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Abstract

Color image segmentation is a fundamental task in
many computer vision problems. A common ap-
proach is to use fuzzy iterative clustering algorithms
that provide a partition of the pixels into a given
number of clusters. However, most of these algo-
rithms present several drawbacks: they are time
consuming, and sensitive to initialization and noise.
In this paper, we propose a new fuzzy c-means algo-
rithm aiming at correcting such drawbacks. It relies
on a new efficient cluster centers initialization and
color quantization allowing faster and more accu-
rate convergence such that it is suitable to segment
very large color images. Thanks to color quantiza-
tion and a new spatial regularization, the proposed
algorithm is also more robust. Experiments on real
images show the efficiency in terms of both accuracy
and computation time of the proposed algorithm as
compared to recent methods of the literature.

1. Introduction

Image segmentation can be defined as the process of
merging pixels having similar features into the same
groups, or regions. The segmented image is then
the union of distinct groups, where pixels of homo-
geneous regions are associated to the same groups.
Numerous techniques have been proposed in the lit-
erature, where color, texture or edges features are
used to decribe each group [8]. Only gray level im-
ages were considered by early segmentation meth-
ods. As color images become the norm in a wider
range of applications (e.g. geographical imaging,
medical imaging, or video surveillance), and thanks
to advancements in both color technology and com-
putation power, the interest of color image segmen-
tation techniques has grown. Among them, we fo-
cus on the clustering approach, especially the fuzzy
c-means algorithm (FCM , [3]), which is used by
many segmentation methods [1, 13, 5, 22, 12]. How-
ever, this algorithm requires to initialize the centers
of each cluster [10], and is known to be intractable
for very large data sets such as color images. In this
paper, we propose a new efficient initialization algo-
rithm especially dedicated to the problem of image
segmentation. Furthermore, we introduce a novel
fuzzy iterative algorithm allowing fast segmentation
of images.
This paper is organized as follows. Section 2 first
recalls some basic knowledge on iterative clustering

algorithms, focusing on the fuzzy approach. Then,
a new initialization of cluster centers is proposed,
along with some numerical examples exhibiting its
efficiency in terms of both accuracy and conver-
gence speed. Various algorithms incorporating spa-
tial and speeding-up considerations are presented
in Section 3, as well as the new Quantized Fuzzy C-
Means (QFCM) algorithm. Numerical experiments
showing the superiority of QFCM as compared to
state-of-the-art FCM -based segmentation methods
are given in Section 4. Finally, some conclusions
and perspectives are drawn in Section 5.

2. Iterative clustering algorithms

2.1. Algorithms

Let X = {x1, · · · ,xn} be a n samples data set and
assume that each sample xk is represented by a set
of p features. A partition of X into c clusters is
a collection of mutually disjoint subsets Xi of X
such that Xi ∪ · · · ∪ Xc = X and Xi ∩ Xj = ∅
for any i 6= j. Partitions can be represented by
(c × n) hard partition matrices U whose general
term is uik = 1 if xk ∈ Xi, and 0 otherwise. To
get a partition matrix U , one can use the so-called
Hard c-Means (HCM) algorithm which minimizes
the within-cluster distances:

J =
c∑
i=1

∑
x∈Xi

‖x− vi‖2, (1)

where ‖.‖ stands for the usual Euclidean distance
and vi are the cluster centers gathered into a matrix
V for convenience. The objective function can be
rewritten as

J =
n∑
k=1

c∑
i=1

uik‖xk − vi‖2. (2)

In many real situations, overlapping clusters reduce
the effectiveness of crisp clustering methods. Rus-
pini first proposed the notion of fuzzy partition [18],
where samples may partially belong to several clus-
ters through the idea of partial membership degrees.
Practically, uik ∈ [0, 1] instead of {0, 1}. Some years
later, Dunn [6] modified of the objective function
(2) by squaring the individual membership degrees.
This has been generalized by Bezdek in [3], with a
fuzzifier exponent m > 1:

Jm =
n∑
k=1

c∑
i=1

umik‖xk − vi‖2, (3)



Minimization of (3) is generally obtained by an al-
ternating optimization procedure that successively
updates the cluster centers V and the partition ma-
trix U using:

vi =
∑n
k=1 u

m
ikxk∑n

k=1 u
m
ik

(4)

uik = 1∑c
j=1

(
‖xk−vi‖
‖xk−vj‖

)2/(m−1) (5)

