
HAL Id: hal-00738410
https://hal.science/hal-00738410

Submitted on 4 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Side-channel Analysis of Grøstl and Skein
Christina Boura, Sylvain Lévêque, David Vigilant

To cite this version:
Christina Boura, Sylvain Lévêque, David Vigilant. Side-channel Analysis of Grøstl and Skein. IEEE
CS Security and Privacy Workshops - SPW 2012, May 2012, San Francisco, United States. pp.16-26.
�hal-00738410�

https://hal.science/hal-00738410
https://hal.archives-ouvertes.fr

Side-channel Analysis of Grøstl and Skein

Christina Boura∗ †, Sylvain Lévêque∗, David Vigilant∗

∗ Gemalto

6 rue de la Verrerie, 92190 Meudon, France

{sylvain.leveque, david.vigilant}@gemalto.com
† SECRET Project-Team - INRIA Paris-Rocquencourt

Domaine de Voluceau - B.P. 105 - 78153 Le Chesnay Cedex - France

christina.boura@inria.fr

Abstract—This work1 provides a detailed study of

two finalists of the SHA-3 competition from the side-

channel analysis point of view. For both functions when

used as a MAC, this paper presents detected strategies

for performing a power analysis. Besides the classical

HMAC mode, two additionally proposed constructions,

the envelope MAC for Grøstl and the Skein-MAC for

Skein, are analyzed. Consequently, examples of software

countermeasures thwarting first-order DPA or CPA are

given. For the validation of our choices, we implemented

HMAC-Grøstl, HMAC-Skein as well as countermeasures

on a 32-bit ARM-based smart card. We also mounted

power analysis attacks in practice on both unprotected

and protected implementations. Finally, the performance

difference between both versions is discussed.

Keywords-side-channel, HMAC, SHA-3, countermea-

sures

I. INTRODUCTION

Hash functions are often called the “swiss army

knives” of cryptography. Their use in password pro-

tection, in data integrity checks or in digital signa-

tures demonstrates the necessity of the existence of

hash functions with good security properties. In 2004,

Wang et al. [1] presented a number of devastating

collision attacks for many widely used functions, such

as MD5 and SHA-1. In response to these attacks,

NIST launched in 2007 a public competition aim-

ing at defining a new hash function standard. This

competition, called the SHA-3 contest, should come

to an end with the announcement of the winner in

the second semester of 2012. Currently, only five

1This work is partially supported by the French Agence Na-
tionale de la Recherche through the SAPHIR2 project under
Contract ANR-08-VERS-014.

candidates remain: BLAKE, Grøstl, JH, KECCAK and

Skein.

One of the most important applications of a hash

algorithm is the message integrity and authentication,

i.e. the recipient of a message can verify that the

received message is identical to the one sent and at

the same time can authenticate its author. In this case,

the two parties agree on a secret key K, and this key

is then used in the hash computation together with

the message, to produce the message authentication

code (MAC). Many hash-based MAC constructions

have been proposed [2], [3]. The HMAC one [3] is

probably the most popular among them. Consequently,

their use in MAC constructions makes them a target

for side-channel attacks [4].

Regarding the SHA-3 competition, NIST required

that all the submitted functions possess a secure

HMAC or other MAC mode. In parallel, it was spec-

ified that side-channel issues would be taken into

consideration for the final decision. For all these

reasons, analyzing the resistance against side-channel

attacks [5], [6] of the remaining candidates has become

an important matter [7]. In this direction, Benoı̂t and

Peyrin presented in [8] an analysis of the resistance

against side-channel attacks in a MAC setting of six

second round candidates. In their work, a theoretical

analysis exhibits the best selection functions for each

candidate. Then, these functions were implemented

on an FPGA in order to measure the electromagnetic

leakage. In a more recent work [9], the resistance

of four out of five third round SHA-3 candidates

against side-channel attacks was analyzed, and target

operations were proposed as well.

This paper presents an analysis of the side-channel

resistance of two SHA-3 finalists, Grøstl [10] and

2012 IEEE Symposium on Security and Privacy Workshops

© 2012, Christina Boura. Under license to IEEE.
DOI 10.1109/SPW.2012.13

16

IEEE CS Security and Privacy Workshops

16

Skein [11]. Both functions have been implemented

on a smart card and their HMAC modes have been

attacked by CPA. In parallel, a first serious analysis

for the possible countermeasures on both functions

against first-order DPA and CPA attacks is presented.

