
HAL Id: hal-00738463
https://hal.science/hal-00738463v1

Preprint submitted on 4 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Policy Improvement Methods: Between Black-Box
Optimization and Episodic Reinforcement Learning

Freek Stulp, Olivier Sigaud

To cite this version:
Freek Stulp, Olivier Sigaud. Policy Improvement Methods: Between Black-Box Optimization and
Episodic Reinforcement Learning. 2012. �hal-00738463�

https://hal.science/hal-00738463v1
https://hal.archives-ouvertes.fr

Policy Improvement Methods: Between Black-Box

Optimization and Episodic Reinforcement Learning

Freek Stulp∗† and Olivier Sigaud‡

Abstract

Policy improvement methods seek to optimize the parameters of a policy with re-

spect to a utility function. There are two main approaches to performing this opti-

mization: reinforcement learning (RL) and black-box optimization (BBO). Whereas

BBO algorithms are generic optimization methods that, due to there generality, may

also be applied to optimizing policy parameters, RL algorithms are specifically tailored

to leveraging the structure of policy improvement problems. In recent years, bench-

mark comparisons between RL and BBO have been made, and there has been several

attempts to specify which approach works best for which types of problem classes.

In this article, we make several contributions to this line of research: 1) We de-

fine four algorithmic properties that further clarify the relationship between RL and

BBO: action-perturbation vs. parameter-perturbation, gradient estimation vs. reward-

weighted averaging, use of only rewards vs. use of rewards and state information,

actor-critic vs. direct policy search. 2) We show how the chronology of the deriva-

tion of ever more powerful algorithms displays a trend towards algorithms based on

parameter-perturbation and reward-weighted averaging. A striking feature of this trend

is that it has moved RL methods closer and closer to BBO. 3) We continue this trend

by applying two modifications to the state-of-the-art “Policy Improvement with Path

Integrals” (PI2), which yields an algorithm we denote PIBB. We show that PIBB is a

BBO algorithm, and, more specifically, that it is a special case of the “Covariance Ma-

trix Adaptation – Evolutionary Strategy” algorithm. Our empirical evaluation demon-

strates that the simpler PIBB outperforms PI2 on simple evaluation tasks in terms of

convergence speed and final cost. 4) Although our evaluation implies that, for these

five tasks, BBO outperforms RL, we do not hold this to be a general statement, and pro-

vide an analysis of why these tasks are particularly well-suited for BBO. Thus, rather

than making the case for BBO or RL, one of the main contributions of this article is

rather to provide an algorithmic framework in which such cases may be made, as PIBB

and PI2 use identical perturbation and parameter update methods, and differ only in

being BBO and RL approaches respectively.

1 Introduction

Over the last two decades, the convergence speed and robustness of policy improvement

methods has increased dramatically, such that they are now able to learn a variety of chal-

lenging robotic tasks (Theodorou et al., 2010; Rückstiess et al., 2010b; Tamosiumaite et al.,

2011; Kober and Peters, 2011; Buchli et al., 2011; Stulp et al., 2012). Several underly-

ing trends have accompanied this performance increase. The first is related to exploration,

where there has been a transition from action perturbing methods, which perturb the out-

put of the policy at each time step, to parameter perturbing methods, which perturb the

∗Robotics and Computer Vision, ENSTA-ParisTech, Paris
†FLOWERS Research Team, INRIA Bordeaux Sud-Ouest, Talence, France
‡Institut des Systèmes Intelligents et de Robotique, Université Pierre Marie Curie CNRS UMR 7222, Paris

1

parameters of the policy itself (Rückstiess et al., 2010b). The second trend pertains to the

parameter update, which has moved from gradient-based methods towards updates based

on reward-weighted averaging (Stulp and Sigaud, 2012).

A striking feature of these trends, visualized in Figure 1, and described in detail in

Section 2, is that they have moved reinforcement learning (RL) approaches to policy im-

provement closer and closer to black-box optimization (BBO). This class of algorithms

is depicted in the right-most column of Figure 1. In fact, two state-of-the-art algorithms

that have been applied to policy improvement — PI2 (Theodorou et al., 2010) and CMA-

ES (Hansen and Ostermeier, 2001) — are so similar that a line-by-line comparison of the

algorithms is feasible (Stulp and Sigaud, 2012). The main difference is that whereas PI2

is an RL algorithm — it uses information about rewards received at each time step during

exploratory policy executions — whereas CMA-ES is a BBO algorithm — it uses only the

total reward received during execution, which enables it to treat the utility function as a

black box that returns one scalar value.

BBO

action pert.
(at each time step)

parameter perturbation
(at each time step) (constant)

vanilla
gradient

natural
gradient

reward-w.
averaging PIBB

REINFORCE

eNAC

POWER

SOC

GPIC PI2

FD

PGPE

NES

CEM

CMA-ES

Figure 1: Classification of policy improvement algorithms. The vertical dimension categorizes the update method used, and

the horizontal dimension the method used to perturb the policy. The two streams represent both the derivation history of

policy improvement algorithms. The algorithms are discussed in Section 2.

In this article, we make the relation between RL and BBO even more explicit by taking

these trends one (ultimate) step further. We do so by introducing PIBB (in Section 3), which

simplifies the exploration and parameter update methods of PI2. These modifications are

consistent with PI2’s derivation from stochastic optimal control. An important insight is

that PIBB is actually a BBO algorithm, as discussed in Section 4.1. More specifically, we

show that PIBB is a special case of CMA-ES. One of the main contributions of this article

is thus to draw an explicit bridge from RL to BBO approaches to policy improvement, as

visualized by the dark line from PI2 to PIBB in Figure 1.

We thus have a pair of algorithms — PI2 and PIBB— that use the same method for

exploration (parameter perturbation) and parameter updating (reward-weighted averaging),

and differ only in being RL (PI2) or BBO (PIBB) approaches to policy improvement. This

allows for a more objective comparison of RL/BBO algorithms than, for instance, compar-

ing eNAC and CMA-ES (Heidrich-Meisner and Igel, 2008a; Rückstiess et al., 2010b), as

eNAC is an action-perturbing, gradient-based RL algorithm, and CMA-ES is a parameter-

perturbing, reward-weighted averaging BBO algorithm. If one is found to outperform the

other on a particular task, does it do so due to the different parameter update methods? Or is

it due to the difference in the policy perturbation? Or because one is an RL method and the

other BBO? Using the PI2/PIBB pair allows us to specifically investigate the latter question,

whilst keeping the other algorithmic features the same.

The PI2/PIBB pair may thus be the key to providing “[s]trong empirical evidence for the

power of evolutionary RL and convincing arguments why certain evolutionary algorithms

are particularly well suited for certain RL problem classes” (Heidrich-Meisner and Igel,

2008a), and could help verify or falsify the five conjectures proposed by Togelius et al.

(2009, Section 4.1), about which types of problems are particularly suited for RL and BBO

2

approaches to policy improvement. As a first step in this direction, we compare the perfor-

mance of PI2 and PIBB in terms of convergence speed and final cost on the evaluation tasks

from (Theodorou et al., 2010) in Section 3. Although PIBB has equal or better performance

than PI2 on these tasks, our aim in this article is not to make a case for either RL or BBO

approaches to policy improvement — in general we expect the most appropriate method to

vary from task to task, as discussed in Section 5 — but rather to provide a pair of algorithms

that allow such targeted comparisons in the first place.

In summary, the main contributions of this article are:

• Providing an overview and classification of policy improvement algorithms.

• Deriving PIBB by simplifying the perturbation and update methods of PI2.

• Empirically comparing PI2 and PIBB on the five tasks proposed by Theodorou et al.

(2010), and showing that PIBB has equal or superior performance.

• Demonstrating that PIBB is a BBO algorithm. In particular, it is a special case of

CMA-ES.

• Providing an algorithmic pair (PI2 and PIBB) with which it is easier to verify the

conjectures proposed by Togelius et al. (2009).

The rest of this article is structured as follows. In the next section, we describe the policy

improvement algorithms depicted in Figure 1, explain their key differences, and classify

them according to these differences. In Section 3, we show how PIBB is derived by applying

two simplifications to PI2, and we compare the algorithms empirically on five tasks. The

PIBB algorithm is analyzed more closely in Section 4; in particular, we show that PIBB is a

BBO algorithm, and discuss several reasons why it outperforms PI2 on the tasks used. In

Section 6 we summarize the main contributions of the article, and present future research

opportunities instigated by this article.

2 Background

In RL, the policy π maps states to actions. The optimal policy π∗ chooses the action that

optimizes the cumulative discounted reward over time. When the state and actions sets

of the system are discrete, finding the optimal policy π∗ can be cast in the framework of

discrete Markov Decision Processes (MDPs) and solved with Dynamic Programming (DP)

or RL methods (Sutton and Barto, 1998). For problems where the state is continuous, many

state approximation techniques exist in the field of Approximate Dynamic Programming

(ADP) methods (Powell, 2007). But when the action space also becomes continuous, the

extension of DP or ADP methods results in optimization problems that have proven hard to

solve in practice (Santamarı́a et al., 1997).

In such contexts, a policy cannot be represented by enumerating all actions, so paramet-

ric policy representations πθ are required, where θ is a vector of parameters. Thus, finding

the optimal policy π∗ corresponds to finding the optimal policy parameters θ
∗, i.e. those

that maximize cumulative discounted reward. As finding the θ corresponding to the global

optimum is generally too expensive, policy improvement methods are local methods that

rather search for a local optimum of the expected reward.

In episodic RL, on which this article focusses, the learner executes a task until a termi-

nal state is reached. Executing a policy from an initial state until the terminal state, called

a “roll-out”, leads to a trajectory τ , which contains information about the states visited,

actions executed, and rewards received. Many policy improvements use an iterative process

of exploration, where the policy is executed K times leading to trajectories τ k=1...K , and

3

parameter updating, where the policy parameters θ are updated based on this batch of tra-

jectories. This process is explained in more detail in the generic policy improvement loop

in Figure 2.

execute policy πθ

parameter update

θ
init

θ
new

θ roll-out of policy πθ

generate perturbation

roll-out of policy πθ

generate perturbation

roll-out of policy πθ

generate perturbation

τ k=1...K

Figure 2: Generic policy improvement loop. In each iteration, the policy is executed K times. One execution of a policy

is called a ‘Monte Carlo roll-out’, or simply ‘roll-out’. Because the policy is perturbed (different perturbation methods

are described in Section 2.1.3), each execution leads to slightly different trajectories in state/action space, and potentially

different rewards. The exploration phase thus leads to a set of different trajectories τk=1...K . Based on these trajectories,

policy improvement methods then update the parameter vector θ → θnew such that the policy is expected to incur lower

costs/higher rewards. The process then continues with the new θnew as the basis for exploration.

In this section, we give an overview of algorithms that implement this loop. We distin-

guish between three main classes of algorithms, based on whether their derivation is based

mainly — they are not mutually exclusive — on principles based on lower bounds on the

expected return (Section 2.1), path integral stochastic optimal control (Section 2.2) or BBO

(Section 2.3).

For each algorithm, we make a ‘fact sheet’, in which the following questions are an-

swered:

Fact sheet (to be filled in by all algorithms)

Perturbation: How is the policy perturbed?

Trajectory: What information must be stored in the trajectory resulting from the execution of the

policy?

Actor-Critic: Is the method an actor-critic method, or a direct policy search method?

Update: How are the parameters updated?

2.1 Policy Improvement through Lower Bounds on the Expected Return

We now briefly describe three algorithms that build on one another to achieve ever more

powerful policy improvement methods, being REINFORCE (Williams, 1992), eNAC (Pe-

ters and Schaal, 2008b), and POWER (Kober and Peters, 2011). All these algorithms may

be derived from a common framework based on the lower bound on the expected return,

as demonstrated by Kober and Peters (2011). In this section, we focus on properties of the

resulting algorithms, rather than on their derivations.

Our main aim here is to use a set of known algorithms to answer the questions in the fact

sheet, thus providing a basis for considering the questions in perhaps unfamiliar and more

intricate contexts in Section 2.2 and 3. Since these algorithms have already been covered

in extensive surveys (Peters and Schaal, 2008b, 2007; Kober and Peters, 2011), we do not

present them in full detail here, as this does not serve the particular aim of this section.

An underlying assumption of the algorithms presented in Section 2.1 and 2.2 is that

the policies are represented as ut = g(x, t)⊺θ; g is a set of basis functions, for instance

Gaussian kernels, θ are the policy parameters, x is the state, and t is time since the roll-out

started.