The choice to first initialize a random partition ma-
trix or the cluster centers is let to the user, both
being used in the literature. The algorithm stops
when the centroids stabilize, i.e. the matrix norm
between two successive V is below a given threshold.
Equivalently, the entire procedure can be shifted
one half cycle, so that initialization and termina-
tion is done on U . Naturally, in terms of speed and
storage, there are some advantages to initialize and
terminating with V .
Application to image segmentation consists in tak-
ing X as the entire set of pixels xk of an image I,
each of them being described by p features.

2.2. Centroids initialization

As defined, iterative fuzzy clustering methods do
not guarantee a unique final partition because dif-
ferent results are obtained with different initializa-
tions of V (or U). In particular, it has been shown
that these algorithms give better results when the
initials (U/V ) are sufficiently close to the final par-
tition/centers [10]. However, most of the practi-
tioners initialize in a random manner, which heavily
affects the results. Another reason to correctly ini-
tialize the cluster centers is that it allows to speed-
up the convergence, resulting in a more usable al-
gorithm for large scale practical problems. Several
methods have been proposed for the initialization
of V . However, most of the methods that allow to
initialize cluster centers are computationally expen-
sive. For instance, in [11], the method requires to
run theHCM algorithm p times on n 1-dimensional
samples, and then p times the same algorithm on n
p-dimensional samples, which is intractable for large
scale data sets.
We propose a new, efficient, yet simple, manner
of initializing the c cluster centers, that we call
Ordering-split. For each p-dimensional sample xk,
we define its relative mean by

mk = 1
p

p∑
j=1

xkj (6)

so that we obtain the n-dimensional vector m =
(m1, · · · ,mn). Note that we are working on fea-
tures coming from each channel of an image so that
the scale of individual features does not differ. If
the features do not hold this property, a normaliza-
tion is required. Let σ be the permutation function

σ such that mσ(k) is an ordered and increasing se-
quence. We propose to split the n relative means
as follows. Assuming that the clusters are equally
distributed, we uniformly split the n-dimensional
vector m into c groups. In other terms, we set
c+1 indices, say `0, · · · `c, such that the c differences
(`i− `i−1) are roughly equals1. More formally, each
index is given by

`i = i ∗ bn/cc (7)

where b.c is the floor function. We iteratively build
c subsets Si of n as follows

Si = {`i−1 + 1, · · · , `i} (8)

We obtain the subset of indices in each cluster by
applying the inverse function:

Ci = σ−1(Si) (9)

Finally, each cluster center is computed using:

vi = 1
|Ci|

∑
j∈Ci

xj (10)

where |Ci| is the cardinality of Ci. The whole
Ordering-split centers initialization procedure is
summarized in Algorithm 1. Let us show how the

Algorithm 1 Initialization of cluster centers
Require: X: dataset, c: number of clusters

1: procedure Ordering-split(X, c)
2: compute m by using (6) for each k ∈
{1, · · · , n}

3: apply to m the ordering function σ
4: for i = 0 to c do . uniform splitting
5: `i ← i ∗ bn/cc
6: end for
7: for i = 1 to c do . build the subsets
8: Si ← {`i−1 + 1, · · · , `i}
9: Ci ← σ−1(Si)

10: vi ← 1
|Ci|

∑
j∈Ci

xj
11: end for
12: return V . the matrix of centers
13: end procedure

proposed method is efficient compared to a random
initialization of the cluster centers. A simple color
image (see Figure 1) in the p = 3 components RGB
color space, to which we add a Gaussian white noise
with various standard deviations s, is used to com-
poseX. The mean computation times over 100 runs
of the HCM algorithm (for simplicity) are reported
in Table 1. Note that the time needed for the com-
putation of initial cluster centers is obviously added
to the clustering time. We also report the cluster
centers proximity index (CCPI) defined by

CCPI = 1
c× p

∑
i

∑
j

∣∣∣∣∣v?ij − vijv?ij

∣∣∣∣∣ , (11)

1Note that other hypothesis could be provided, where
some information about the clusters distribution is used.



Figure 1: A 500 × 600 (i.e. n = 300, 000) color
image, with Gaussian white noise (s = 0.1).