After recalling two basic MAC modes in Section II and

reminding the basic principles of a correlation power

analysis in Section III, the main results on Grøstl and

Skein are presented in Sections IV and V.

The attack setting: Grøstl-256, Skein-512-256
and their respective HMAC were implemented on a

32-bit ARM architecture smart card, running at 8MHz.

The security settings of this smart card include the

activation of all hardware sensors and of a random

current generator. Its CPU is known to leak information

over power with the Hamming weight model, at a

relatively low level regarding industry standards. The

aim of this paper is not to reach optimal absolute

timings for the execution of the two SHA-3 candidates.

Therefore, in both cases, the reference implementa-

tion proposed by the designers was employed. The

purpose of this work is not to minimize the number

of curves needed for every attack. Hence, we chose

to set the number of recorded waveforms to 5000
for both algorithms, for both non-secure and secure

implementations. This paper focuses on providing a

comparison between the plain and secure versions

using the same reference model, and evaluating the

extra cost to reach a secure implementation against

first-order statistical power analysis. First-order Cor-

relation Power Analysis is used to exploit the power

leakage and reveal the targeted secret values. Examples

of cost-effective countermeasures thwarting this threat

are proposed and validated. A more complete secu-

rity analysis, for example against second-order DPA

or fault attacks, would need more investigation and

overcomes the scope of the present work.

II. HMAC AND ENVELOPE MAC

A Message Authentication Code (MAC) based on a

hash function is frequently used to check the authentic-

ity and the integrity of a message sent over an insecure

channel.

One of the most popular MAC constructions is

HMAC, presented by Bellare et al. in [3].

A HMAC based on the hash function H is defined

as follows:

HMAC-H(K,M) =

H((K ⊕ opad)||H((K ⊕ ipad)||M)).

Here, ipad and opad are two constants the size of

a message block, while K is the key K padded with

0’s until reaching the block size. Longer keys are first

hashed with H .

h h h

h h

CV in
0

K ⊕ ipad

Ki

M1 Mk

Hin

CV out
0

K ⊕ opad

Ko
Hout

Figure 1: The HMAC construction.

It is easy to see from Figure 1, that the first block

for each call to h is a constant value that depends

only on K. In some implementations though, to gain

in performance, the values

Ki = h(K ⊕ ipad) and Ko = h(K ⊕ opad)

are precomputed and stored on the device.

Our attack will attempt to recover the values of

Ko and Ki. Knowing them allows to forge the MAC

whatever the message M and the value of Hin are.

The techniques to recover Ko and Ki are similar, for

this reason this paper will only focus on attacking Ki.

A MAC construction, that had been originally pro-

posed by Tsudik [2] much earlier than the HMAC

scheme and repaired later by Yasuda [12] after an

attack on the original scheme, is the so-called envelope

MAC. It was designed to combine both the secret prefix

construction, i.e. MACK(M) = H(K||M) and the se-

cret suffix construction, i.e. MACK(M) = H(M ||K).
The repaired version of envelope MAC is simply

MACK(M) = H(K||M ||K),

where K and M are the padded secret key K and the

padded message M respectively. In this way, the key

and the message blocks are treated separately.

Envelope MAC has been proposed as the dedicated

MAC construction for Grøstl [10].

In the HMAC construction, obtaining Ki and Ko

was enough to forge the MAC. But for a successful

1717

h h h hCV in
0

K
Ki

M1 Mk K

Figure 2: The envelope MAC construction

attack of the envelope MAC, one has to imperatively

recover the secret key K. However, in the DPA-CPA

scenario, the amount of effort for an efficient attack

is equal to the effort needed for forging a HMAC, as

again the attack must be set up in two steps. First, the

value of Ki must be recovered, then the insertion of the

key to the last compression function must be targeted

by processing many different messages M .

III. CORRELATION POWER ANALYSIS

Side-channel attacks are a class of physical attacks

against cryptographic implementations, where one tries

to exploit the information leaked from a device execut-

ing a cryptographic algorithm. Many different leakages

can be measured, however the power consumption of

a device is one of the most frequently employed. It

can easily be observed with an oscilloscope and used

to make deductions about the secret information that

is manipulated.