4

2.1.1 REINFORCE

The REINFORCE algorithm (Williams, 1992) (“reward increment = nonnegative factor ×
offset reinforcement × characteristic eligibility”) uses a stochastic policy to foster explo-

ration (1), where πθ(x) returns the nominal motor command1, and ǫt is a perturbation of

this command at time t. In REINFORCE, this policy is executed K times with the same

θ, and the states/actions/rewards that result from a roll-out are stored in a trajectory.

Given K such trajectories, the parameters θ are then updated by first estimating the

gradient ∇̂θJ(θ) (2) of the expected return J(θ) = E

[

∑N
i=1 rti |πθ

]

. Here, the trajectories

are assumed to be of equal length, i.e. having N discrete time steps ti=1...N . The notation

in (2) estimates the gradient ∇̂θd
J(θ) for each parameter entry d in the vector θ separately.

Riedmiller et al. (2007) provides a concise yet clear explanation how to derive (2). The

baseline (3) is chosen so that it minimizes the variation in the gradient estimate (Peters and

Schaal, 2008a). Finally, the parameters are updated through steepest gradient ascent (4),

where the open parameter α is a learning rate.

Policy perturbation during a roll-out

ut = πθ(x) + ǫt (1)

Parameter update, given K roll-outs

∇̂θd
J(θ) =

1

K

K
∑

k=1

N
∑

i=1

i
∑

j=1

∇θd
log π(utj ,k|xtj ,k)(rti,k − bdti) (2)

bdti =

∑K
k=1

∑i
j=1

(

∇θd
log π(utj ,k|xtj ,k)

)2
rti,k

∑K
k=1

∑

i
j=1

(

∇θd
log π(utj ,k|xtj ,k)

)2
(3)

θ
new = θ + α∇̂θJ(θ) (4)

Fact sheet for REINFORCE

Perturbation: A stochastic policy is used, i.e. the output of the nominal policy is perturbed, cf. (1).

Trajectory: To compute (2) and (3), the trajectory needs to contain, for each time step i, the reward

rti , as well as the state xti
and action uti

, as they are required to compute ∇θlogπθ(ut|xt).

Actor-Critic: The value function is not approximated, so it is a direct policy search method.

Update: The update is based on the gradient ∇θJ(θ), cf. (4). Note that in order to compute this

gradient, the policy must be differentiable w.r.t. its parameters: ∇θlogπθ(ut|xt).

2.1.2 eNAC

One issue with REINFORCE is that it requires many roll-outs for one parameter update,

and the resulting trajectories cannot be reused for later updates. This is because we need

to perform a roll-out each time we want to compute
∑N

i=1[. . .]rti in (2). Such methods are

known as ‘direct policy search’ methods. Actor-critic methods, such as “Episodic Natural

Actor Critic” (eNAC), address this issues by using a value function Vπθ
as a more compact

representation of long-term reward than sample episode R(τ), allowing them to make more

efficient use of samples.

In continuous state-action spaces, Vπθ
cannot be represented exactly, but must be esti-

mated from data. Actor-critic methods therefore update the parameters in two steps: 1) ap-

proximate the value function from the point-wise estimates of the cumulative rewards ob-

served in the trajectories acquired from roll-outs of the policy; 2) update the parameters

1With this notation, the policy πθ(x) is actually deterministic. A truly stochastic policy is denoted as

ut ∼ πθ(u|x) = µ(x)+ǫt (Riedmiller et al., 2007), where µ(x) is a deterministic policy that returns the nom-

inal command. We use our notation for consistency with parameter perturbation, introduced in Section 2.1.3.

For now, it is best to consider the sum πθ(x) + ǫt to be the stochastic policy, rather than just πθ(x).

5

using the value function. In contrast, direct policy search updates the parameters directly

using point-wise estimates2, as visualized in Figure 3. The main advantage of having a value

function is that it generalizes; whereas K roll-outs provide only K point-wise estimates of

the cumulative reward, a value function approximated from these K point-wise estimates is

also able to provide estimates not observed in the roll-outs.

approximate
value function

update
parameters

τk=1:K V θ
new

update
parameters

τk=1:K θ
new

critic actor

Figure 3: Actor-critic (above) and direct policy search (below).

Another issue is that in REINFORCE the ‘naive’, or ‘vanilla’3, gradient ∇θJ(θ) is

sensitive to different scales in parameters. To find the true direction of steepest descent

towards the optimum, independent of the parameter scaling, eNAC uses the Fischer in-

formation matrix F to determine the ‘natural gradient’: θnew = θ + αF−1(θ)∇θJ(θ). In

practice, the Fischer information matrix need not be computed explicitly (Peters and Schaal,

2008b).

Fact sheet for eNAC

Perturbation and Trajectory: Same as for REINFORCE.

Actor-critic: As the name implies, eNAC is an actor-critic approach, because it first approximates

the value function with LSTD(1) (critic), and then uses the value function to update the policy

parameters (actor).

Update: eNAC uses the natural gradient to update the policy parameters.

Thus, going from REINFORCE to eNAC represents a transition from direct policy

search to actor-critic, and from vanilla to natural gradients.

2.1.3 POWER

REINFORCE and eNAC are both ‘action perturbing’ methods which perturb the nomi-

nal command at each time step ut = unominal
t + ǫt, cf. (1). Action-perturbing algorithms

have several disadvantages: 1) Samples are drawn independently from one another at each

time step, which leads to a very noisy trajectory in action space (Rückstiess et al., 2010b).

2) Consecutive perturbations may cancel each other and are thus washed out (Kober and Pe-

ters, 2011). The system also often acts as a low-pass filter, which further reduces the effects

of perturbations that change with a high frequency. 3) On robots, high-frequency changes in

actions, for instance when actions represent motor torques, may lead to dangerous behavior,

or damage to the robot (Rückstiess et al., 2010b). 4) It causes a large variance in parameter

updates, an effect which grows with the number of time steps (Kober and Peters, 2011).

The “Policy Learning by Weighting Exploration with the Returns” (POWER) algorithm

therefore implements a different policy perturbation scheme first proposed by Rückstiess

et al. (2010a), where the parameters θ of the policy, rather than its output, are perturbed, i.e.

πθ + ǫt(x) rather than πθ(x) + ǫt. This distinction has been illustrated in Figure 4.

2The point-wise estimates are sometimes considered to be a special type of critic; in this article we use the

term ‘critic’ only when it is a function approximator.
3‘Vanilla’ refers to the canonical version of an entity. The origin of this expression lies in ice cream flavors;

i.e. ‘plain vanilla’ vs. ‘non-plain’ flavors, such as strawberry, chocolate, etc.

6

policy execution loop

π+

parameter perturbation

θ

ǫt

θ + ǫt
+

action perturbation

ut

ǫt

E
ut + ǫt

xt

Figure 4: Illustration of action and policy parameter perturbation. Action perturbation is applied to the output ut of the

policy, whereas policy parameter perturbation is applied to the parameters θ of the policy. The perturbations are sampled at

each time step, inside the loop in which the policy is executed.

REINFORCE and eNAC estimate gradients, which is not robust when noisy, discon-

tinuous utility functions are involved. Furthermore, they require the manual tuning of the

learning rate α, which is not straight-forward, but critical to the performance of the algo-

rithms (Theodorou et al., 2010; Kober and Peters, 2011). The POWER algorithm proposed

by Kober and Peters (2011) addresses these issues by using reward-weighted averaging,

which rather takes a weighted average of a set of K exploration vectors ǫk=1...K as follows:

Policy perturbation during a roll-out

ut = πθ + ǫt(x), with ǫt ∼ N (0,Σ) (5)

Parameter update, given K roll-outs

Sk
ti =

∑

N
j=ir

k
j (6)

θ
new = θ +

(

E

[

N
∑

i=1

WSti

])−1(

E

[

N
∑

i=1

WǫtiSti

])

(7)

≈ θ +

(

K
∑

k=1

N
∑

i=1

WtiS
k
ti

)−1(K
∑

k=1

N
∑

i=1

Wtiǫ
k
tiS

k
ti

)

(8)

with Wti = gtig
⊺

ti
(g⊺

ti
Σgti)

−1

where K refers to the number of roll-outs, and gti is a vector of the basis function activa-

tions at time ti. The update (8) may be interpreted as taking the average of the perturbation

vectors ǫk, but weighting them with Sk/
∑K

l=1 Sl, which is a normalized version of the

reward-to-go Sk. Hence the name reward-weighted averaging. An important property of

reward-weighted averaging is that it follows the natural gradient (Arnold et al., 2011), with-

out having to actually compute the gradient or the Fischer information matrix. This leads to

more robust updates.

The final main difference between REINFORCE/eNAC and POWER is that the former

require roll-out trajectories to contain information about the state and actions, as they must

compute ∇θlogπθ(ut|xt) to perform an update. In contrast, POWER only uses information

about the rewards rt from the trajectory, as these are necessary to compute the expected

return (6). The basis function g are parameters of the algorithm, and must not be stored in

the trajectory.

Fact sheet for POWER

Perturbation: The parameters of the policy are perturbed (θ + ǫt), rather than the output of the

policy, cf. (5).

Trajectory: To determine the expected return (6), the trajectory must contain the reward received

at each time step rti=1...N
. The state and actions are not needed to perform an update.

Actor-Critic: The value function is not approximated, so it is a direct policy search method.

Update: The update is based on reward-weighted averaging (8), rather than estimating a gradient.

7

In summary, going from eNAC to POWER represents a transition from action pertur-

bation to policy parameter perturbation, from estimating the gradient to reward-weighted

averaging, and from actor-critic back to direct policy search (as in REINFORCE).

2.2 Policy Improvement with Path Integrals

In this section, we describe the second stream (SOC→GPIC→PI2) in Figure 1. The aim of

this section is to lay the foundation for Section 3, in which we analyze how the transition

from action perturbation to policy parameter perturbation is made within the PI2 derivation.

We only explain those parts of the derivation that serve this aim; for the complete PI2

derivation on which this section is based, we refer to Theodorou et al. (2010). Note that

in the previous section, algorithms aimed at maximizing rewards. In optimal control, the

convention is rather to define costs, which should be minimized.

2.2.1 Source: Stochastic Optimal Control

The PI2 derivation is based on stochastic optimal control (SOC). Note that SOC in itself

does not involve parameterized policies, exploration or learning, and is not an algorithm. It

is rather the definition of a domain in which, given a model of the control system and a cost

function, a set of equations (Hamilton Jacobi Bellman) is derived which must be solved

in order to compute the optimal controls. In Section 2.2.2, we present a path-integral-

based solution to this problem formulation, and in Section 2.2.3 we apply this solution to

parameterized policies, which yields the PI2 algorithm.

In SOC, the dynamics of the control system is assumed to take the following form:

ẋt = f(xt) +G(xt) (ut + ǫt) = ft +Gt (ut + ǫt) (9)

where xt denotes the state of the system, Gt = G(xt) the control matrix, ft = f(xt) the

passive dynamics, ut the control vector and ǫt zero-mean Gaussian noise with covariance

Σ.

In the system model of SOC, we see that actions are perturbed, because of ut + ǫt (9).

However, the nature of this perturbation is quite different to those in the algorithms in Sec-

tion 2. In SOC, these perturbations represent additive motor stochasticity that arises when

applying the command ut to the system, for instance due to imperfectly calibrated motors

or wear-and-tear of the system. This is quite distinct from the interpretation in for instance

REINFORCE or eNAC, where the policy is stochastic because the algorithm adds pertur-

bations itself to foster exploration. The aim in SOC is to find the commands that minimize

cost despite motor stochasticity that arises in the system, whereas in RL methods like RE-

INFORCE and eNAC learn these commands because of stochasticity that these algorithms

introduce themselves.

For the finite horizon problem, the goal is to determine the control inputs uti:tN which

minimize the value function

V (xti) = Vti = min
uti:tN

E τ i[R(τ i)] (10)

R(τ i) = φtN +

∫ tN

ti

rt dt (11)

rt = r(xt,ut, t) = qt +
1

2
u
⊺

tRut dt (12)

where R is the finite horizon cost over a trajectory starting at time ti in state xti and ending

at time tN and where φtN = φ(xtN) is a terminal reward at time tN , rt = r(xt, t) is an

arbitrary state-dependent immediate reward function, and R is the control cost matrix. τ i

are trajectory pieces starting at xti and ending at time tN .

8

From SOC (Stengel, 1994), it is known that the associated Hamilton Jacobi Bellman

(HJB) equation is

∂tVt = qt + (∇xVt)
⊺ft −

1

2
(∇xVt)

⊺GtR
−1G

⊺

t (∇xVt) +
1

2
trace ((∇xxVt)GtΣG

⊺

t)

(13)

u(xti) = uti = −R−1G
⊺

ti
(∇xti

Vti) (14)

where u(xti) is the corresponding optimal control.