Table 1: Comparison of centers initialization: total
time needed for initialization + clustering, proxim-
ity and accuracy.

time (sec.) CCPI Accuracy
s = 0.05
Random 1.286 0.729 98.33%

Ordering-split 0.578 0.088 98.33%
s = 0.1
Random 1.870 0.714 92.18%

Ordering-split 0.787 0.118 92.27%
s = 0.5
Random 2.776 0.787 53.13%

Ordering-split 1.670 0.181 65.90%

which measures the degree of closeness between the
cluster centers V obtained by the initialization al-
gorithm and the desired cluster center V ?. Clearly,
the less the CCPI, the better the result. We finally
give the accuracy performance defined by the ratio
of correctly labeled pixels over the total number of
pixels. According to Table 1, we see that the Order-
ing split method allows to obtain a faster algorithm
(time), with an output that is more close to the re-
ality (CCPI), and producing a higher accuracy than
the method which consists in randomly initializing
cluster centers.

3. Clustering for image segmentation

3.1. Spatial FCM algorithms

Whilst the conventional FCM algorithm works well
on noise-free images, it is very sensitive to local ir-
regularities, which occur very often in real images.
This sensitivity is due to the absence of consider-
ation of the spatial context of each pixel. In [1],
Ahmed et al. modify the original objective function
by adding a penalty term that allows the member-
ships of each pixel xk to be influenced by its neigh-
borhood. The new objective function is defined as

JS = Jm + α

NR

n∑
k=1

c∑
i=1

umik
∑
r∈Nk

‖xr − vi‖2 (12)

where NR is the cardinality of Nk, which stands for
the set of neighbors in a window around the pixel

xk. The balance parameter α allows to control the
effect of the neighboring terms. However, comput-
ing the neighboring terms in each iteration is com-
putationally expensive. Moreover, tuning α is not
easy, because a slight variation of α produces very
different segmentations. This algorithm is denoted
FCM_S in the sequel.

In [13], the authors propose another objective
function where the relationship between neighbor-
ing pixels is taken into account. The usual Eu-
clidean distance between pixels and centers by a
weighted mean distance of the pixel and its neigh-
bors to each center is taken. However, here again,
in each iteration, all the pixels of the image are con-
sidered, leading to a large computation time.

In [5], the authors propose to reduce the compu-
tation time of the solutions derived from (12) by
computing in advance the mean value of the pixel
within the specified window:

JS1 = Jm + α

n∑
k=1

c∑
i=1

umik‖xk − vi‖2 (13)

where xk is the mean of neighboring pixels in the
window around xk. Additionally, they propose an-
other objective function JS2 where xk is the median
value of the neighboring pixels. Then, they intro-
duce the use of kernel-induced distances instead of
the usual Euclidean one. The corresponding algo-
rithms are respectively denoted as KFCM_S1 and
KFCM_S2 in the sequel. More recently, Yang and
Tsai [22] propose to adapt the balance parameter α
of (13) to each cluster, namely αi:

JG = Jm +
n∑
k=1

c∑
i=1

αiu
m
ik‖xk − vi‖2 (14)

Moreover, since they use kernel-induced distance,
they also propose to automatically set the param-
eters of the Gaussian kernel. The corresponding
algorithm is claimed to be a generalized version of
KFCM. Here again, the authors allow to consider
mean-based or median-based spatial filtering. The
derived algorithms are respectively denoted as GK-
FCM_S1 and GKFCM_S2 in the sequel.

Finally, in [12], the authors propose another mod-
ification of the objective function somewhat similar
to (12) as follows

JFL = Jm +
n∑
k=1

c∑
i=1

Gik (15)

where the penalty term Gik is defined by

Gik =
∑

j∈Nk,k 6=j

1
ds(k, j) + 1(1− uij)m‖xj − vi‖2,

(16)
where ds(k, j) is the spatial Euclidean distance be-
tween pixels xj and xj .The obtained correspond-
ing updating functions are called FLICM. Naturally,
FLICM suffers of the same high computation time
as all the previous algorithms.



