSP.

3.2 Decomposition

We follow the ideas presented in Section 2, and thus we

re-use the notion of layer, shelf, bin, and the procedures

named CreateLayer and CreateShelf.

Again, we use the dual approximation technique [7], and

we denote by v the guess of the optimal value. Conform-

ing to the dual approximation technique, we will prove that

either we pack I with a resulting height lower than 2v, or
v < Opt. Then, we will perform a binary search on v to turn
the dual approximation algorithm into a classical approxi-

mation algorithm. Notice that for the sake of simplicity we

did not add the “reject” instructions in the algorithm. Thus

we consider in all the proof that v ≥ Opt, and it is implicit

that if one of the claimed properties is wrong during the ex-

ecution, the considered v should be rejected.

Recall that all rectangles have wj ≤
1
2 . Let us define the

following sets:

• let LWD = {rj |wj > 1/3} be the set of wide rectan-

gles

• let LXH = {rj |hj > 2v/3} be the set of very high

rectangles

• let LH = {rj |2v/3 ≥ hj > v/2} be the set of high

rectangles

• let LB = (LXH ∪ LH) ∩ LWD be the set of huge

rectangles, and b = Card(LB).

• let I ′ = LWD ∪ LXH ∪ LH

Notice that we only consider the values v such that

W (LXH ∪ LH) ≤ N andH(LWD) ≤ 2Nv.
As expected, the set I ′ corresponds in our framework

to the set of big rectangles for α = 1
3 and β = 1

2 . The

5

construction of the preallocation π0 of I
′ is presented from

Section 3.3 to 3.5. The final steps to turn π0 into a 2
3 -

compact packing π1 and to turn π1 into the final packing

π are quickly described in Section 3.6, as they follow the

steps presented in Section 2.2.

We now provide a two phases algorithm that builds the

preallocation π0 of the rectangles of I ′. Phase 1 (Sec-

tion 3.3) preallocates rectangles of LWD , and phase 2 (Sec-

tion 3.5) preallocates rectangles of LH ∪ LXH .

3.3 Phase 1

Phase 1 packs the rectangles of LWD by call-

ing for each strip (until LWD is empty) two times

CreateLayer(LWD, 2v). Let us denote by Lay2i−1 and

Lay2i the layers created in strip Si. Let us say that Lay2i−1

is packed left justified, and Lay2i is packed right justified.

Moreover, each layer is repacked in non increasing order of

the widths, such that the narrowest rectangles are packed on

the top.

Let N1 denote the number of strips used in phase 1, and

let i1 denote the index of the last created layer (Layi1 is of

course in SN1
). Let L1

H and L1
XH denote the set of remain-

ing rectangles after phase 1 of LH and LXH , respectively.

Thus, for the moment we have πi
0 = Lay2i ∪ Lay2i−1 for

all i ≤ N1.

Lemma 7 If ∃i0 < i1 such that H(Layi0) ≤
3v
2 then it is

straightforward to preallocate I ′.

Proof Let i0 < i1 such thatH(Layi0) ≤
3v
2 . This implies

that we ran out of rectangles of LWD \ (LH ∪LXH) while
creating layer i0. Thus, because of the BFH order there

are at least two rectangles of LB in every layer Layi, for
1 ≤ i < i1, implying that the width of high and very high

rectangles packed in each of these layers is strictly larger

than 2/3. Thus, W (πi
0 ∩ (LH ∪ LXH)) > 4/3 > 1 for

1 ≤ i < N1. Thus, the total width of remaining high and

very high rectangles is lower than N − (N1 − 1).
Let us prove that we can pack all the remaining rect-

angles of I ′ (which are included in (LH ∪ LXH)) in the

remaining strips. For each i ∈ [|N1 + 1, N |] we create two
shelves in Si (one at level 0 and one at level v). If there

are still some unpacked rectangles, then all the shelves are

”full”, that is the width of each shelf is larger than 2/3 (as

all the width of any rectangle of LH ∪ LXH is lower than

1/3). Thus, we have W (πi
0 ∩ (LH ∪ LXH)) > 4/3 > 1

(for N1 + 1 ≤ i ≤ N). This implies that the total width

of remaining rectangles of LH ∪ LXH (including those in

strip SN1
) is now lower than 1. Thus, we can pack all of

them in one shelf in SN1
. �

From now we assume thatH(Layi) >
3w
2 for all i < i1.