The rest of the PI2 derivation is dedicated to finding a solution to this non-linear, 2nd or-

der partial differential equation (Section 2.2.2), and applying this solution to parameterized

policies (Section 2.2.3).

2.2.2 From Stochastic Optimal Control to Generalized Path Integral Control

Let us now briefly sketch the three main steps in the derivation of Generalized Path Integral

Control (GPIC) (Theodorou et al., 2010) from the HJB equations:

1. Linearize the HJB into a Chapman Kolmogorov partial differential equation (PDE)

by substituting Vt = −λ logΨt (15) (Kappen, 2005) and introducing a simplification

λR−1 = Σ (Theodorou et al., 2010).

2. Transform the Chapman Kolmogorov PDE into a path integral (Kappen, 2005), by

using the Feynman-Kac theorem.

3. Generalize the path integral by partitioning the control transition matrix Gt into

directly G
(c)
t and indirectly actuated parts (Theodorou et al., 2010).

This leads to the following path integral formulation of the value function:

Vt = −λ logΨt (15)

Ψti = lim
dt→0

∫

exp

(

−
1

λ
S̃(τ i)

)

dτ
(c)
i (16)

with S̃(τ i) = φtN +
N−1
∑

j=i

qtjdt+Cti (17)

where the integral is over paths, i.e. dτ
(c)
i = (dxti , . . . , dxtN). The accumulated cost S̃(τ i)

may be interpreted as the cost-to-go from time step i, i.e. the cost accumulated during the

rest of the trajectory starting at ti. Thus at the end when i = N , S̃(τ i) only consists of the

terminal cost S̃(τN) = φtN . At the beginning i = 1, and S̃(τ 1) corresponds to the sum

of the costs over the entire trajectory4 . The path integral over trajectories dτ i in (16) may

thus be interpreted as “the value at time step i is (the logarithm of) the exponentiation of the

cost-to-go at time step i over all possible trajectories.”

Generating all possible trajectories on a robot to exactly compute Vt would be a time-

consuming enterprise indeed. Instead, Eq. (16) may be approximated by sampling trajecto-

ries. However, in practical applications with high-dimensional state spaces, this sampling

would generate primarily trajectories of high cost, and finding low cost trajectories would

4 For completeness, the term Cti is 1
2

∑N−1
j=i

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(c)
tj+1

−x
(c)
tj

dt
− f

(c)
tj

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

G
(c)
tj

R−1G
(c)⊺
tj

+λ
2

∑N−1
j=i

log
∣

∣

∣
G

(c)
tj

G
(c)⊺
tj

∣

∣

∣
,

cf. (Theodorou et al., 2010).

9

be a question of luck, rather than wisdom. Also, the dynamics of the system may bias the

trajectories to be sampled in only a small part of the state space, which may not necessarily

be the part where low-cost trajectories are to be found. But having a path integral that can,

in principle, be estimated by performing Monte-Carlo roll-outs of the system is a big step

forward from having the value function Vt represented as HJB: a non-linear, second order

partial differential equation which does not have a general solution (13).

Given the value function in (15), we are able to compute the optimal command. We

do so by inserting the value function in (15) into the optimal command equation (14) and

acquire (18). Replacing Ψti in (18) with (16) and simplifying leads to (19).

uti = λR−1Gti

∇xti
Ψti

Ψti

(18)

=

∫

P (τ i)D(τ i)ǫ(τ i)dτ
(c)
i (19)

with P (τ i) =
e−

1
λ
S̃(τ i)

∫

e−
1
λ
S̃(τ i)dτ i

(20)

and D(τ i) = R−1G
(c)⊺
ti

(G
(c)
ti
R−1G

(c)⊺
ti

)G
(c)
ti

(21)

Here, P (τ i) is the probability of trajectory τ at time step i, and is inversely propor-

tional to the cost-to-go. Lower costs thus lead to higher probabilities. The optimal com-

mand at time step i is then computed as weighted average of the observed perturbation

ǫ(τ i) of the trajectory, weighted by the probability of the trajectory P (τ i). Thus, we have

inverse-cost weighted averaging, which is analogous to reward-weighted averaging as done

in POWER (8), as the inverse of a cost may be considered a reward.

As (21) makes clear, GPIC is model-based, and assumes knowledge of the system

model, i.e. control matrix G(xt) and passive dynamics f(xt). In Section 2.2.3, we see that

applying GPIC to parameterized policies and making the update rule iterative leads to a

very powerful, model-free policy improvement algorithm.

Although GPIC does not involve a parameterized policy, we can still very loosely apply

the ‘fact sheet’ questions from Section 2.

Fact sheet for GPIC

Perturbation: Action perturbation, but determined by the system. Follows directly from SOC

formulation in (9). It is not to be confused with the perturbations that REINFORCE and eNAC

generate themselves to foster exploration.

Trajectory: To perform an update, the cost and state at each time must be known. A substantial,

infeasible amount of roll-outs may be required to achieve a good approximation of (16); using all

possible paths leads to the exact solution.

Actor-critic: Although the value function is at the heart of GPIC’s derivation, it is no longer

explicitly represented, or approximated by a function approximator, in (19)-(21). Therefore, it

cannot be an actor-critic.

Update: The concept of reward-weighted averaging is already apparent in GPIC (19), but it is

not yet applied to policy parameters (GPIC does not use parameterized policies), as for instance

in POWER. To perform the update, the system model must be known.

2.2.3 From Generalized Path Integral Control to PI2

The PI2 algorithm is a special case of the GPIC optimal control solution in (19), applied

to control systems with parameterized control policy (Theodorou et al., 2010) as in (22).

10

That is, the control command is generated from the inner product of a perturbed parameter

vector θ + ǫt with a vector of basis functions gt: g
⊺

t (θ + ǫt). The noise ǫt is interpreted as

exploration noise sampled from a normal distribution N (0,Σ), where Σ is a user controlled

parameter. Since parameters rather than actions are perturbed, PI2 is a parameter perturbing

approach.

The path integral formulation in (19) applied to parameterized policies provides us with

the following parameter update rule for PI2:

Policy perturbation during a roll-out

ut = g
⊺

t (θ + ǫt) (22)

Parameter update for each time step through reward-weighted averaging

δθti = Mti,k

K
∑

k=1

[P (τ i,k) ǫti,k]

(23)

with P (τ i,k) =
e−

1
λ
S(τ i,k)

∑K
k=1[e

− 1
λ
S(τ i,k)]

(24)

and S(τ i,k) = φtN ,k +

N−1
∑

j=i

qtj ,k +
1

2

N−1
∑

j=i+1

(θ +Mtj ,kǫtj ,k)
⊺R(θ +Mtj ,kǫtj ,k)(25)

and Mtj ,k =
R−1gtj ,k gT

tj ,k

gT
tj ,k

R−1gtj ,k
(26)

Weighted average over time steps

[δθ]j =

∑N−1
i=0 (N − i) wj,ti [δθti]j
∑N−1

i=0 wj,ti(N − i)
(27)

Actual parameter update

θ
new = θ + δθ (28)

The cost-to-go S(τ i,k) is computed for each of the K roll-outs and each time step i = 1 . . . N .

The terminal cost φtN , immediate costs qti and command cost matrix R are task-dependent

and provided by the user. Mtj ,k is a projection matrix onto the range space of gtj under

the metric R−1, cf. (Theodorou et al., 2010). The probability of a roll-out P (τ i,k) is com-

puted as the normalized exponentiation of the cost-to-go. This assigns high probabilities to

low-cost roll-outs and vice versa. The intuition behind this step is that trajectories of lower

cost should have higher probabilities. The interpretation of Pk as a probability follows from

applying the Feynman-Kac theorem to the SOC problem, cf. (Theodorou et al., 2010).

The key algorithmic step is in (23), where the parameter update δθ is computed for each

time step i through probability weighted averaging over the exploration ǫ of all K trials.

Trajectories with higher probability, and thus lower cost, therefore contribute more to the

parameter update.

A different parameter update δθti is computed for each time step. To acquire one pa-

rameter vector θ, the time-dependent updates must be averaged over time, one might simply

use the mean parameter vector over all time steps: δθ = 1
N

∑N
i=1 δθti . Although temporal

averaging is necessary, the particular weighting scheme used in temporal averaging does

not follow from the derivation. Rather than a simple mean, Theodorou et al. (2010) suggest

the weighting scheme in Eq. (27). It emphasizes updates earlier in the trajectory, and also

makes use of the activation of the jth basis function at time step i, i.e. wj,ti (32).

Apart from being applied to parameterized policies rather than determining optimal

controls, the key differences between GPIC and PI2 are:

11

PI2 is model-free. In SOC, the passive dynamics f(xt) and control matrix G(xt) represent

models of the system. In the parameterized policies on which PI2 acts, these are

replaced with the linear spring-damper system ft and the basis functions gt. These

are not models of the control system, i.e. the gravity vector or the inertia matrix, but

rather functions that can be parameterized freely by the user.

Perturbations are generated by PI2, not the system. Whereas in GPIC perturbations arise

from the stochasticity in the system, PI2 rather samples perturbations itself to actively

foster exploration. These perturbation are sampled from a Gaussian ǫt ∼ N (0,Σ),
where Σ is an open parameter set by the user. Because PI2 perturbs the policy pa-

rameters (θ + ǫt), PI2 is a parameter perturbing method.

PI2 is iterative. The path integral (19) is not iterative, and computes the optimal controls

from a large batch of trajectories in one go. In high-dimensional systems, many

of these trajectories will be ‘useless’ trajectories with high cost, which do not con-

tribute because they are assigned a low probability. To have a sufficient amount of

useful trajectories, an often infeasible amount of trajectories must be sampled. PI2

addresses this by applying an iterative strategy, which starts with an initial estimate

of the optimal parameters θinit. In robotics, this estimate is typically acquired through

supervised imitation learning. PI2 then samples K perturbations locally around θ
init.

Because θ
init is assumed to already be a relatively good parameterization, local sam-

ples around θ
init will in general also not be too bad. The update is therefore based

on the variance within a set of trajectories that are all quite useful, rather than con-

taining many useless trajectories. This local strategy is also applied to all subsequent

parameters arising from updates. The ‘single shot’ global sampling from (19) has

thus been replaced by a local iterative approach that searches incrementally amongst

mainly good roll-outs.

As demonstrated in (Theodorou et al., 2010), PI2 is able to outperform the previous RL

algorithms for parameterized policy learning described in Section 2.1 by at least one order

of magnitude in learning speed (number of roll-outs to converge) and also lower final cost

performance. As an additional benefit, PI2 has no open algorithmic parameters, except for

the magnitude of the exploration noise Σ, and the number of trials per update K.

Although applying our four ‘fact sheet’ questions to GPIC was quite forced — it does

not use a parameterized policy — we may readily construct one for PI2.

Fact sheet for PI2

Perturbation: The parameters of the policy are perturbed: θ +ǫt.

Trajectory: To compute the cost-to-go (25), the trajectory must contain the reward received at

each time step rti=1...N
. The states and actions are not needed to perform an update.

Actor-critic: No value function is approximated, so PI2 is a direct policy search method.

Update: The update is based on reward-weighted averaging.

Application to Dynamic Movement Primitives So far, the most impressive results of PI2

have been demonstrated when using Dynamic Movement Primitives (DMPs) (Ijspeert et al.,

2002) as the underlying parameterized control policy. DMPs consist of a set of dynamical

system equations:

1

τ
ẍt = ft + g

⊺

t θ Transform. system (29)

ft = α(β(g − xt)− ẋt) Spring-damper (30)

12

[gt]j =
wj(st) · st
∑p

k=1wk(st)
(g − x0) Basis functions (31)

wj = exp
(

−0.5hj(st − cj)
2
)

Gaussian kernel (32)

1

τ
ṡt = −αst Canonical. system (33)

The core idea behind DMPs is to perturb a simple linear spring-damper system ft with a

non-linear component g
⊺

t θ to acquire smooth movements of arbitrary shape. In the context

of PI2, the commands ut = g
⊺

t (θ + ǫt) are thus taken to be the output of the non-linear

system in (29).

The intuition of this approach is to create desired trajectories xd,t, ẋd,t, ẍd,t for a motor

task out of the time evolution of a nonlinear attractor system, where the goal g is a point

attractor and x0 the start state. The (policy) parameters θ determine the shape of the attrac-

tor landscape within a nonlinear function approximator, which allows to represent almost

arbitrary smooth trajectories, e.g., a tennis swing, a reaching movement, or a complex dance

movement. The canonical system st is the phase of the movement, which is 1 at the begin-

ning, and decays to 0 over time. The multiplication of gt with st in (31) ensures that the

effect of g
⊺

t θ disappears at the end of the movement when s = 0. The entire system thus

converges to the goal g.