3.2. Speeded up clustering algorithms

The main drawback of such iterative clustering al-
gorithms is their running time. In [7], the authors
propose a fast and accurate clustering method of im-
ages. The time reduction is operated by aggregating
similar examples and using the weighted prototype
in the clustering, giving the brFCM algorithm. In
order to speed up the segmentation, Szilagyi et al.
[19] used the idea of Eschrich et al. [7] to propose
the EnFCM algorithm, which consists in applying
the brFCM algorithm to a smoothed image as fol-
lows. They first construct a linearly-weighted sum
image with local neighbors of each pixel as follows:

x′i = 1
1 + α

xi + α

NR

∑
j∈Ni

xj

 (17)

where Ni is the set of neighbors of the pixel xi, and
the parameter α controls the influence of the neigh-
bors. Instead of considering each pixel of the image,
the objective function uses the number of gray levels
in the image, which drastically reduces the compu-
tation time, since the number of gray levels of an
image is generally much lower than the number of
pixels. In [4], Cai et al. propose an improvement of
the EnFCM algorithm by adding a local similarity
measure Sij . The new image to be clustered is then
defined as

x′i =
∑
j∈Ni

Sijxj∑
j∈Ni

Sij
(18)

where Sij is a factor incorporating the spatial and
gray level relationships in the neighborhood of i.
They propose various definitions of the local simi-
larity measure. The first one is given by

Sij =
{

exp
(
−ds(i,j)

λs
− ‖xi−xj‖2

λgσ2
i

)
if i 6= j

0 if i = j

(19)

This similarity measure leads to the FGFCM al-
gorithm. They also propose two other local simi-
larity measures, that we denote FGFCM_S1 and
FGFCM_S2. The corresponding similarity mea-
sures are respectively defined by Sij = 1 for all i and
j, so that xi is equal to the mean of the neighbors,
and Sij = median(I(j)), so that xi is the median
value of the neighbors. EnFCM, FGFCM and their
variants provide quite good segmentation. However,
they heavily depend on the internal parameters λs
and λg, or α. Moreover, to the best of our knowl-
edge, they are restricted to gray level images, and
there are no propositions dedicated to color images.
We propose to extend these approaches to color im-
ages by color quantization.

3.3. Fast quantized fuzzy c-means

Nowadays, processing an image without pre-
processing and regularization is pointless. In [20],

the authors proposed the bilateral filtering proce-
dure, which is an anisotropic approach based on
both spatial and photometric considerations. For-
mally, the filtered image I ′ is obtained by

x′i =
∑
j∈Ni

w(i, j)xj∑
j∈Ni

w(i, j) (20)

where w(i, j) are the weights applied to every pixel
xj inNi. The weights are decomposed by a conjunc-
tion into two weights corresponding to the spatial
and the color weights, w(i, j) = ws(i, j) × wc(i, j).
For instance, in [20], ws and wc are respectively de-
fined by

ws(i, j) = exp
(
− d2

s(i, j)
2σ2

s

)
wc(i, j) = exp

(
− d2

c(xi,xj)
2σ2

c

)
(21)

In fact, the proposition of [4] consists in adding a bi-
lateral filter process before the clustering algorithm.
It can be shown that (20) reduces to (18) if we use
ds = L∞ and dc = L2, where Lp stands for the
p-norm. Extending the gray level algorithm [19] to
color spaces is not immediate. If we use the same
resolution, and take the RGB space, it would lead to
compute U and V 28 ∗ 28 ∗ 28 = 224 times. In other
terms, this would be equivalent to run the usual
fuzzy c-means algorithm on a (4096 × 4096) color
image. Since this is computationally intractable in
practice, we propose to use a color space quantiza-
tion into qi bins, i corresponding to the channel in-
dex. Most of the color spaces use three channels,
so that we have to define q1, q2 and q3. Obvi-
ously, this can be extended to any multi spectral
images, or images where several color spaces are
used to describe each pixel (e.g. RGB, HSV and
CIE L ∗ a ∗ b∗). In the sequel we consider that each
color component is divided into the same number of
bins: q1 = q2 = q3 = q.
Various studies have shown that many color

spaces proposed for computer graphic applications
are not well adapted to image processing. As
pointed out in [2], a convenient representation
should yield distances and provide independence be-
tween chromatic and achromatic components. For
this reason and comparison purpose, we use the CIE
L ∗ a ∗ b∗ color space. There is another advantage
of quantizing the L ∗ a ∗ b∗ information rather than
RGB information. If L ∗ a ∗ b∗ is approximately
uniformly distributed, then a uniform quantization
yields a constant distance between any two quanti-
zation levels, resulting in small variation of percep-
tual color difference. This is not the case with RGB
data where this variation can be very large.