This implies that S(πi
0) > v for i < N1. Moreover, we

have 2Nv ≥ H(LWD) ≥
∑N1−1

i=1 H(πi
0∩LWD) > (N1−

1)2(3v/2), implyingN1 < 2
3N + 1.

It remains now to pack L1
H ∪ L1

XH . Notice that (L1
H ∪

L1
XH) ∩ LWD = ∅ (we say that (L1

H ∪ L1
XH) contains

purely high and very high rectangles).

3.4 Packing high and very high rectangles

3.4.1 Preliminaries

Let N2 = N − N1 denote the number of free strips af-

ter phase 1. Roughly speaking, phase 2 packs shelves of

high or very high rectangles in each of the N2 last strips

and merges some high or very high rectangles with the ones

packed in strip N1 (using theMerge procedure).

In this section we present a technique to fill γ empty

strips with high or very high rectangles. In the Section 3.5,

we use this technique for γ = N2 (using strips SN1+1

. . .SN) and an additional merging algorithm (that fills ef-

ficiently strip SN1
) to pack L1

H ∪ L1
XH .

Let us now introduce the procedure

GreedyPack(X, seq). Given an ordered sequence of

bins seq, GreedyPack creates for each empty bin b ∈ seq
a shelf of rectangles of X using CreateShelf(X, 1) and
packs it into b (an example of a shelf packed in a bin is

depicted Figure 3, Page 3). This procedure returns the last

bin in which a shelf has been created, or null if no shelf is

created. Notice that we will always use sequence of bins

that have always width 1, and the same height hb such that

maxrx∈Xhx ≤ hb.

We now define the two sequences of bins seqXH and

seqH that will be used by GreedyPack. Every bin of

seqXH (resp. seqH) will (possibly) contain one shelf of

rectangles of LXH (resp. LH). Notice that in a free strip

it is possible to pack two bins of height v (width of bins

is always 1), three bins of height 2v/3, or one bin of size v
and one bin of size 2v/3. Thus, seqXH is composed of 2γ
bins (b1, . . . , b2γ) of height v, considering that we created

two bins of height one in each of the strips S1, . . . Sγ . More

precisely, for all i we locate b2i−1 and b2i in Si, with b2i−x

at level v(1 − x) for x ∈ {0, 1}. The sequence seqH is

composed of 3γ bins (b′1, . . . , b
′
3γ) of height 2v/3, consider-

ing that we created three bins in each of the strips Sγ , . . . S1.

It means that for all i ≥ 1, bins b′3i−2, b
′
3i−1 and b′3i are lo-

cated in Sγ−i+1, with b′3i−x at level 2xv
3 for x ∈ [|0, 2|].

This sequences of bins will be used in Lemma 9, and later

in phase 2.

Finally, let us define the Add(X,Silast
) procedure that

packs the set of rectangles X ⊂ LH \ LWD in Silast
.

As one can see in Lemma 9, Silast
is the last strip where

Greedypack created a shelf. Thus, we assume for the mo-

ment that Silast
may only contain two different shapes of

packing, and define the Add procedure accordingly.

6

In the first case Silast
contains a first “full” shelf (full

means that the surface of the shelf is at least v/2) of rectan-
gles of LXH at level 0, and a shelf sh of rectangles of LXH

packed at level v, right justified. In this case, Add creates a

shelf sh1 using CreateShelf(X, 1−W (sh)) and preallo-
cate sh1 at level v, left justified.

v

2v

sh1

sh2

sh3

LH

LXH

Silast

shA

shB

Figure 5. Example of the add procedure.

In the second case (see Figure 5), Silast
contains only

a shelf of rectangles of LXH packed at level 0, right justi-
fied. In this case, Add first moves some rectangles from sh

to a new shelf ŝh until W (sh) ≤ 2/3. Then, Add packs

(right justified) the widest of these two shelves (denoted

by shA) at level 0, and the other one (denoted by shB) at

level v. Finally, Add creates two shelves sh1 and sh2 us-

ing CreateShelf(X, 1 − W (shA)) and one shelf sh3 us-

ing CreateShelf(X, 1 − W (shB)). Then, shi is packed

at level
2v(i−1)

3 , left justified. Notice that stacking shelves

sh1, sh2, sh3 does not exceed 2v.
We end these preliminaries with the following Lemma

about the efficiency of Add.

Lemma 8 Let X ⊂ LH \ LWD and Si be a strip packed

as expected for Add(X,Si). Let πi
0 denote the rectangles

packed in Si before the call Add(X,Si). If X 6= ∅ after

calling the procedure, then S(πi
0 ∪X) > v.