2.3 Policy Improvement through Black-box Optimization

Policy improvement may also be achieved with BBO. In general, the aim of BBO is to find

the solution x∗ ∈ X that optimizes the objective function J : X 7→ R (Arnold et al., 2011).

As in Stochastic Optimal Control and PI2, J is usually chosen to be a cost function, such that

optimization corresponds to minimization. Let us highlight three aspects that define BBO:

1) Input: no assumptions are made about the search space X; 2) Objective function: the

function J is treated as a ‘black box’, i.e. no assumptions are made about, for instance,

its differentiability or continuity; 3) Output: the objective function returns only one scalar

value. A desirable property of BBO algorithms that are applicable to problems with these

conditions is that they are able to find x∗ using as few samples from the objective function

J(x) as possible. Many BBO algorithms, such as CEM (Rubinstein and Kroese, 2004),

CMA-ES (Hansen and Ostermeier, 2001) and NES (Wierstra et al., 2008), use an iterative

strategy, where the current x is perturbed x+ǫk=1...K , and a new solution xnew is computed

given the evaluations Jk=1...K = J(x+ ǫk=1...K).
BBO is applicable to policy improvement (Rückstiess et al., 2010b) as follows: 1) In-

put: the input x is interpreted as being the policy parameter vector θ. Whereas RL al-

gorithms are tailored to leveraging the problem structure to update the policy parameters

θ, BBO algorithms used for policy improvement are completely agnostic about what the

parameters θ represent; θ might represent the policy parameters for a motion primitive to

grasp an object, or simply the 2-D search space to find the minimum of a quadratic function.

2) Objective function: the function f executes the policy π with parameters θ, and records

the rewards rti=1:N . 3) Output: J must sum over these rewards after a policy execution:

R =
∑N

i=1 rti to achieve an output of only one scalar value. Examples of applying BBO to

policy improvement include (Ng and Jordan, 2000; Busoniu et al., 2011; Heidrich-Meisner

and Igel, 2008a; Rückstiess et al., 2010b; Marin and Sigaud, 2012; Fix and Geist, 2012).

Given the definition of BBO, we see that applying it to policy improvement already

allows us categorize it in terms of the four questions in the fact sheet, without considering

specific algorithms.

Perturbation: Since J takes the policy parameters as an argument, the perturbation

must also take place in this space. Therefore, all BBO approaches to policy improvement

must be policy parameter perturbing methods. Furthermore, since the policy is executed

13

within the function J , the parameter perturbation θ + ǫ can be passed only once as an

argument to J before the policy is executed. The perturbations ǫ therefore cannot vary over

time, as is the case in REINFORCE/eNAC/POWER; this difference is apparent when

comparing the left and right illustrations in Figure 5. As Heidrich-Meisner and Igel (2008a)

note: “in evolutionary strategies [BBO] there is only one initial stochastic variation per

episode, while the stochastic policy introduces perturbations in every step of the episode.”.

policy execution loop

π+

parameter perturbation

θ

ǫt

θ + ǫt
E

ut

xt

policy execution loop

π+

parameter perturbation

θ

ǫ

θ + ǫ
E

ut

xt

Figure 5: Left: Parameter perturbation at each time step, inside the policy execution loop (repeated from Figure 4). Right:

Since policy parameters are perturbed outside the policy execution loop in BBO, they cannot vary over time.

Trajectory: Since the cost function returns only the total cost R =
∑N

i=1 rti , it is a

rather minimalist degenerate trajectory, representing the cost-to-go for ti=1 only. Because

states and actions are not stored in this ‘trajectory’, BBO by definition cannot make use of

state/action information, as visualized in Figure 6.

This is a further reason why BBO must be parameter perturbing; using a stochastic

policy inside the cost function J would lead to J returning different values for the same

θ. If no information about the states visited/actions performed is available, no algorithm is

able to map these differences in cost to differences in policy parameters. A defining feature

of RL approaches is that they leverage information about the states that were visited, and

about which states yielded which rewards (Togelius et al., 2009).

rt1 rt2 . . . rtN
xt1 xt2

. . . xtN

ut1
ut2

. . . utN

rt1 rt2 . . . rtN

only rewardsstates/actions/rewards

∑
N J

aggregrate scalar reward

Figure 6: Illustration of the different types of information that may be stored in the trajectories that arise from policy roll-outs.

Algorithms that use only the aggregate scalar reward are considered to be BBO approaches to policy improvement.

Generic fact sheet for BBO

Perturbation: The parameters of the policy are perturbed (θ +ǫ), and must be constant during the

execution of the policy.

Trajectory: A degenerate trajectory consisting of only one scalar value, representing the total cost

of the trajectory:
∑N

i=1 rti .

Actor-Critic: Since no information about states is available in the trajectories, and value functions

are defined over states, BBO methods cannot approximate a value function. Therefore, they cannot

be actor-critic.

Update: The update method depends on the algorithm. Vanilla gradients (gradient descent), natu-

ral gradients (NES) and reward-weighted averaging (CMA-ES,CEM) are all used.

In fact, if a policy improvement algorithm 1) uses policy perturbation, where the per-

turbation is constant during policy execution, and 2) stores only the scalar total cost of a

roll-out in the trajectory, then it is by definition a BBO approach to policy improvement,

14

because the algorithm that works under these conditions is by definition a BBO algorithm.

As is pointed out by Rückstiess et al. (2010b): “the return of a whole RL episode can be

interpreted as a single fitness evaluation. In this case, parameter-based exploration in RL

is equivalent to black-box optimization.”. However, this distinction is not always made so

clearly in the literature, where algorithms are referred to as RL or BBO based rather on

their derivation and community that is being addressed. What also makes this distinction

less clear is that RL is sometimes also considered to be a problem definition, rather than a

solution or algorithm in itself; some of these solutions are considered to be ‘typical’ RL so-

lutions to RL problems, whereas others are considered to be BBO solutions to RL problems.

Where the line is drawn is a topic of vigorous debate.

We use the term ‘policy improvement’ for the general problem of optimizing policy

parameters with respect to a utility function. BBO approaches to policy improvement are

defined by the two properties above. All other approaches are RL. If a particular algorithm

is preferably considered to be a RL approach, we are agnostic about this. But if the two

conditions above (one scalar return, constant parameter perturbation) hold, it must at least

be acknowledged that the algorithm may also be interpreted as being a BBO algorithm.

Within the scope of this article, we define BBO and RL algorithms to be mutually exclusive;

we do so for clarity only, and not to take sides in the debate.

The relative advantages and disadvantages of using the states and rewards encountered

during a roll-out rather than treating policy improvement as BBO depend on the domain

and problem structure, and are not yet well understood (Heidrich-Meisner and Igel, 2008a).

Togelius et al. (2009, Section 4.1) list five conjectures about which approach outperforms

the other for which types of RL problems.

2.3.1 Finite-difference methods

We now briefly present finite-difference (FD) methods, as they are one of the oldest and

perhaps simplest policy gradient approaches, and may be interpreted as performing BBO

on policy parameters. Here, policy parameters θ are varied K times with perturbations ǫk,

and a regression of ǫk on the resulting performance differences δJk is performed:

Jref = J(θ) Reference (34)

Jk = J(θ + ǫk) with k = 1 . . .K Perturb (35)

δJk=1:K = Jk=1:K − Jref Difference (36)

∇θJ(θ) = (∆Θ⊺∆Θ)−1∆Θ⊺∆J Gradient (37)

with ∆Θ = [ǫ1, . . . , ǫK]⊺

and ∆J = [δJ1, . . . , δJK]⊺

θ
new = θ + α∇θJ(θ) Update (38)

This algorithm performs BBO, because θ is passed to J , and J is a black-box objective

function that returns a scalar value. In FD, this value is a reward, rather than a cost. Note

that in none of the equations above we see a policy, states, or actions; all this information

is dealt with within the objective function J . The equations above may in principle also be

used to find the minimum of a quadratic function. For FD, we see that K + 1 evaluations

of the black-box objective function J , corresponding to K + 1 executions of the policy, are

required to perform an update of θ. The PEGASUS algorithm (Ng and Jordan, 2000) is an

example of applying the concept of finite-differencing to policy improvement.

15

2.3.2 Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES)

CMA-ES (Hansen and Ostermeier, 2001) is an example of an existing BBO method that

was applied only much later to the specific domain of policy improvement (Heidrich-

Meisner and Igel, 2008a). In BBO, CMA-ES is considered to be a de facto standard (Rückstiess

et al., 2010b). We describe it a bit more extensively here, because we use CMA-ES for a

comparison in Section 4.2.

CMA-ES searches for the global minimum as listed in Algorithm 1. First, CMA-ES

samples K exploration vectors ǫk=1...K from a Gaussian distribution N (0, σ2Σ) (line 5),

where σ is the ‘step-size’, and Σ is the covariance matrix. The cost Jk of each of these sam-

ples is then computed with the black-box cost function J (line 7). The exploration vectors

are then sorted with respect to their cost, and only the best Ke samples are kept (line 9).

Each of these Ke ‘elite’ samples is assigned a weight. The function that maps the cost Jk
to the weight Pk are chosen by the user, and must satisfy the constraints

∑Ke

k=1 Pk = 1 and

P1 ≥ · · · ≥ PKe . Thus, samples with lower cost are assigned larger weights than those with

higher cost. The default suggested by Hansen and Ostermeier (2001) is listed in line 11, i.e.

Pk = ln (max (K/2,Ke) + 0.5)) − ln(k). The parameter update is then computed with

while cost not converged do1

Exploration2

foreach k in K do3

Sample exploration vector from Gaussian4

ǫk ∼ N (0, σ2Σ) ;5

Determine cost of the sample6

Jk = J(θ + ǫk)7

Compute weights (probabilities)8

ǫk=1...K ← sort ǫk=1...K w.r.t Jk=1...K9

foreach k in K do10

Pk =

{

ln (max (K/2,Ke) + 0.5))− ln(k) if k ≤ Ke

0 if k > Ke11

Update mean: Reward-weighted averaging over K trials12

δθ =
∑K

k=1 [Pkǫk]13

Update covariance matrix: Reward-weighted averaging14

Σtmp =
∑Ke

k=1 Pkǫkǫ
⊺

k15

Update parameters16

θ ← θ + δθ17

Update Covariance Matrix using Evolution Paths18

pσ ← (1− cσ) pσ +
√

cσ(2− cσ)µPΣ −1 (δθ/σ)19

σnew = σ × exp

(

cσ
dσ

(

‖pσ‖
E‖N (0,I)‖

− 1
)

)

20

pΣ ← (1− cΣ) pΣ + hσ

√

cΣ(2− cΣ)µP (δθ/σ)21

Σnew = (1− c1 − cµ) Σ + c1(pΣp
T
Σ + δ(hσ)Σ) + cµΣtmp22

Algorithm 1: The CMA-ES algorithm.

reward-weighted averaging using the weights Pk (line 13), i.e. δθ =
∑K

k=1 [Pkǫk]. The

covariance matrix is also updated using reward-weighted averaging (line 15).

The last part (lines 19-22) further adapts the step-size σ and covariance matrix Σ, using

the so-called ‘evolution paths’ pσ and pΣ, which store information about previous parameter

updates. Although these last lines lead to more robust convergence in practice, we do not

elaborate on them here, as they do not involve the ‘core’ of the algorithm, and are not

relevant for our purposes. For a full explanation of the algorithm we refer to Hansen and

Ostermeier (2001).

16

2.3.3 Other BBO Algorithms Applied to Policy Improvement

Further BBO algorithms that have been applied to policy improvement include the Cross-

Entropy Method (CEM) (Rubinstein and Kroese, 2004; Busoniu et al., 2011; Heidrich-

Meisner and Igel, 2008b), which is very similar to CMA-ES, but has simpler methods for

determining the weights Pk and performing the covariance matrix update. For a comparison

of further BBO algorithms such as PGPE (Rückstiess et al., 2010b) and Natural Evolution

Strategies (NES) (Wierstra et al., 2008) with CMA-ES and eNAC, please see the overview

article by Rückstiess et al. (2010b).

NEAT+Q is a hybrid algorithm that actually combines RL and BBO in a very original

way (Whiteson and Stone, 2006). Within our classification, NEAT+Q is first and fore-

most an actor-critic approach, as function approximation is used to explicitly represent the

value function. What sets NEAT+Q apart is that the representation of the value function

is evolved through BBO, with the “Neuro Evolution of Augmenting Topologies” (NEAT).

This alleviates the user from having to design this representation; unsuitable representa-

tions may keep RL algorithms from being able to learn the problem, even for algorithms

with proven convergence properties (Whiteson and Stone, 2006).