An important class of power analysis attacks is the

statistical power analysis. It was first introduced by

Kocher et al. [5], in the form of differential power

analysis (DPA) and later the correlation power anal-

ysis (CPA) improved the above technique [6]. They

both rely on a leakage model, several of them were

proposed. The Hamming weight model, introduced in

[13], [5] is probably the most classical among them. It

involves an affine relationship between the Hamming

weight of the manipulated data and the power con-

sumption:

Y = aHW (X) + b,

where X is the information being manipulated and

HW stands for the Hamming weight.

The first step of a statistical power analysis attack

on a hash-based MAC is to choose a target operation.

This operation must be of the form f(α, k) = β. k

is a part of Ki or Ko in the case of an HMAC and,

in the case of an envelope MAC when attacking the

last compression function, a part of the key K. On the

other hand, α is a known random value, such as part

of the message or the chaining value being processed.

The function f , frequently called selection function,

can be any operation mixing secret and public data,

such as an XOR operation, a modular addition �, or

a substitution table.

To put a CPA-type attack in place, the adversary runs

the target device N times, with N different messages

and captures for each message a power consumption

waveform. For each power curve, the attacker will try

to predict the Hamming weight of the word being ma-

nipulated at a chosen point in time, by calculating the

Pearson correlation coefficient. This will be done for

every possible value of k, and a CPA trace will equally

be generated. The correlation should be maximized for

the correct key guess and thus a peak should appear at

that moment of time.

IV. GRØSTL

Grøstl [10] is a family of iterated hash functions

based on a compression function f . The variant return-

ing 256 bits is denoted by Grøstl-256. The compression

function of Grøstl-256 is iterated as follows. First,

the message m to hash is padded and cut into 512-

bit blocks, m1, . . . ,mt. After this, given an initial

value iv = h0, every message block is processed

sequentially:

hi = f(hi−1,mi), for 1 ≤ i ≤ t.

Finally, an output transformation Ω

Ω(x) = truncn(P (x)⊕ x),

is applied to ht, where truncn(x) is the function

discarding from x all but the n first bits.

The compression function f is built out of two large

distinct permutations P and Q:

f(h,m) = P (h⊕m)⊕Q(m)⊕ h.

Grøstl iterated permutations P and Q are based on

the Rijndael block cipher. They are applied to a 512-

bit state represented by a square matrix of bytes A,

with eight rows and columns. In every round R, a

total of four transformations inspired from the AES

are performed:

R = MixBytes ◦ ShiftBytes ◦

SubBytes ◦ AddRoundConstant.

The AddRoundConstant transformation adds a

round-dependent constant to every byte of the state

matrix A.

1818

The SubBytes transformation consists of a non-

linear substitution applied to every byte separately. It

is identical to the AES SubBytes transformation.

ShiftBytes cyclically shifts the bytes within a

row to the left by a number of positions.

The MixBytes operation transforms every column

of the state matrix independently in a linear way.

The number of rounds is set to ten for Grøstl-256.

A. Side-channel analysis of Grøstl

This section provides a power analysis of Grøstl

when implemented as a MAC. HMAC is clearly the

most employed hash-based MAC, but as the designers

of Grøstl suggest the envelope MAC construction, both

of these designs have been studied. The first step in

this analysis consists in simply identifying which op-

erations are sensitive against a statistical power attack

and must therefore be protected. We realized such

attacks on the non-secure HMAC-Grøstl for two main

reasons. The first one was to practically confirm our

theoretical assumptions by showing that some leakage

of the secret information takes place in reality. The

second one was to see at what point the secret key

could be recovered, as the success of such an attack

depends very often on the targeted architecture and

selection function.

This analysis starts by examining HMAC-Grøstl.

Our aim is to recover Ki and Ko, and the procedure

to followed is similar for both. In order to retrieve the

secret information, we have to identify the selection

functions where secret and public data are mixed

together.

Three such simple operations can be identified. The

first one is the XOR between hi−1 and mi. In the

HMAC setting, hi−1 will contain Ki when the first

message block is processed. The second one is the first

SubBytes operation. A similar analysis was done

for Grøstl in [8], where the authors stated that the

SubBytes operation yields better correlation prop-

erties than the XOR operation. In our approach, both

operations are targeted, in order to compare the real

difference in their efficiency.