Proof Remember that two cases are possible according to

what is already packed in Si before the call. Let us first

suppose that there is one full shelf (of area strictly larger

than v/2) of very high rectangles (at level 0) and another

shelf sh of very high rectangles at level v. Then, X 6= ∅
after the call implies that W (X) > 1 − W (sh), and we

have S(πi
0 ∪X) > v

2 +W (sh)2v3 +W (X)v2 > v.
Let us now suppose that Si contains only one shelf sh

of LXH at level 0. Let shA, shB, sh1, sh2, sh3 be defined

as described in the Add procedure. As W (shA) ≤ 2
3

(W (shb) ≤ 2
3 is also true), and X ∩ LWD = ∅, sh1 and

sh2 contain at least one rectangle, implying that W (sh1)

andW (sh2) are strictly larger than
1−W (shA)

2 according to

Lemma 2. Moreover,X 6= ∅ after the call implies that after

creating sh1 and sh2 the total width of remaining rectan-

gles ofX was strictly larger than 1−W (shB). Putting this
together, we get S(πi

0 ∪ X) > (1 − W (shA))
v
2 + (1 −

W (shB))
v
2 + (W (shA) +W (shB))

2v
3 > v.

�

3.4.2 Filling γ empty strips with high and very high

rectangles

The next lemma shows how to fill γ free strips.

Lemma 9 Let L̂XH ⊂ LXH \LWD and L̂H ⊂ LH \LWD

be two sets of rectangles that we have to pack. Suppose that

we execute the following calls:

1. last = GreedyPack(L̂XH , seqXH)

2. GreedyPack(L̂H , seqH)

3. Add(L̂H , Silast
) where Silast

denotes the strip con-

taining the bin “last”.

Then, we get the following properties:

• If L̂XH 6= ∅ after 1, then S(L̂XH) > (γ + 1
6)v

• Otherwise, if L̂H 6= ∅ after 3, then S(L̂XH ∪ L̂H) >
γv.

Remark 10 Let X such that X ∩ LWD = ∅ and let sh
denote a shelf created by CreateShelf(X, 1), supposing
that we did not run out of rectangle while creating the shelf.

Then, according to Lemma 2, as at least three rectangles

fit we have W (sh) > 3/4 . Moreover, if X ⊂ LXH then

S(sh) > v/2, and if X ⊂ LH then S(sh) > 3v/8.

Proof [Proof of lemma 9] Let us first suppose that

L̂XH 6= ∅ after step 1. It implies that after creating the first

2γ − 1 shelves of width at least 3/4 (according to Remark

10), the total remaining width of rectangles of L̂XH was

strictly larger than 1. Thus, S(L̂XH) > 3
4 (2γ−1)2v3 + 2v

3 =
(γ + 1

6)v.

Let us now suppose that L̂XH = ∅ and L̂H 6= ∅ after

step 3. Let sh denote the shelf of rectangles of L̂XH

contained in bin last. Remind that ilast is the index

of the strip containing last. For all i ∈ [|1, ilast − 1|],

S(πi
0∩ (L̂XH ∪ L̂H)) > 2 v

2 = v. For all i ∈ [|ilast+1, γ|],

S(πi
0 ∩ (L̂XH ∪ L̂H)) > 3 3v

8 > v. According to Lemma

8, L̂H 6= ∅ implies S(πilast

0 ∩ L̂H) > v. Thus, we get that

S(L̂XH ∪ L̂H) > γv. �

7

3.5 Phase 2

In phase 1 we preallocated LWD in strips S1, . . . , SN1
.

Recall that each layer created in phase 1 is sorted with the

narrowest rectangles on the top. It remains now to preallo-

cate L1
XH ∪ L1

H in SN1
, . . . , SN .

Theorem 11 It is possible to preallocate L1
XH ∪ L1

H in

SN1
, . . . , SN with a resulting height lower than 2v. Thus,

our algorithm is a 2-approximation.

Proof Due to lack of space, we only sketch the proof of

the theorem here and refer the reader to [4] for the complete

case analysis.

An example of the final packing is depicted Figure 6.