2.4 Classification of Policy Improvement Algorithms

Figure 7 is an extended version of Figure 1, which now includes all the questions of our

fact sheet. This table will be especially useful for our discussion in Section 5 about which

classes of algorithms are appropriate for which classes of problems. The figure also reminds

us of the main aim of this article: continuing the SOC →GPIC →PI2 stream to acquire the

PIBB algorithm.

BBO

Trajectory? states/actions/rewards
(at each time step)

rewards only
(at each time step) (aggregrated)

Perturbation? action
(at each time step)

parameter
(at each time step) (constant)

Actor-Critic? act.-critic direct policy search

U
p
d
a
te

?

vanilla
gradient

natural
gradient

reward-w.
averaging PIBB

REINFORCE

eNAC

POWER

SOC

GPIC PI2

FD

PGPE

NES

CEM

CMA-ES

Figure 7: Classification of policy improvement algorithms, given their fact sheets. The two arrows represent chronology and

order of derivation.

3 From PI2 to PIBB

Figure 8 repeats the ‘stream’ from SOC to GPIC to PI2. In terms of exploration and

parameter updates, it becomes apparent that PI2 is similar to the BBO algorithm CMA-

ES. In fact, they are so similar that a line-by-line comparison of the algorithms is feasible,

as is done by Stulp and Sigaud (2012).

Figure 8 suggests that two modifications are required to convert PI2 into a BBO algo-

rithm. First of all, the policy perturbation method must be adapted. PI2 and BBO both use

policy parameter perturbation, but in PI2 it varies over time (θ+ǫt), whereas it must remain

17

constant over time in BBO (θ + ǫ). In Section 3.1, we therefore simplify the perturbation

method in PI2 to be constant over time, which yields the algorithm variation PI2 .

Second, we must adapt PI2 such that it is able to update the parameters based only on

the scalar aggregated cost J =
∑N

i=1 rti , rather than having access to the reward rt at each

time step t. This is done in Section 3.2, and yields the PIBB algorithm. An important aspect

of these two simplifications for deriving PIBB from PI2 is that they do not violate any of the

assumptions required for the derivation of PI2 from SOC, which we motivate in more detail

throughout this section.

BBO

Trajectory?
xt,ut, rt

(at each time step)

rewards only
(at each time step) (aggregrated)

Perturbation? action
(at each time step)

parameter
(at each time step) (constant)

PIBBSOC GPIC PI2 PI2 CMA-ES

Figure 8: Simplifications to PI2 to derive PIBB, a BBO algorithm.

3.1 Simplifying the Exploration Method

This section is concerned with analyzing exploration in PI2. In particular we: 1) Argue

on theoretical grounds why exploration vectors ǫ must not be sampled anew at each time

step during a roll-out, and present two previously proposed alternative exploration meth-

ods (Theodorou et al., 2010; Tamosiumaite et al., 2011; Stulp and Sigaud, 2012). These

exploration variants of PI2 are denoted PI2 /PI2 /PI2 . 2) Show that these three methods

lead to different levels of exploration in policy space, and that compensating for this effect

leads the methods to perform essentially identical.

Especially the last point provides a deeper insight into the underlying cause for the

performance differences that have been observed for the three exploration methods, and is

one of the contributions of this article. Furthermore, demonstrating that constant exploration

(PI2) is not outperformed by the other two exploration methods (PI2 /PI2) paves the way

for our comparison between episodic RL and BBO in Section 4.1.

3.1.1 Parameter Perturbation in the Context of the PI2 Derivation

As discussed in Section 2.2.3, applying GPIC to parameterized policies, which yields PI2,

has several consequences:

• In GPIC, actions are perturbed, whereas PI2 is a parameter perturbing method. This

represents the left-to-right stream in Figure 8.

• Perturbations are no longer caused by the system, but rather generated by the PI2.

Therefore, Σ is an open parameter, rather than determined by the system. In PI2,

Σ = λR−1, where the λ is the parameter that controls the magnitude of exploration,

and R is the command cost matrix. Thus, the scalar λ determines the magnitude of

the exploration.

• In SOC, it is assumed that the stochasticity is independent of time, and ǫti is therefore

different for each time step ti. If ǫti would be constant over time, it would be a bias

(e.g. a 1 degree offset due to a calibration error in a robot joint) rather than noise (e.g.

stochasticity arising from noisy encoders). The PI2 algorithm inherits this property

18

through its derivation from SOC, and thus also has time-varying perturbations ǫti .

Note a subtle difference between the two: in SOC a time-varying perturbation ǫt is

added to a time-varying command ut, whereas in PI2 a time-varying perturbation ǫt

is added to a constant parameter vector θ.

An important result of this last point is that the stochasticity must, in principle, no

longer be time-independent, as is the case when applying it to motor commands. In prac-

tice, time-varying exploration has several disadvantages, which have been pointed out in

Section 2.1.3. In practical applications of PI2, the noise is therefore not varied at every time

step (Theodorou et al., 2010; Tamosiumaite et al., 2011; Stulp et al., 2012).

3.1.2 Three Proposed Methods for Parameter Perturbation

We refer to the ‘canonical’ version of PI2, which samples different exploration vectors ǫt

for each time step, as PI2 . The small blue symbol serves as a mnemonic to indicate that

exploration varies at a high frequency, as seen in the upper left graph of Figure 9, which

plot ǫt against time t.
As an alternative to time-varying exploration, Theodorou et al. (2010) propose to gener-

ate exploration noise only for the basis function with the highest activation. We refer to this

second method as PI2 with exploration per basis function, or PI2 , where the green graphs

serves as a mnemonic of the shape of the exploration for one basis function. The difference

between PI2 and PI2 is visualized in the top row of Figure 9, which depicts ǫt over time

for an exploration magnitude5 of λ = 0.05.

Alternatively, ǫti,k can be set to have a constant value during a roll-out. Thus, for each

of the K roll-outs, we generate ǫk exploration vectors before executing the policy, and keep

it constant during the execution, i.e. ǫti,k = ǫk. We call this ‘PI2 with constant exploration’,

and denote it as PI2 , where the horizontal line indicates a constant value over time. Note

that ǫk will still have a temporally extended effect, because it is multiplied with a basis

function that is active throughout an extended part of the movement, as depicted in the right

graph, second row in Figure 9.

Exploration in Parameter Space vs. Exploration in Policy Output Space The third

row of Figure 9 depicts the cumulative activation of the (third) perturbed basis function:
∑t

s=0 gtǫt. For PI2 (left), we see that, since consecutive positive/negative perturbations

cancel each other out, the cumulative activation is quite low. For PI2 (center), where there

is no canceling out, the cumulative activation is much higher. For PI2 (right) it is the

highest, because the exploration vector ǫt is never 0, and thus has the largest effect when

multiplied with gt.

Since gtǫt directly determines the acceleration of the DMP output (29), higher cumu-

lative activations lead to higher accelerations. This becomes apparent in the fourth row of

Figure 9, which depicts 50 roll-outs of the DMP, all sampled with an exploration magni-

tude of λ = 0.05. Upon visual inspection of the trajectories in the fourth row of Figure 9,

the variance for PI2 is higher than for the other two. To quantify this effect, we perform

K = 1000 roll-outs, and determine the standard deviation of the DMP output at time t as:

σx
t =

√

1
K−1

∑K
k=1

(

xkt − x̄t
)2

. The solid dark graphs in the final row in Figure 9 depict

this standard deviation for the 1000 roll-outs for the three exploration methods.

If we set the exploration magnitude for PI2 to a higher value of λ = 0.170, we see

that the standard deviation (dashed blue line, lower left graph) in policy output space (σx
t)

5In this section, we choose R = IB , where B is the number of basis functions, such that Σ = λI−1 = λI.

This is convenient, because the magnitude of exploration in parameter space is determined solely by the scalar λ.

Higher λ thus means more exploration in parameter space, and therefore more variance in the output trajectories

of the DMP.

19

PI2 PI2 PI2

Figure 9: Visualization of the three different forms of exploration, using one roll-out of a 1-D DMP of duration 0.5s. The

DMP has 10 basis functions, of which the third is highlighted. Top row: exploration vector ǫt over time. Second row: The

10 basis functions activations gt (light grey and highlighted dashed), and the exploration vector multiplied with the basis

function activation g
⊺

t ǫt (solid). Third row: Cumulative activation of the third (highlighted) basis functions. Fourth row:

Output of the DMP xt for 50 roll-outs. Final row: Standard deviation in the policy output during the movement, averaged

over 1000 roll-outs.

develops the same as PI2 for λ = 0.05. We use PI2 with λ = 0.05 as a reference,

because this is the exploration method and exploration magnitude used by Theodorou et al.

(2010). For PI2 , the story is the converse, and a lower exploration magnitude of λ = 0.025
is required to achieve the same exploration magnitude in policy output space, cf. the red

dashed graph.

Summary: By setting the policy parameter exploration magnitude λ appropriately, we

achieve essentially the same exploration in the policy output for PI2 , PI2 and PI2 . The

practical implications and relation to previous work (Theodorou et al., 2010; Tamosiumaite

et al., 2011; Stulp and Sigaud, 2012) of this is made clear in the empirical comparison that

follows.

3.1.3 Empirical Comparison

The experiments in this article are based on the same tasks as presented by Theodorou et al.

(2010). The main advantage of using these tasks is that it allows for a direct comparison

with the results reported by Theodorou et al. (2010). The tasks are described in Appendix A.

For each learning session, we are interested in comparing the convergence speed and

final cost, i.e. the value to which the learning curve converges. Convergence speed is mea-

sured as the parameter update after which the cost drops below 5% of the initial cost before

learning. The final cost is the mean cost over the last 100 updates. For all tasks and algo-

rithm settings, we execute 10 learning sessions (which together we call an ‘experiment’),

and report the µ± σ over these 10 learning sessions. For all experiments, the DMP and PI2

parameters are the same as in (Theodorou et al., 2010), and listed in Appendix A.

20

Figure 10 summarizes the results of comparing the different exploration methods on the

example Task 2; Figure 11 presents the results for the other tasks. The top graph represents

the learning curves (µ±σ) over 10 learning sessions, with exploration magnitude λ = 0.05
for all exploration methods.

The left graphs enables the comparison of convergence speed. To evaluate the conver-

gence speed, we determine when each of the learning curves drops below 5% of the cost

before learning. The means of these values for the three exploration methods are visualized

as vertical lines in the left graph of Figure 10. At the top of these lines, a horizontal bar

represents the standard deviation. For convergence we see that PI2 <PI2 <PI2 (p-value

< 0.001), i.e. constant exploration converges quickest.

The right graphs compare the final cost of each method, but depicts the average learning

curve during the last 100 updates, after which all learning curves have converged. The

vertical lines and horizontal bars in the right graphs visualize the µ±σ of the final cost over

the 10 learning sessions, where the final cost is defined as the mean over a learning curve

during the last 100 updates. For the value and variance in the final cost, we see that PI2

<PI2 <PI2 (p-value < 0.001), i.e. this time PI2 performs significantly better than the

other two methods.

Generating exploration only for the basis function with the highest approximation (PI2)

thus provides a good trade-off between achieving fast convergence and a low final cost,

which is why it has been independently recommended in different applications of PI2 (Theodorou

et al., 2010; Tamosiumaite et al., 2011). If convergence speed is the most important feature,

we have argued that constant exploration is best (Stulp and Sigaud, 2012).

However, the second row of graphs shows that, when we normalize for the variance

in the policy output by setting λ = 0.170/0.050/0.025 for PI2 /PI2 /PI2 respectively,

as discussed in Section 3.1.2, that the difference between the PI2 variations do not differ

signicantly (p-value > 0.07 for all pairwise comparisons) and the mean and variance in the

final cost is almost identical (p-value > 0.67).

Decaying Exploration as Learning Progresses The value and variance in final cost is

still quite high when considering the top two rows in Figure 10. A typical reason for high

variance in the final cost is that the high exploration that was suitable at the beginning

of learning prevents the algorithm from converging to the lowest possible cost at the end

of learning. For this reason, exploration is often decayed exponentially as learning pro-

gresses (Stulp and Sigaud, 2012). The bottom graphs of Figure 10 depicts the results for the

three exploration methods, with a decay factor of γ = 0.98, i.e. the exploration at update

u is determined by Σu = γuλI. Here λ = {0.05, 0.170, 0.025} as above, for normalized

exploration in policy output space. Again, differences in convergence speed are not signif-

icant (p-value > 0.05), and final cost the final cost is 0 for all exploration methods. This is

the minimal possible cost, corresponding to passing through the via-point perfectly.

Results on All Tasks Figure 11 summarizes the convergence speed and final cost for all

five tasks described in the Appendix A, where the λ has been normalized to achieve the

same variance in policy output, and with decaying exploration. For each task, all values

have been normalized w.r.t. the value for PI2 . For instance, for Task 2, the convergence

below 5% of the initial cost in the bottom graph of Figure 10 was on average at updates

14.7, 13.7, and 13.0 for PI2 ,PI2 , and PI2 . Normalized for PI2 , this becomes 1.07, 1.00

and 0.95, as highlighted in Figure 11.