Therefore we define the new objective function to
be minimized as

JQ =
c∑
i=1

q∑
q1=1

q∑
q2=1

q∑
q3=1

hq1,q2,q3u
m
i,q1,q2,q3

‖xq1,q2,q3−vi‖2

(22)



where ‖.‖ is a convenient norm in the quantized
space, e.g. the Euclidean one. For convenience, we
rewrite the objective function as

JQ =
c∑
i=1

q3∑
l=1

hlu
m
il ‖xl − vi‖2. (23)

Since the gradient of JQ with respect to uil and
vi vanishes when reaching the local optimum, and
knowing that

∑
i uil sums up to one for all l, it is

easy to show that the optimal updating equations
of U and V are given by

uil = ‖xl − vi‖−2/(m−1)∑c
j=1 ‖xl − vj‖−2/(m−1) (24)

and

vi =
∑q3

l=1 hlu
m
il xl∑q3

l=1 hlu
m
il

(25)

Although the introduction of a bilateral filtering
process before clustering improves the effectiveness
of segmentation, it still lack enough robustness and
neighborhood importance should be taken into ac-
count in the clustering algorithm. To this aim, we
propose, instead of considering the entire image, to
regularize the partition matrix, based on the neigh-
borhood of each pixel. The advantage of this propo-
sition is to get rid of the selection of the crucial bal-
ance parameter α in the methods of [1, 7, 5, 22].
This parameter ensures a balance between robust-
ness to noise and effectiveness of preserving details.
Hence it is hard to set and have considerable impact
on the performances. However, due to quantization,
the elements of the partition matrix do not have
spatial relationships. To overcome this problem, we
introduce a mapping of the quantized partition ma-
trix of size (c× q3) to the usual partition matrix of
the pixels, of size c × (m × n), where m and n are
the width and the height of the image. The basic
idea of this mapping is, from a given pixel of the
image, to obtain its corresponding bin, say li, in
the quantized space. Then, this pixel inherits from
the membership degrees of li obtained by u.li . In
order to avoid ambiguities, an element of the usual
partition matrix is denoted uik, while an element of
the quantized partition matrix is denoted uil.

Each element of the regularized partition is ob-
tained by

uik = rik∑c
j=1 rjk

(26)

where r is a spatial function. We define two general
form for r:

• rik =
∑
j∈N (xk) uij ,

• rik = medianj∈N (xk)uij ,

which respectively correspond to a mean and a me-
dian filter applied to the membership degrees of
the neighborhood of the pixel. However, in or-
der to keep the algorithm fast, this regularization

cannot be done in each updating step, so that
U is smoothed when the local optimum has been
reached. The resulting algorithm, that we call
QFCM, is given in Algorithm 2.

Algorithm 2 Quantized Fuzzy C-Means (QFCM)
1: procedure Segmentation(Image I, No. of

clusters c, No. of bins q)
2: Pre-process the image I using (20).
3: initialize cluster centers V using the

Ordering-split procedure (Algorithm 1).
4: repeat
5: Update partition matrix U using (24).
6: Update prototypes matrix V using (25).
7: until ‖V −Vold‖ < ε . ‖.‖ is a matrix norm.
8: Regularize the partition U using (26).
9: return (U, V ) . Partition and centers.

10: end procedure

4. Results and comparison

4.1. Performance measures

The first measures of evaluation of segmentation
were subjective, and the ever growing interest in this
topic leaded to numerous metrics allowing proper
evaluation.