Phase 1 optimally filled the (N1 − 1) first strips using

rectangles of LWD . Phase 2 optimally filled strips N1 + 1
to ilast − 1 using two shelves of very high rectangles in

each strip, and optimally filled strips ilast + 1 to N using

three shelves of high rectangles in each strip. Strips N1

and ilast will be carefully filled according to a case by

case analysis. According to Section 3.3, we know that

the area packed in the N1 − 1 first strips is greater than

(N1− 1)v. The general idea is to pack L1
XH ∪L1

H is to call

GreedyPack (see Lemma 9) on strips SN1+1, . . . , SN . If

L1
XH and L1

H are entirely packed by GreedyPack, then
all the rectangles are packed in 2v. Otherwise, we can use

Lemma 9 to claim that, S(L1
XH ∪ L1

H) > (N − N1)v (or

(N − N1 +
1
6)v), and the remaining rectangles are packed

by carefully studying what was packed in SN1
by phase 1.

Thus, we finish the proof using a case distinction according

to the shape of the preallocation in SN1
. �

✂ ✁

SN1 > v Silast> v

? ?

2v

> (N1 − 1)v

Figure 6. Example of a preallocation.

3.6 Concluding remarks

According to the main steps defined in Section 2.2, the

previous 2 phases algorithm that preallocates I ′ is sufficient
to get a 2-approximation. Indeed, we simply add rectangles

of I \ I ′ using list algorithms defined in Section 2.2.

Let us now sketch the analysis of the running time of

the preallocation algorithm. Phase 1 and Phase 2 run in

O(n log(n) + Nn) as for each strip creating a layer or a

shelf can be done in O(n) (by sorting wide rectangles ac-

cording to their heights before phase 1, and sorting high

rectangles according to their widths before phase 2). The

list scheduling algorithms of Section 2.2.2 that turn π0 into

the final packing can be implemented inO(n log(n)) by us-
ing a global list (i.e. that refers to the N strips) of currently

”scheduled” rectangles, instead of scanning level by level

and strip by strip (which is in O(Nn log(n))).
Finally, taking into account the repetitions due to the bi-

nary search on v (where 0 ≤ v ≤ nhmax), the overall algo-

rithm runs in O(log(nhmax)n(N + log(n))).

References

[1] N. Bansal, A. Caprara, K. Jansen, L. Prdel, and M. Sviri-

denko. How to maximize the total area of rectangle packed

into a rectangle. In ISAAC, 2009.
[2] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trys-

tram. Approximation algorithm for multiple strip packing.

In Proceedings of the 7th Workshop on Approximation and

Online Algorithms (WAOA), 2009.
[3] M. Bougeret, P.-F. Dutot, K. Jansen, C. Otte, and D. Trys-

tram. Approximating the non-contiguous multiple organi-

zation packing problem. In Proceedings of the 6th IFIP

International Conference on Theoretical Computer Science

(TCS), 2010.
[4] M. Bougeret, P.-F. Dutot, K. Jansen, C. Robenek, and

D. Trystram. Tight approximation for scheduling parallel

jobs on identical clusters. LIRMM research report 12001

http://hal-lirmm.ccsd.cnrs.fr/

lirmm-00656780.
[5] P.-F. Dutot and D. Trystram. Scheduling on hierarchical

clusters using malleable tasks. In Proceedings of the thir-

teenth annual ACM symposium on Parallel algorithms and

architectures, pages 199–208. ACM Press, 2001.
[6] D. Hochbaum and D. Shmoys. Using dual approximation

algorithms for scheduling problems theoretical and practical

results. Journal of the ACM (JACM), 34(1):144–162, 1987.
[7] D. Hochbaum and D. Shmoys. A polynomial approxima-

tion scheme for scheduling on uniform processors: Using

the dual approximation approach. SIAM Journal on Com-

puting, 17(3):539–551, 1988.
[8] K. Jansen. An EPTAS for scheduling jobs on uniform pro-

cessors: using anMILP relaxation with a constant number of

integral variables. Automata, Languages and Programming,

pages 562–573, 2009.
[9] U. Schwiegelshohn, A. Tchernykh, and R. Yahyapour. On-

line scheduling in grids. In IEEE International Symposium

on Parallel and Distributed Processing (IPDPS), pages 1–

10, 2008.
[10] D. Ye, X. Han, and G. Zhang. On-Line Multiple-Strip Pack-

ing. In Proceedings of the 3rd International Conference

on Combinatorial Optimization and Applications (COCOA),

page 165. Springer, 2009.
[11] S. Zhuk. Approximate algorithms to pack rectangles into

several strips. Discrete Mathematics and Applications,

16(1):73–85, 2006.

8