From this bar plot, we derive the following conclusions:

• The final costs do not differ much between the exploration methods. On average it is

2.2% higher than for PI2 , with a maximum of 6.6% for Task 5. The differences are

only significant for Task 1 & 5 (p-value < 0.05).

21

Same variance in parameter space

PI2 /PI2 /PI2 : λ = 0.05

Significantly different convergence speed

and final cost between all methods (p-value

< 0.001 for all pair-wise comparisons)

0 5 10 15 20 25 30
0

50

100

150

200

250

21.7
11.4

8.1

number of updates (u)

c
o
s
t

PI2PI2PI2

900 950 1,000 1,050
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

number of updates (u)

×
2
0
0
0
.0

Normalized variance in parameter space

⇒ Same variance in policy output

PI2 /PI2 /PI2 : λ = 0.170/0.050/0.025

Differences in convergence speed and final

cost not significant (p-value > 0.07 for all

pair-wise comparisons)

0 5 10 15 20 25 30
0

50

100

150

200

250

13.0
12.2

11.8

number of updates (u)

c
o
s
t

PI2PI2PI2

900 950 1,000 1,050
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

number of updates (u)

×
2
0
0
0
.0

Normalized variance in parameter space

⇒ Same variance in policy output

PI2 /PI2 /PI2 : λ = 0.170/0.050/0.025

Decaying variance as learning progresses

λu = γuλ, with γ = 0.98

Differences in convergence speed and final

cost not significant (p-value > 0.05 for all

pair-wise comparisons)
0 5 10 15 20 25 30

0

50

100

150

200

250

14.7
13.7

13.0

number of updates (u)

c
o
s
t

PI2PI2PI2

900 950 1,000 1,050
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

number of updates (u)
×

2
0
0
0
.0

Figure 10: Learning curves for the three different methods of generating exploration (PI2 , PI2 and PI2) for Task 2. The

three rows represent different parameter settings of the learning algorithm. The left graphs, which highlight differences in

convergence speed, shows the learning curves (µ ± σ over 10 separate learning sessions) during the first 32 updates, which

corresponds to 480 trials. The right graphs highlight the cost after convergence, and depicts the learning curves (only µ
for clarity) between updates 900 and 1000. The y-axis is zoomed ×2000 in comparison to the left graph. Annotations are

described in the text.

• The convergence speed varies by 10% between exploration methods, except for Task 1,

where they differ by almost 20%. The convergence speed differs significantly between

methods only for Task 1 (p-value < 0.05).

• Convergence speed is inversely related to final cost. That is, if a method has a faster

convergence than the baseline, it will have a higher final cost. This represents the general

trade-off between convergence speed and final cost. Note that this does not hold for Task

2 and 3, because the final cost goes to 0 for all methods.

3.1.4 Conclusion for Exploration Methods

In conclusion, the faster convergence as observed with per-basis (Theodorou et al., 2010;

Tamosiumaite et al., 2011) or constant (Stulp and Sigaud, 2012) exploration noise does not

seem to be caused by intrinsic properties of the exploration method, but rather by the higher

level of exploration they lead to in the output of the policy. When choosing the parameter

exploration magnitude such that it leads to the same amount of exploration in task space,

the exploration methods have much more similar convergence speed and final cost, and

which is faster or slower depends on the task. For all methods, the advantages of high initial

exploration for fast convergence and exploitation of the learned policy after learning may

be achieved by decaying exploration over time.

22

PI2 /PI2 /PI2 : λ = 0.170/0.050/0.025
λu = γuλ, with γ = 0.98

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

1.07
1.00

0.95

R
e

la
ti
ve

c
o

n
ve

rg
e

n
c
e

u
p

d
a

te

PI2 PI2 PI2

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
ve

fi
n

a
l
c
o

s
t

PI2 PI2 PI2

Figure 11: Summary of the results on all five experiments with normalized and decaying exploration.

3.2 Simplifying the Parameter Update

In this section, we simplify the parameter update rule of PI2 which yields the simpler PIBB

algorithm. We motivate why this simplication is valid within the PI2 derivation, and empir-

ically compare PI2 and PIBB.

3.2.1 Temporal Averaging in the Context of the PI2 Derivation

In PI2, a different parameter update δθti is computed for each time step i. This is caused

by its derivation from GPIC, where motor commands ut are different at each time step; it

is difficult to imagine a task that requires a constant motor command during a roll-out. But

since the policy parameters θ are constant during a roll-out, there is a need to condense the

N parameters updates δθti=0:N into one update δθ. This step is called temporal averaging,

and was proposed by Theodorou et al. (2010) as:

[δθ]d =

∑N
i=1(N − i+ 1) wd,ti [δθti]d
∑N

i=1wd,ti(N − i+ 1)
. (39)

This temporal averaging scheme emphasizes updates earlier in the trajectory, and also

makes use of the basis function weights wd,ti . However, since this does not directly follow

from the derivation “[u]sers may develop other weighting schemes as more suitable to their

needs.” (Theodorou et al., 2010). As an alternative, we now choose a weight of 1 at the

first time step, and 0 for all others. This means that all updates δθti are ignored, except the

first one δθt1 , which is based on the cost-to-go at the first time step S(τ 1,k). By definition,

the cost-to-go at t1 represents the cost of the entire trajectory. This implies that we must

only compute the cost-to-go S(τ i,k) and probability P (τ i,k) for i = 1. This simplified PI2

variant, which does not use temporal averaging, and which we denote ‘PIBB’ is presented in

more detail in Section 4.

Note that this simplification depends strongly on using constant exploration noise during

a roll-out. If the noise varies at each time step or per basis function, the variation at the

first time step ǫt1,k is not at all representative for the variations throughout the rest of the

trajectory. It is therefore more accurate to consider PIBB as a variant of PI2 , rather than of

PI2 ≡PI2 .

3.2.2 Empirical Comparison

We evaluate the effect of temporal averaging by comparing PI2 (with constant exploration)

and PIBB (which does not use temporal averaging and has constant exploration by default),

23

which is also executed in 10 learning sessions which 1000 updates each. These learning

curves (µ±σ) for both non-decaying (γ = 1.0) and decaying (γ = 0.98) exploration are

depicted in Figure 12. We see that PIBB converges almost twice as fast as PI2 , and that both

converge to a final cost of 0.

Same variance in parameter space

PI2 /PIBB: λ = 0.025

Decaying variance as learning progresses

λu = γuλ, with γ = 0.98

Differences in convergence speed are sig-

nificant (p-value > 0.001). Both converge

exactly to a final cost of 0.

0 5 10 15 20 25 30
0

50

100

150

200

250

13.0
6.1

number of updates (u)

c
o
s
t

PI2PIBB

900 950 1,000 1,050
0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

number of updates (u)

×
2
0
0
0
.0

Figure 12: As Figure 10, but for PI2 (repeated in red) and PIBB (cyan) only.

Figure 13 repeats the convergence speed and final cost from Figure 11 for all tasks, but

adds the values for PIBB for comparison. This bar plot reveals the following:

• PIBB achieves a substantially faster convergence speed than the other PI2 variants meth-

ods. On average it is 53% of the convergence speed for PI2 . This is significant for all

pair-wise comparisons (p < 0.01), except for the difference between PI2 and PIBB for

Task 1 (p > 0.894).

• PIBB achieves equivalent or better final costs than PI2 . On average, the final cost is

6% lower than for the reference PI2 . This is significant for all pair-wise comparisons

(p < 0.002), except for the difference between PI2 and PIBB for Task 5 (p > 0.150)

and Task 2 and 3, where all methods converge to a final cost of 0.

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

R
e

la
ti
ve

c
o

n
ve

rg
e

n
c
e

u
p

d
a

te

PI2 PI2 PI2 PIBB

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

R
e

la
ti
ve

fi
n

a
l
c
o

s
t

PI2 PI2 PI2 PIBB

Figure 13: Summary of the results on all five experiments, including PIBB.

3.2.3 Conclusion for Parameter Update

For the five tasks considered in this article (and thus those in (Theodorou et al., 2010), we

see that PIBB achieves equal or better performance in terms of convergence speed and final

cost than the other PI2 variants, if we decay exploration over time.

4 The PIBB Algorithm

In Section 3, we have defined a variant of PI2 called PIBB, in which: 1) Exploration noise

is constant over time, i.e. as in PI2 . 2) Temporal averaging uses only the first update, i.e.

24

δθnew = δθnew
t1 . We also refer to this simply as ‘no temporal averaging’. As previously

discussed in Section 3, these simplifications do not violate any of the assumptions made

when deriving PI2 from SOC. In this section, we perform a closer analysis of PIBB.

Figure 14 lists both the PI2 (left) and PIBB (center) algorithms. Since PIBB is a simplified

version of PI2, we have visualized the simplifications as dark red areas, that indicate that

these lines are dropped from the PI2 algorithm. In Figure 14, simplifications have been

labeled: C1 – keep exploration constant; C2 – do not use temporal averaging; M – drop

the projection matrix M from the parameter update.

Figure 14: Comparison of PI2 (left), PIBB (center) and CMA-ES (right)

4.1 PIBB is a Black-Box Optimization Algorithm

We now demonstrate that the PIBB algorithm is equivalent to applying a BBO algorithm to

the policy parameters.

The effect of using constant exploration is that PIBB has only one remaining loop over

time (to execute the policy), and that temporal averaging (the penultimate line of PI2) dis-

appears, cf. Figure 14. As a consequence, determining the cost of a vector θ+ ǫk may now

be interpreted as a black-box cost function, i.e. Sk = J(θ + ǫk) with the perturbed policy

parameters (which do not vary over time due to C1) as input, and the scalar trajectory cost

Sk as output (only the entire trajectory cost is needed due to C2). In PIBB, the cost function

Sk = J(θ + ǫk) thus does the following: 1) integrate and execute the policy with constant

parameters (θk + ǫk); 2) record the costs at each time step during the execution; 3) when

the roll-out is done, sum over the costs, and return them as Sk.

4.2 PIBB is a special case of CMA-ES

Now, we show more specifically that PIBB is a special case of the CMA-ES algorithm.

We now describe several simplifications/specializations of the CMA-ES algorithm,

listed in Section 2.3.2. Our intention is not to create a more efficient algorithm — we

will remove some core functionality of CMA-ES in the process — but rather to highlight

the relationship between PIBB and CMA-ES.

In CMA-ES, the weighting function may be chosen freely, as long as the conditions
∑Ke

k=1 Pk = 1 and P1 ≥ · · · ≥ PKe hold. Since the exponentiation of the cost in PI2 meets

these conditions, we set Ke = K, and the function that maps Sk to Pk to that of PI2. This

step is labeled S1 in Figure 14.

The next step is to disable the covariance matrix adaptation in CMA-ES, which is done

as follows: S2 Set the initial step-size σ = 1 S3 Disable step-size updating, by setting the

time horizon cσ = 0. This makes (20) collapse to σnew = σ × exp(0), which means the

step-size stays equal over time. Since the initial step-size σ = 1, σ simply drops from all

equations. S4 Disable covariance matrix updating, by setting c1 = 0 and cµ = 0. The

25

second and third terms of (22) then drop, and what remains is (1 − 0 − 0)Σ. Therefore,

the covariance matrix is not adapted, and remains constant during learning. Setting the

parameters as listed above thus makes the entire covariance matrix adaptation drop6.

Finally, CMA-ES can readily be applied to policy improvement, as is done in (Heidrich-

Meisner and Igel, 2008a), by considering the cost Sk to be the cost of the trajectory that

arises when executing the policy, labeled S5 in Figure 14.

Simplifications S1 - S5 are again visualized as red areas in Figure 14. Interestingly,

the algorithm that arises from applying S1 - S5 to CMA-ES is equivalent to PIBB. Note that

CMA-ES was not modified in any way, we simply set certain open parameters of CMA-ES

to specific values.

Summary: PIBB, which is a variant of PI2 with constant exploration and without tem-

poral averaging, is a BBO algorithm and in particular a special case of CMA-ES without

covariance matrix updating.