In order to objectively measure the quality of the
segmentations produced, 4 evaluation measures are
considered in this paper. The first one is the Prob-
abilistic Rand Index (PRI, [21]). This index com-
pares results obtained from the tested algorithm to
a set of manually segmented images. Since there is
not a single correct output, considering multiple re-
sults allows to enhance the comparison and to take
into account the variability of human perception.
The PRI is based on a soft nonuniform weighting
of pixel pairs as a function of the variability in the
ground-truth. The ground-truth set is defined as
{G1, G2, · · · , GL} where L is the number of manu-
ally segmented images. Let S be the segmentation
provided by the tested algorithm, lGk

i the label of
pixel xi in the k-th manually segmented image and
lSi the label of pixel xi in the tested segmentation.
Then, PRI is defined by

PR(S,Gk) = 2
N(N − 1)

∑
i,j,i<j

(
p
cij

ij (1− pij)1−cij
)
,

(27)
where N is the number of pixels, cij is a boolean
function denoting if lSi is equal to lGk

j , and pij is
the expected value of a Bernoulli distribution for
the pixel pair. The PRI metric is in the range [0, 1],
where high values indicate a large similarity be-
tween the segmented images and the ground-truth.

The second one is the Variation of Information
(VOI, [15]). The VOI metric measures the sum of
information loss and gain between two clusterings
belonging to the lattice of possible partitions. It is



defined by

V OI(S,Gk) = H(S) +H(Gk)− 2I(S,Gk), (28)

where H is the entropy −
∑c
i=1

ni

n log ni

n , ni being
the number of points belonging to the i-th cluster.
The term I is the mutual information between two
clustering, and it is defined by

I(S,Gk) =
c∑
i=1

c∑
j=1

ni,j
n

log ni,j
n

ni
n

nj
n

(29)

where ni,j is the number of points in the intersection
of cluster i of S and j of Gk. The VOI measure is
a distance, therefore the smaller it is, the closer the
segmentation obtained and the ground-truth are.
The Global Consistency Error (GCE [14]) evalu-

ates to what extent a segmentation can be viewed
as the refinement of the other. A measure of error
at each pixel xi is defined by

E(S,Gk,xi) = |R(S,xi)\R(Gk,xi)|
|R(S,xi)|

, (30)

where |.| is the cardinality, \ is the set difference,
and R(S,xi) is the set of pixels corresponding to
the region in segmentation S that contains the pixel
xi. The GCE measure, which forces all local refine-
ments to be in the same direction, is then defined
by

GCE(S, Gk) = 1
n

min

(
n∑

i=1

E(S, Gk, xi),
n∑

i=1

E(Gk, S, xi)

)
.

(31)

The closer GCE is to zero, the better the segmen-
tation S with respect to the ground-truth Gk.
The Boundary Displacement Error (BDE [9])

evaluates the average displacement error of bound-
ary pixels between two segmented images by com-
puting the distance between the pixel and the clos-
est pixel in the other segmentation. Given an arbi-
trary point xi of S, the BDE index uses the mini-
mal Euclidean distance from xi to all points of Gk.
A distance distribution signature DGk

S is then ob-
tained by summing the distances over all points of
S. The BDE index is finally obtained by

BDE(S,Gk) = 1
2(DGk

S +DS
Gk

) (32)

Here again, a small value of BDE indicates that S is
a good segmentation considering the ground-truth
segmentation Gk.

4.2. Experiments
In all experiments, the maximum number of itera-
tions is set to 100, the termination criterion ε is set
to 0.001, and a (3 × 3) window is taken. As sug-
gested by the authors in [1], the value α of FCM_S
is set to 0.85. In [5], the authors suggest to use a
value α = 3.8 for KFCM_S1 and KFCM_S2. For
this experiment, the number of bins of QFCM is

Table 2: Average performance measures on the eight
images.

PRI VOI GCE BDE
FCM_S 0.775 2.534 0.256 4.976

KFCM_S1 0.791 2.257 0.214 4.565
KFCM_S2 0.791 2.364 0.226 4.722

GKFCM_S1 0.762 3.245 0.282 5.347
GKFCM_S2 0.777 3.156 0.280 5.394

FLICM 0.799 2.412 0.227 4.462
QFCM_S1 0.818 1.871 0.158 4.154
QFCM_S2 0.848 1.812 0.167 3.793

Table 3: Average performance measures of QK-
FCM_S2 for different values of q (N fixed) and N
(q fixed).