A third possible target is the XOR between hi−1,

Q(mi) and P (hi−1 ⊕mi) to compute the next chain-

ing value hi. However, the possibility to attack this

operation depends on the way it is implemented. Three

possible ways exist. The first one consists in computing

the XOR between Q(mi) and P (hi−1 ⊕mi) and then

XORing this result to hi−1:

tmp = Q(mi)⊕ P (hi−1 ⊕mi)

hi = hi−1 ⊕ tmp.

The second way is to compute the XOR of P (hi−1 ⊕
mi) and hi−1 and XOR this to Q(mi) :

tmp = P (hi−1 ⊕mi)⊕ hi−1

hi = Q(mi)⊕ tmp,

and the third one consists in first combining hi−1 with

Q(mi) and then XORing P (hi−1 ⊕mi) like this:

tmp = Q(mi)⊕ hi−1

hi = P (hi−1 ⊕mi)⊕ tmp.

The first two ways of implementing this operation do

not provide any apparent threat for the hash function,

as P (hi−1 ⊕ mi) is an unknown changing data. In

the third implementation, the first operation is similar

to the first XOR between mi and hi−1, using Q(mi)
instead of mi. It is therefore CPA-sensitive. The refer-

ence code provided by the designers does not use the

third implementation and is therefore CPA-proof.

A special point is that both sensitive operations

i.e. the initial XOR and the first Sbox layer, can be

captured in the same power trace with a good signal

resolution. From an attacker’s point of view, it means

that only one set of curves is needed. This can be

seen in Figure 3, where both attack locations can be

identified.

5000 curves are captured and then analyzed with

respect to correlation power analysis. Clear leakages

can be observed for both operations and all the key

bytes could be successfully recovered. However, as

expected, the correlation peaks for the correct key

guess are clearer for the SubBytes operation than

for the XOR. The Figure 4 shows the results of a

successful CPA against the SubBytes operation. As

explained in the introduction, the scope of this analysis

is not to find the minimal number of curves needed

in order to entirely recover the key. Our approach

aims at demonstrating and highlighting operations in

Grøstl that leak secret information in practice and thus

showing that masking these operations is of major

importance.

Regarding the envelope MAC, the preliminary anal-

ysis does not give much different results from the side-

channel point of view. The only significant difference

1919

yielding hi−1 ⊕mi

A
d
d
C
s
t

SubBytes

Figure 3: SPA of the two attack areas in HMAC-Grøstl: message entry and SubBytes operation

Figure 4: CPA on HMAC-Grøstl SubBytes operation (four first bytes of targeted value)

is that in the last call of the compression function,

the roles of the secret and the public information are

interchanged. As these roles are entirely symmetric,

this does not change anything in the previous attack

scenario, except that it permits to recover the secret

key. If this key is also used for some other applications

of the smart card, the attack can be more devastating

than in the HMAC case, where the original key is not

recoverable.

In the sequel, countermeasures for Grøstl are pro-

posed, protecting the identified sensitive operations.

These countermeasures apply for both HMAC and

envelope MAC settings.

B. Countermeasures for Grøstl

We come up with very simple countermeasures that

mask the sensitive data for all rounds of Grøstl. These

countermeasures should apply against any first-order

statistical power analysis. As mentioned before, the

critical operations are the XOR between the incoming

message block and the chaining value, and then the

SubBytes operation.

In order to protect the XOR, a Boolean mask R

of 512 bits is generated once. This mask is XORed

to the chaining value, and the feed-forward naturally

re-injects it at the beginning of every compression

function. This mask R, called global, should be deleted

by simply re-XORing it to the state just before the final

truncation. Its propagation can be seen in Figure 5,

together with the unprotected hash computation. On

the other hand, in order to go through the Sbox layer,

the global mask must be removed at the beginning of

every permutation P . Thus, another type of protection

is needed to mask the Sbox computation and the rest

of the permutation. For this, many possible solutions

exist, coming mostly from the study of the protection

of AES against side-channels. An easy method for

masking an Sbox S, that can be seen in practice as

a table lookup operation, is to mask the table itself.

For this, an input mask u and an output mask v can be

used, and the masked Sbox S′ is computed in terms of

S, u and v as

S′(x⊕ u) = S(x)⊕ v.

In practice, the masks u and v are obtained at the

beginning of the algorithm. The Sbox S′ is then

2020

h

P Q

m

P

h

R

P
′ Q

u

R m

v

P
′

u

R

v

R

Figure 5: Side-by-side comparison of standard and

secured Grøstl

constructed and stored in RAM, together with u and

v, for the remaining computations.