It is important to recognize that PIBB is, compared to other state-of-the-art BBO algo-

rithms, quite simplistic. Our reasons for introducing PIBB are: 1) To be able to compare two

algorithms (PI2/PIBB) that differ only in being RL or BBO methods, but are identical oth-

erwise. 2) To demonstrate that a degenerate version of PI2 (with constant exploration and

without temporal averaging) is equivalent to a degenerate version of CMA-ES (without

covariance matrix adaptation), and that PI2 and CMA-ES thus share a common core. An

obvious extension of our current work is to include other BBO algorithms in the empirical

comparison. For instance, we would certainly expect CMA-ES to outperform its degen-

erate sibling PIBB on these tasks, and thus, by extension, also PI2. In fact, it is likely that

a large amount of BBO algorithms are able to outperform PIBB on the tasks considered. In

this article, we have refrained from including these BBO methods in our comparison, to be

able to specifically focus on the difference that arises when keeping all algorithmic features

the same, except being RL or BBO methods.

5 Discussion

So why, on these five tasks, is PI2 outperformed by the much simpler BBO algorithm PIBB?

It is rather counter-intuitive that an algorithm that uses less information is able to converge

as fast or quicker than an algorithm that uses more information. This intuition is captured

well in the following quote from Moriarty et al. (1999) “In this sense, EA [BBO] methods

pay less attention to individual decisions than TD [RL] methods do. While at first glance,

this approach appears to make less efficient use of information, it may in fact provide a

robust path toward learning good policies.”

In this discussion section, we first describe previous comparisons of RL and BBO al-

gorithms, and then explain how our results extend the knowledge obtained in this previous

work. In particular, we re-consider the trends in Figure 1 and Figure 7. We also discuss how

the results we have obtained are influenced by the choice of policy representation and tasks

used by Theodorou et al. (2010) and ourselves, which are tailored to the domain of learning

skills on physical robots.

5.1 Previous Work on Empirically Comparing RL and BBO

The earliest empirical comparison of RL and BBO that we are aware of is the work of Mo-

riarty et al. (1999). They compare “Evolutionary Algorithms for Reinforcement Learning”

6In this article, we show that removing covariance matrix adaptation from CMA-ES reduces it to PIBB:

“PIBB = CMA-ES minus CMA”. In an orthogonal line of research (Stulp and Sigaud, 2012), we demonstrated

the advantages of adding CMA-ES-style covariance matrix updating to PI2, which yields the PI2-CMAES

algorithm: “PI2-CMAES = PI2 plus CMA”. For a discussion of the advantages of adding covariance matrix

updating in RL and BBO, we refer to (Stulp and Sigaud, 2012).

26

(EARL) with Q-learning on a simple MDP grid world, and conclude that these two meth-

ods “while complementary approaches, are by no means mutually exclusive.” and that BBO

approaches are advantageous “in situations where the sensors are inadequate to observe the

true state of the world.” (Moriarty et al., 1999).

Heidrich-Meisner and Igel (2008b) compare the performance of CMA-ES and NAC

on a single pole balancing task. They conclude that “Our preliminary comparisons indi-

cate that the CMA-ES is more robust w.r.t. to the choice of hyperparameters and initial

policies. In terms of learning speed, the natural policy gradient ascent performs on par

for fine-tuning and may be preferable in this scenario.” This work was later extended to a

double pole balancing task (Heidrich-Meisner and Igel, 2008a), where similar conclusions

were drawn. A more extensive evaluation on single- and double pole balancing tasks is

performed by (Gomez et al., 2008). They also conclude that “in real world control prob-

lems, neuroevolution [. . .] can solve these problems much more reliably and efficiently than

non-evolutionary reinforcement learning approaches”.

In an extensive comparison, Rückstiess et al. (2010b) compare PGPE, REINFORCE,

NES, eNAC, NES and CMA-ES one pole-balancing, biped standing, object grasping, and

ball catching. Their focus is particularly on comparing action-perturbing and parameter-

perturbing algorithms. Their main conclusion is that parameter-perturbation outperforms

action-perturbation: “We believe that parameter-based exploration should play a more im-

portant role not only for PG methods but for continuous RL in general, and continuous

value-based RL in particular” (Rückstiess et al., 2010b).

An issue with such comparisons is that “each of these efforts typically only compares

a few algorithms on a single problem, leading to contradictory results regarding the merits

of different RL methods.” (Togelius et al., 2009). It is this issue that we referred to in the

introduction: if CMA-ES outperforms eNAC on a particular task, is it because of their

different perturbation methods, their different parameter update methods, or because one is

BBO and the other is RL? One of the main goals of this article is to provide an algorithmic

framework that allows us to specifically investigate the latter question, whilst keeping the

other algorithmic features the same.

Kalyanakrishnan and Stone (2011) aim at “characterizing reinforcement learning meth-

ods through parameterized learning problems”. They compare Sarsa, ExpSarsa, Q-learning,

CEM and CMA-ES on problems consisting of simple square grids with a finite number of

states. One interesting conclusion is that they are able to partially corroborate several of the

conjectures by Togelius et al. (2009). The main difference to previous work is that “our

parameterized learning problem enables us to evaluate the effects of individual parameters

while keeping others fixed.” (Kalyanakrishnan and Stone, 2011). Our work is orthogonal

to this, in that it provides a pair of algorithms in which experimenters may switch between

BBO and RL, whilst keeping other algorithmic features fixed. We thus focus on ‘parame-

terizable algorithms’, rather than parameterizable learning problems.

5.2 Reconsidering the Observed Trends

We now reconsider and evaluate the trends in Figure 7, given the empirical results presented

in this article.

5.2.1 From Gradient-based Methods to Reward-weighted averaging

We believe the trend from gradient-based methods to reward-weighted averaging to have

been an important step in enabling policy improvement methods to become robust towards

noisy, discontinuous cost functions. From a theoretical perspective, we find it striking that

reward-weighted averaging may be derived from fundamental principles in a wide vari-

ety of domains: reinforcement learning (Kober and Peters, 2011), stochastic optimal con-

27

trol (Theodorou et al., 2010), rare-event theory (Rubinstein and Kroese, 2004), and a basic

set of optimality principles in BBO (Arnold et al., 2011). In practice, two algorithms that

use this principle in BBO (CMA-ES) and RL (PI2) turn out to be state-of-the-art in terms

of empirical performance.

Previous work has focussed on comparing BBO methods that use reward-weighted av-

eraging with gradient-based RL methods (Heidrich-Meisner and Igel, 2008a,b; Rückstiess

et al., 2010b). This, however, is a rather unfair comparison, as RL methods based on reward-

weighted averaging — such as POWER and PI2— have been shown to substantially out-

perform gradient-based RL methods (Kober and Peters, 2011; Theodorou et al., 2010). The

reason such comparisons have not yet been made is that POWER and PI2 have only been

introduced recently. To the best of our knowledge, this work is the first in comparing RL

and BBO algorithms that are both based on reward-weighted averaging. Our conclusion is

that BBO (PIBB) is still able to outperform reward-weighted averaging RL (PI2) on the tasks

considered, but the margin is much smaller than when comparing BBO with gradient-based

RL (e.g. eNAC). We expect this margin to increase again when using more sophisticated

BBO algorithms, such as CMA-ES, than PIBB. This is part of our current work.

5.2.2 From Action Perturbation to Parameter Perturbation

Going from action perturbation to parameter perturbation seems to have been a fruitful

trend, as confirmed by Rückstiess et al. (2010b). Mapping action perturbations to parame-

ter updates requires a mapping from action space to parameter space, and requires knowl-

edge of the derivative of the policy. In contrast, parameter perturbing methods perform

exploration in the same space as in which the parameter update takes place. Thus, the con-

trolled variable that leads to variations in the cost is also directly the variable that will be

updated. Empirically, algorithms based on parameter perturbation substantially outperform

those based on action perturbation (Rückstiess et al., 2010b; Heidrich-Meisner and Igel,

2008a; Theodorou et al., 2010).

5.2.3 From Rewards at Each Time Step to Aggregrated Costs

Although PIBB, which uses only a scalar aggregrated cost, outperforms PI2, which uses

the costs at each time step, on the tasks presented by Theodorou et al. (2010) and used in

this article, we do not hold this to be a general result. We believe the cause must lie in

the chosen tasks themselves, or the particular policy representation we have chosen. These

tasks and representations in their turn are biased by our particular interest in applying policy

improvement to acquire robotic skills. In fact, we have (informally) compared PIBB and PI2

on several other robotic tasks not reported here, and have not found one instance where

PI2 outperforms PIBB. Thus, understanding why BBO outperforms RL on these types of

tasks may be related to understanding if and how the properties of typical tasks and policy

representations used in robotic skill learning make them particularly amenable to BBO.

Kalyanakrishnan and Stone (2011): “[T]he relationships between problem instances and

the performance properties of algorithms are unclear, it becomes a worthwhile pursuit to

uncover them”. The results presented in this article are a first step in the pursuit to uncover

the relationship between typical robotic tasks and the performance properties of BBO/RL.

This topic, of particular interest to roboticists, is at the center of our current investigations.

5.3 Relation to the Conjectures by Togelius et al. (2009)

Our experiments, as do those of (Kalyanakrishnan and Stone, 2011), corroborate several of

the conjectures by Togelius et al. (2009).

28

Continuous state and actions “[BBO] method [. . .] generally outperform [RL] methods

on problems with continuous state spaces”. We have studied only continuous state

and action spaces, and BBO has equal or better performance than RL, which is a

corroboration of this conjecture.

Intermediate rewards Since [RL] methods, unlike [BBO] method, can use all experi-

ential information obtained during interaction with the environment, [RL] methods

outperform [BBO] algorithms in applications where it is helpful to exploit interme-

diate rewards . . . [quote continued below]” (Togelius et al., 2009). For the tasks

in (Theodorou et al., 2010), exploiting intermediate rewards hardly plays a role.

Therefore, we have added an extra task in which three via-points must be passed

through. However, for this task, BBO (PIBB) also converges much faster than RL

(PI2), and to the same final cost (cf. Figure 13). We cannot corroborate this conjec-

ture.

Short, episodic tasks [Quote continued from above] . . . especially if episodes are long.”

Our research interest is learning skills for robots, with a particular focus on manipu-

lation (Stulp et al., 2012; Marin et al., 2011). Typical robotic skills for manipulation

— reaching for an object, transporting it to another location — typically do not take

longer than about a second. This also holds for the simulated tasks described in

Appendix A. For such short tasks, it is less likely that intermediate rewards play an

important role.

6 Conclusion

Based on four algorithmic properties, we have provided a classification of policy improve-

ment algorithms. By defining these properties concisely and clearly, one of the results of

this article is to distinguish between RL and BBO based on these properties alone, rather

than specific algorithms. For instance, we argued that action perturbing methods cannot use

a BBO update rule. Furthermore, algorithms that require information about states/actions in

the trajectories arising from policy roll-outs, such as actor-critic methods, cannot be BBO

algorithms. Also, although finite-differencing methods (FD) are often to be considered an

RL approach to policy improvement, it must be acknowledged that the algorithm may also

be interpreted as being a BBO algorithm, given the definition of a BBO problem.

A second result is that, within this classification, we observe three trends in the chronol-

ogy and derivation paths of algorithms: from gradient-based methods to reward-weighted

averaging, from action to parameter perturbation, and towards algorithms that use only re-

ward information from policy roll-outs.

We have continued this trend by applying two simplifications to the PI2 algorithm:

1) keep exploratory parameter perturbations constant during a roll-out; 2) eliminate tempo-

ral averaging by considering only the entire cost of the trajectory, rather than the cost-to-go

at each time step. This leads to a novel, much simpler algorithm, called PIBB. We show that

PIBB is a BBO algorithm, and a specific degenerate case of CMA-ES.

In previous work, it was shown that PI2 is able to outperform PEGASUS, REIN-

FORCE, and eNAC and POWER (Theodorou et al., 2010). Using exactly the same tasks,

we observe rather surprisingly that the much simpler BBO algorithm PIBB has equal or bet-

ter performance than PI2 still. Previous work on comparing RL and BBO shows that BBO

often wins by a wide margin; the caveat being that, in those experiments, the BBO meth-

ods use reward-weighted averaging whereas the RL methods use gradient estimation. An

important conclusion of our results is that the margin, though still existent, is much smaller

when both RL and BBO are based on the powerful concept of reward-weighted averaging.

29

Although BBO thus trumps RL on several tasks, we do not believe this to be a general

result, and further investigations are needed, especially into the bias that typical tasks and

policy representations used in robotics — the types used in this article — introduce into RL

problems.

Rather than making the case for BBO or RL, one of the main contributions of this article

is to provide an algorithmic framework in which such cases may be made. Because PIBB

and PI2 use identical perturbation and parameter update methods, and differ only in being

BBO and RL approaches respectively, this allows for a more objective comparison of BBO

and RL than for instance comparing algorithms that differ in many respects. Therefore, we

believe this algorithmic pair is an excellent basis for comparing BBO and RL approaches to

policy improvement, and further investigating the five conjectures in (Togelius et al., 2009).