q = 5 PRI VOI GCE BDE
N = 3 0.820 2.007 0.171 3.995
N = 5 0.848 1.812 0.167 3.793
N = 7 0.802 2.106 0.197 3.982
N = 3 PRI VOI GCE BDE
q = 5 0.820 2.007 0.171 3.995
q = 7 0.812 2.142 0.202 4.213
q = 9 0.831 2.045 0.162 3.997

set to q = 5 and the size of the window is N = 5.
In order to provide fair comparison, all the algo-
rithms are initialized with the cluster centers ma-
trix obtained with the Ordering-Split method de-
scribed in Section 2. The pre-processing step (20)
is also applied before running all methods. All the
algorithms are implemented in C++ language, and
run on a Intel Core2 Duo, 2.4 GHz, with 3Gb of
memory. In the sequel, eight color images publicly
available [14] are considered. The eight images are
plotted in Figure 2. For each of these images, sev-
eral ground-truth segmentations that have been de-
signed by humans are available. The images seg-
mented by the QFCM_S2 algorithm are plotted in
Figure 3, where pixels are defined by the mean color
of each region Rl, l = 1 · · · , r. In the second exper-
iment, in order to study the influence of each pa-
rameter of QKFCM_S2, one of the two parameters
q or N stays constant, while the other varies. The
results on the eight images are reported in Table 3.
As can be seen, results obtained with the proposed
algorithm are better than those of literature’s algo-
rithms, regardless the two input parameters, N and
q. According to Table 2, we can draw the follow-
ing remarks. Clearly, QFCM_S1 and QFCM_S2
are the two best methods on the considered images.
An interesting point is that QFCM_S1 performs
better than QFCM_S2 for the GCE measure, and
worst for the other three. This is due to the defi-
nition of the GCE index, which does not penalize
over-segmented images.



(a) Plane (3096) (b) Eagle (42049) (c) Field (86016) (d) Horse (113044)

(e) Church (118035) (f) Flower (124084) (g) Parade (145086) (h) Forest (238011)

Figure 2: The eight color images to be segmented.

Table 4: Computation times (in seconds)
Plane Eagle Field Horse Church Flower Parade Forest

FCM_S 702.94 116.09 191.1 96.62 790.07 172.44 151.41 85.55
KFCM_S1 321.53 60.31 85.44 45.34 362.66 77.53 72.98 39.48
KFCM_S2 411.78 57.70 84.50 39.98 340.19 75.56 70.95 39.92

GKFCM_S1 438.08 446.29 121.60 62.70 799.65 144.56 208.94 454.57
GKFCM_S2 357.39 457.50 128.54 73.44 820.52 147.15 215.23 453.85

FLICM 507.38 516.55 462.66 268.68 898.91 920.02 326.10 211.31
QFCM_S1 0.57 0.56 0.55 0.58 0.81 0.58 0.56 0.56
QFCM_S2 0.71 0.71 0.69 0.70 1.09 0.75 0.71 0.70

(a) Plane (3096); c = 2, r = 2 (b) Eagle (42049); c = 2, r = 6 (c) Field (86016); c = 2, r = 3 (d) Horse (113044); c = 2, r =
6

(e) Church (118035); c = 3,
r = 10

(f) Flower (124084); c = 3, r =
3

(g) Parade (145086); c = 3,
r = 9

(h) Forest (238011); c = 3, r =
3

Figure 3: Results of the QFCM_S2 algorithm applied to the eight color images.



5. Conclusion
This paper presents a fast and efficient method for
color image segmentation. We proposed several
new methods and extensions in this paper. First,
a new initialization method of cluster centers, al-
lowing faster convergence of the iterative algorithm
is presented. Second, we generalize the enhanced
fuzzy c-means algorithm [4] to color images (in fact
any N -d image) by using a quantization of the color
space. Thus, we keep the ability of the algorithm
to be computed quickly. Moreover, using a quan-
tization of the color space allows to obtain a more
robust clustering: noisy pixels are allocated to bins
shared by noise-free pixels. According to an exten-
sive comparison with state of the art segmentation
methods, our approach gives satisfactory results.
Moreover, the computation time has been drasti-
cally reduced, enabling to process very large images
in a reasonable time. In the future, we plan to study
a non uniform quantization of the color values in
the CIE L∗a∗ b∗ space, so that regions having high
density in the color space will benefit of a finer reso-
lution, while areas with low density will have coarse
resolution. Combining and fusing segmentations of
different color spaces, as in [16], is also under study.
An interesting work is also reported in [17], where
the authors determine the number of bins accord-
ing to the goodness-of-fit between the observed and
expected frequencies given the q bins.
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