The proposed countermeasures would not hold in

the case of a higher-order DPA or CPA, where the

sensitive value should be split in more than two random

parts. Here one could have also used the duplication

method [14] to protect this stage.

This new mask, called local, should be applied to the

state before the global mask is deleted. In this way,

no sensitive value appears unmasked at any moment

of the computation. In Figure 5, P ′ symbolizes the

permutation P in which the above countermeasures are

implemented.

One can verify that the previously observed leakage

disappears when trying to attack the secured imple-

mentation, as shown in Figure 6.

The next section presents an analysis of Skein. To

have a relevant comparison between the two SHA-

3 candidates, appropriate settings are chosen for the

internal state size of Skein.

V. SKEIN

Skein [11] is a hash function family based on

the tweakable block cipher Threefish. Three different

internal state sizes are available: 256, 512 and 1024
bits. The key size of the block cipher is equal to the

block size and the tweak value is 128 bits for all three

versions. The tweak value for each block encodes the

number of bytes processed so far, together with some

other information.

This work analyzes only Skein-512-256, i.e. the ver-

sion having 512 bits of internal state and outputting 256
bits of digest. Only this specific version is therefore

described.

Threefish uses only three mathematical operations:

XOR, modular addition and rotations by a constant

on 64-bit words. Its basic function, called MIX, is

described in Figure 7a.

Skein-512-256 is composed of 72 rounds of basic

operations. Every round consists of four parallel appli-

cations of the MIX function, followed by a permutation

of the eight words of the state. A subkey is injected

every four rounds. One round is shown in Figure 7b.

All the operations are done on 64-bit words and both

the internal state S and the key are composed of eight

words. Let t0 and t1 define the two words of the tweak

value and let k0, . . . , k7 be the eight key words. The

first subkey is given by

s0 = (k0, k1, k2, k3, k4, k5 + t0, k6 + t1, k7),

where the additions are made modulo 264. The com-

pression function of Skein is defined as

hi = Ehi−1,Ti
(mi)⊕mi,

where EK,T (P) is the Threefish cipher, hi−1 is the

previous chaining value, Ti the tweak and mi the

message block.

The chaining mode used is the Unique Block It-

eration (UBI). For standard hashing, a configuration

block is processed through the compression function

before hashing the message and another call to the

compression function is made after all the message

blocks have been handled. A unique 128-bit tweak

value is used for every compression function call.

A. Skein-MAC

The submission document [11] mentions that Skein

can naturally be used in HMAC mode, but this appli-

cation is not suggested by the authors because of the

2121

Figure 6: CPA on secure HMAC-Grøstl SubBytes operation (first four bytes of targeted value)

≪
Rr,i

(a) The MIX operation

Plaintext

Subkey 0

MIX MIX MIX MIX

Permute

(b) One round of Threefish-512

Figure 7: Elements of the Skein function

Figure 8: The Skein-MAC construction

inefficiency for short messages. Alternatively, a simple

method for turning Skein into a MAC can be seen in

Figure 8.

It consists in first processing the key with 0 as a

chaining value, and then the configuration block.

B. Side-channel analysis of Skein

An analysis of Skein-512-256 when implemented as

a MAC is now provided. We have looked for attacking

strategies, for both HMAC-Skein and Skein-MAC.

Exactly the same sensitive operations in both MAC

designs can be identified. For the HMAC, the attack

would consist in recovering first Ki and then Ko. In

Skein-MAC, only one secret value, the UBI output of

the configuration block treatment, must be recovered to

completely forge the MAC. Remarks made for HMAC-

Skein should therefore apply to Skein-MAC as well.

As also mentioned in [9], the easiest operation to

attack in terms of statistical power analysis is the

modular addition between the message and the first

subkey. In the HMAC setting, if m0, . . . ,m7, are the

eight 64-bit words of the first message block and

K0, . . . ,K7 denote the eight words of equal length of

2222

modular addition ki �mi

Figure 9: SPA of the attack area in HMAC-Skein: message entry

the first subkey, this operation is simply

Ki �mi, for i = 0, . . . , 7.