Acknowledgements

We would like to thank Mrinal Kalakrishnan, Jonas Buchli, Nikolaus Hansen and Balázs

Kégl for fruitful discussions and suggestions for improvement. A special thanks to Matthieu

Geist for proofreading an earlier version of the article. We thank Stefan Schaal for provid-

ing the source code for running the experiments and tasks in (Theodorou et al., 2010).

This work is supported by the French ANR program MACSi (ANR 2010 BLAN 0216 01),

http://macsi.isir.upmc.fr

A Evaluation Tasks

In this section, we describe the tasks used for the empirical evaluations in Section 3.1.3

and 3.2.2. These tasks are taken from the article by Theodorou et al. (2010). The imple-

mentations are based on the same source code as in Theodorou et al. (2010), and all tasks

and algorithms parameters are the same unless stated otherwise. This allows for a direct

comparison of the results in this article and those acquired by Theodorou et al. (2010). Due

to the similarity, this appendix is very similar to Section 5 of (Theodorou et al., 2010), and

added for completeness only.

A.1 DMP and PI2 Parameterization

In all the tasks below, the DMPs have 10 basis functions per dimension, and a duration

of 0.5s. During learning, K = 15 roll-outs are performed for one update. Although 10

roll-outs has usually proven to be sufficient, Theodorou et al. (2010) choose 15 roll-outs to

allow comparison with eNAC, which requires at least 1 roll-out more than the number of

basis functions to perform its matrix inversion without numerical instabilities. The initial

exploration magnitude is λ = 0.05 for all tasks except Task 1, where it is λ = 0.01. The

exploration decay, which was tuned separately for each task, is 0.98, 0.98, 0.99, 0.99, 0.999

for Task 1. . . 5 respectively.

A.2 Task 1

This task considers a 1-dimensional DMP of duration 0.5s, which starts at x0 = 0 and ends

at the goal g = 1. In this task as in all others, the initial movement is acquired by training the

DMP with a minimum-jerk movement. The aim of Task 1 is to reach the goal g with high

accuracy, whilst minimizing acceleration, which is expressed with the following immediate

(rt) and terminal (φtN) costs:

rt = 0.5f2
t + 5000θ⊺

θ, φtN = 10000(ẋ2tN + 10(g − xtN)
2) (40)

30

where ft refers to the linear spring-damper system in the DMP, cf. (29). Figure 15 visualizes

the movement before and after learning.

Figure 15: Task 1: Reaching the goal accurately whilst minimizing accelerations before (light green) and after (black)

learning.

A.3 Task 2 & 3

In Task 2, the aim is for the output of the 1-dimensional DMP (same parameters as in Task

1) to pass through the viapoint 0.25 at time t = 300ms. Which is expressed with the costs:

r300ms = 108(0.25− xt300ms
)2, φtN = 0 (41)

The costs are thus 0 at each time step except at t300ms. This cost function was chosen

by Theodorou et al. (2010) to allow for the design of a compatible function for POWER.

Task 3 is equivalent except that it uses 3 viapoints [0.5 -0.5 1.0] at times [100ms 200ms 300ms]

respectively. Figure 16 visualizes the movement before and after learning for Task 2 and

Task 3.

Figure 16: Task 2 (left) and 3 (right): Minimizing the distance to 1 or 3 viapoints before (light green) and after (black)

learning.

Note that Task 3 was not evaluated by Theodorou et al. (2010). We have included it as

we expected that it is a task where it may be “helpful to exploit intermediate rewards” (To-

gelius et al., 2009), and where RL approaches are conjectured to outperform BBO (Togelius

et al., 2009). As Figure 13 reveals, this is not the case for this particular task, and PIBB also

outperforms PI2 for this task.

31

A.4 Task 4 & 5

Theodorou et al. (2010) used this task to evaluate the scalability of PI2 to high-dimensional

action spaces and learning problems with high redundancy. Here, an ‘arm’ with D rotational

joints and D links of length 1
D is kinematically simulated in 2D Cartesian space. Figure 17

visualizes the movement by showing the configuration of the arm at each time step. The

goal is again to pass through a viapoint (0.5,0.5) , this time in end-effector space, whilst

minimizing accelerations. The D joint trajectories are initialized with a minimum-jerk tra-

jectory, and then optimized with respect to the following cost function:

rt =

∑D
i=1(D + 1− i)(0.1f2

i,t + 0.5θ⊺

i θi)
∑D

j=1(D + 1− j)
(42)

r300ms = 108((0.5− xt300ms
)2 + (0.5− yt300ms

)2) (43)

φtN = 0 (44)

The weighting term (D + 1 − i) places more weight on proximal joints than distal

ones, which is motivated by the fact that proximal joints have lower mass and therefore

less inertia, and are therefore more efficient to move (Theodorou et al., 2010). Figure 17

depicts the movements before and after learning for arms with D = 2 and D = 10 links

respectively.

Figure 17: Task 4 (left, 2-DOF) and 5 (right, 10-DOF): minimizing the distance to a viapoint in end-effector space whilst

minimizing joint accelerations.

References

L. Arnold, A. Auger, N. Hansen, and Y. Ollivier. Information-geometric optimization al-

gorithms: A unifying picture via invariance principles. Technical report, INRIA Saclay,

2011.

J. Buchli, F. Stulp, E. Theodorou, and S. Schaal. Learning variable impedance control.

International Journal of Robotics Research, 30(7):820–833, 2011. URL .

L. Busoniu, D. Ernst, B. D. Schutter, and R. Babuska. Cross-entropy optimization of con-

trol policies with adaptive basis functions. IEEE Transactions on Systems, Man, and

Cybernetics-Part B: Cybernetics, 41(1):196–209, 2011.

J. Fix and M. Geist. Monte-carlo swarm policy search. In Symposium on Swarm Intelligence

and Differential Evolution, Lecture Notes in Artificial Intelligence (LNAI), page 9 pages.

Springer Verlag - Heidelberg Berlin, Zakopane (Poland), 2012. URL .

32

F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through

cooperatively coevolved synapses. Journal of Machine Learning Research, 9:937–965,

2008.

N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution strate-

gies. Evolutionary Computation, 9(2):159–195, 2001.

V. Heidrich-Meisner and C. Igel. Evolution strategies for direct policy search. In Pro-

ceedings of the 10th international conference on Parallel Problem Solving from Nature:

PPSN X, pages 428–437, Berlin, Heidelberg, 2008a. Springer-Verlag. ISBN 978-3-540-

87699-1. . URL .

V. Heidrich-Meisner and C. Igel. Similarities and differences between policy gradient meth-

ods and evolution strategies. In ESANN 2008, 16th European Symposium on Artificial

Neural Networks, Bruges, Belgium, April 23-25, 2008, Proceedings, pages 149–154,

2008b. .

A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with nonlinear dynamical

systems in humanoid robots. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2002.

S. Kalyanakrishnan and P. Stone. Characterizing reinforcement learning methods through

parameterized learning problems. Machine Learning, 84(1-2):205–247, 2011.

H. Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of

Statistical Mechanics: Theory and Experiment, 2005(11):P11011, 2005. URL .

J. Kober and J. Peters. Policy search for motor primitives in robotics. Machine Learning,

84:171–203, 2011.

D. Marin and O. Sigaud. Towards fast and adaptive optimal control policies for robots:

A direct policy search approach. In Proceedings Robotica, pages 21–26, Guimaraes,

Portugal, 2012.

D. Marin, J. Decock, L. Rigoux, and O. Sigaud. Learning cost-efficient control policies

with XCSF: Generalization capabilities and further improvement. In Proceedings of the

13th annual conference on Genetic and evolutionary computation (GECCO’11), pages

1235–1242. ACM Press, 2011.

D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette. Evolutionary algorithms for reinforce-

ment learning. Journal of Artificial Intelligence (JAIR), 11:241–276, 1999.

A. Y. Ng and M. I. Jordan. Pegasus: A policy search method for large mdps and pomdps.

In Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, pages

406–415, 2000. ISBN 1-55860-709-9. URL .

J. Peters and S. Schaal. Applying the episodic natural actor-critic architecture to motor

primitive learning. In Proceedings of the 15th European Symposium on Artificial Neural

Networks (ESANN 2007), pages 1–6, 2007.

J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural

networks : the official journal of the International Neural Network Society, 21(4):682–97,

May 2008a. ISSN 0893-6080. . URL .

J. Peters and S. Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008b.

33

W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,

volume 703. Wiley-Blackwell, 2007.

M. Riedmiller, J. Peters, and S. Schaal. Evaluation of Policy Gradient Methods and Variants

on the Cart-Pole Benchmark. In 2007 IEEE International Symposium on Approximate

Dynamic Programming and Reinforcement Learning, pages 254–261. IEEE, Apr. 2007.

ISBN 1-4244-0706-0. . URL .

R. Rubinstein and D. Kroese. The Cross-Entropy Method: A Unified Approach to Combina-

torial Optimization, Monte-Carlo Simulation, and Machine Learning. Springer-Verlag,

2004.

T. Rückstiess, M. Felder, and J. Schmidhuber. State-dependent exploration for policy gra-

dient methods. In 19th European Conference on Machine Learning (ECML), 2010a.

T. Rückstiess, F. Sehnke, T. Schaul, D. Wierstra, Y. Sun, and J. Schmidhuber. Exploring

parameter space in reinforcement learning. Paladyn. Journal of Behavioral Robotics, 1:

14–24, 2010b. ISSN 2080-9778.

J. Santamarı́a, R. Sutton, and A. Ram. Experiments with reinforcement learning in problems

with continuous state and action spaces. Adaptive behavior, 6(2):163–217, 1997.

R. Stengel. Optimal Control and Estimation. Dover Publications, New York, 1994.

F. Stulp and O. Sigaud. Path integral policy improvement with covariance matrix adaptation.

In Proceedings of the 29th International Conference on Machine Learning (ICML), 2012.

F. Stulp, E. Theodorou, and S. Schaal. Reinforcement learning with sequences of motion

primitives for robust manipulation. IEEE Transactions on Robotics, 2012. Accepted for

publication.

R. Sutton and A. Barto. Reinforcement Learning: an Introduction. MIT Press, 1998.

M. Tamosiumaite, B. Nemec, A. Ude, and F. Wörgötter. Learning to pour with a robot

arm combining goal and shape learning for dynamic movement primitives. Robots and

Autonomous Systems, 59(11):910–922, 2011.

E. Theodorou, J. Buchli, and S. Schaal. A generalized path integral control approach to

reinforcement learning. Journal of Machine Learning Research, 11:3137–3181, 2010.

J. Togelius, T. Schaul, D. Wierstra, C. Igel, F. Gomez, and J. Schmidhuber. Ontogenetic and

phylogenetic reinforcement learning. Zeitschrift Künstliche Intelligenz - Special Issue on

Reinforcement Learning, pages 30–33, 2009.

S. Whiteson and P. Stone. Evolutionary function approximation for reinforcement learning.

Journal of Machine Learning Research, 7:877–917, May 2006.

D. Wierstra, T. Schaul, J. Peters, and J. Schmidhuber. Natural evolution strategies. In

Proceedings of IEEE Congress on Evolutionary Computation (CEC), 2008.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine Learning, 8:229–256, 1992.

34

	Introduction
	Background
	Policy Improvement through Lower Bounds on the Expected Return
	REINFORCE
	eNAC
	PoWER

	Policy Improvement with Path Integrals
	Source: Stochastic Optimal Control
	From Stochastic Optimal Control to Generalized Path Integral Control
	From Generalized Path Integral Control to PI2

	Policy Improvement through Black-box Optimization
	Finite-difference methods
	Covariance Matrix Adaptation - Evolutionary Strategy (CMA-ES)
	Other BBO Algorithms Applied to Policy Improvement

	Classification of Policy Improvement Algorithms

	From PI2 to PIBB
	Simplifying the Exploration Method
	Parameter Perturbation in the Context of the PI2 Derivation
	Three Proposed Methods for Parameter Perturbation
	Empirical Comparison
	Conclusion for Exploration Methods

	Simplifying the Parameter Update
	Temporal Averaging in the Context of the PI2 Derivation
	Empirical Comparison
	Conclusion for Parameter Update

	The PIBB Algorithm
	PIBB is a Black-Box Optimization Algorithm
	PIBB is a special case of CMA-ES

	Discussion
	Previous Work on Empirically Comparing RL and BBO
	Reconsidering the Observed Trends
	From Gradient-based Methods to Reward-weighted averaging
	From Action Perturbation to Parameter Perturbation
	From Rewards at Each Time Step to Aggregrated Costs

	Relation to the Conjectures by togelius09ontogenetic

	Conclusion
	Evaluation Tasks
	DMP and PI2 Parameterization
	Task 1
	Task 2 & 3
	Task 4 & 5