Consequently a CPA attack on the HMAC-Skein is

mounted, targeting these eight additions and trying to

completely recover the secret value word by word. As

previously, 5000 curves are analyzed. As one can see

in Figure 10, the results of this experimentation are

finally much more surprising than expected. Indeed, if

we denote by (b0, . . . , b7) the bytes of a 64-bit word

of the first subkey, only the bytes b0, b4, b5, b6 and b7
could be recovered in practice. But even out of these

five bytes, the highest peak gives the right value only

for b0, while for the others, extra effort is required to

determine the correct value, among a few other wrong

peaks.

The reason for this unexpected behavior might come

from the way a modular addition of two 64-bit values

is treated on a 32-bit architecture. This problem will

probably be the subject of a future work. However,

even if the key is not entirely recovered, the recorded

leakage is clearly significant enough to make the

protection of this addition necessary.

C. Countermeasures

The modular addition between the message and

the first subkey must be protected, but the diffusion

provided by the MIX operation through a single round

is not significant enough. Masking ARX-based func-

tions (i.e. functions based on Additions, Rotations

and XORs) requires conversions between Boolean and

arithmetic values, which can be very expensive. There-

fore a trade-off between security and performance

should be found. We decided that protecting the first

four rounds would ensure a good diffusion of the

secret, withdrawing all the possible first-order DPA

or CPA on further rounds, with a limited performance

impact.

A method for switching between Boolean and arith-

metic masking should be chosen. An efficient algo-

rithm for converting from Boolean to arithmetic mask-

ing was proposed by Goubin in [15]. A method for

the inverse operation, i.e. converting from arithmetic

to Boolean masking was also proposed in his paper.

The number of operations for this conversion depends

on the size of the data to convert, which is in our

case 64-bit words. Another algorithm, for this same

conversion, was proposed in [16]. In this approach, to

avoid the high number of expensive operations, a large

masking table is implemented, thus speed is gained at

the expense of memory.

Since Skein is a quite fast candidate, keeping mem-

ory resources low while requiring more processing

time is a more interesting trade-off. For the above

reasons, Goubin’s solution [15] has been implemented

for four rounds of Skein.

As the permutation used for Skein is such that the

odd and the even indexes are not mixed together, the

same arithmetic mask Ro for the words with an odd

index, and the same arithmetic mask Re for the even

ones, can be used. It interestingly reduces the number

of calls to the random number generator, as well as the

amount of RAM required for storing the mask values.

Furthermore, as already mentioned, the most expen-

sive conversion is the arithmetic to Boolean one. In

our implementation the performance ratio between the

two conversions is roughly 16. In the straightforward

approach, as the first key injection is a modular ad-

dition, it feels natural to use two arithmetic masks.

This implementation, depicted in Figure 11, requires

two arithmetic to Boolean conversions for every MIX

computation, i.e. 16 for each round. In order to avoid

this high number of arithmetic to Boolean conversions,

we propose to apply the following tweak just before

entering the first layer of MIX operations.

Let Ro be the arithmetic mask protecting the subkey

insertion of the words with odd index. Before the MIX

operation, an arithmetic to Boolean conversion is per-

formed for the odd branch of all the MIX operations. In

2323

Figure 10: CPA on the modular addition of Skein

me mo

≪

−Re −Ro

me

mo

Re Ro

a2b

b2a

≪

a2b

−Ro

Re ⊕Ro ⊕ (≪Ro)

me mo

Re Ro

≪

a2b

a2b−Ro

b2a

Re ⊕Ro ⊕ (≪Ro)

−Re Ro

Figure 11: Comparison of standard and secured Skein (without and with the tweak)

this way, the left branch of every MIX operation will

be protected by an arithmetic mask, while the right

part will be protected by a Boolean one. Then, the

following operations will be performed for all the 32
MIX operations of the first four rounds.

A Boolean to arithmetic conversion will be applied

to the right branch of the MIX before the modular

addition and a Boolean to arithmetic one will be done

to the left branch before the XOR, as this can be seen

in Figure 11. With this method, only one arithmetic

to Boolean conversion is performed inside every MIX.

This means that with this optimization, 8 arithmetic to

Boolean conversions are needed before applying the

first round transformation, and 32 are needed inside

the first four rounds, rather than 64 that were needed

before. A performance gain of around 30% on the total

HMAC computation can be observed.

The CPA analysis mounted on the protected version

only shows a high peak that corresponds to the null

subkey, i.e. the correlation with the message.

VI. PERFORMANCE ANALYSIS

One of the scopes of this paper is to provide a

comparison between two of the finalists of the SHA-

2424

Algorithm
Timings at 8MHz Extra RAM

Extra code
reference code secured code static stack

HMAC-Grøstl 453 ms 486 ms (+7.2%) +325 bytes 0 +688 bytes

HMAC-Skein 77.7 ms 155 ms (+100%) 0 +32 bytes +3484 bytes

Table I: Secured code overhead for timing, RAM consumption and code size when hashing one block of message

HMAC-Skeinoverhead

Secure HMAC-Skein

HMAC-Grøstl overhead

Secure HMAC-Grøstl

Figure 12: Power consumption for reference and secured implementations of HMAC-Skein and HMAC-Grøstl

3 competition. Even if the proposed MAC mode for

both algorithms was not the HMAC construction, we

chose to implement this mode for Skein and Grøstl for

reasons of analogy, as the HMAC is until nowadays

the most usually employed MAC. In this way, a

comparison between the two candidates can be kept.

The difference in the time required for the com-

putation of each of the HMACs before and after the

application of the countermeasures, on one block of

message, can be an example of such a comparison.

These measurements can be seen in Table I. In this

table, the amount of RAM needed to implement the

security parameters is equally mentioned, as well as the

extra code size required. For a better visualization of

the results, the same timing results are presented in Fig-

ure 12. Here, the power consumption curves produced

by an oscilloscope during the computations of HMAC-

Grøstl and HMAC-Skein for 1-block messages, for

both protected and unprotected implementations can

be seen. One can in particularly observe that our per-

formance ratio between HMAC-Skein and the HMAC-

Grøstl roughly came to 3 from 6 after protection.

VII. CONCLUSION

The winner function of the SHA-3 competition will

be announced soon. This function will be without

doubt implemented on various smart cards and other

devices. A discussion about the physical resistance of

the candidates and the possible countermeasures has

started. Here, two of the finalists of this competition

were examined, and more material to this analysis was

brought.

More precisely, this paper analyzed the resistance of

Grøstl and Skein against first-order CPA. For both of

them when used as a MAC, all the possible target op-

erations have been highlighted. In order to validate the

sensitivity of operations, HMAC-Grøstl and HMAC-

Skein were implemented on a 32-bit ARM-based chip,

5000 power curves were collected for every operation,

and a CPA was mounted on each of them. In the

case of Grøstl, the correct key can be recovered for

2525

both selection functions, i.e. the XOR and the Sbox

layer, even if the first one is a linear operation. On the

contrary, it was not possible to recover the entire key

for Skein.

Then countermeasures were proposed for both al-

gorithms. For Grøstl, the proposed masking operations

are quite efficient and entirely protect HMAC-Grøstl

(and in consequence Grøstl envelope MAC) for the

cost of an extra 7% of its initial speed. For Skein, the

situation is much more complicated, as it is necessary

to switch many times between arithmetic and Boolean

masking, which is very expensive.

REFERENCES

[1] X. Wang and H. Yu, “How to Break MD5 and Other

Hash Functions,” in EUROCRYPT 2005, ser. Lecture

Notes in Computer Science, vol. 3494. Springer, 2005,

pp. 19–35.

[2] G. Tsudik, “Message Authentication with One-Way

Hash Functions,” in INFOCOM 1992, 1992, pp. 2055–

2059.

[3] M. Bellare, R. Canetti, and H. Krawczyk, “Key-

ing Hash Functions for Message Authentication,” in

CRYPTO 1996, ser. Lecture Notes in Computer Sci-

ence, vol. 1109. Springer, 1996, pp. 1–15.

[4] K. Okeya, “Side Channel Attacks Against HMACs

Based on Block-Cipher Based Hash Functions,” in

ACISP 2006, ser. Lecture Notes in Computer Science,

vol. 4058. Springer, 2006, pp. 432–443.

[5] P. Kocher, J. Jaffe, and B. Jun, “Differential Power

Analysis,” in CRYPTO 1999, ser. Lecture Notes in

Computer Science, vol. 1666. Springer-Verlag, 1999,

pp. 388–397.

[6] E. Brier, C. Clavier, and F. Olivier, “Correlation Power

Analysis with a Leakage Model,” in CHES 2004,

ser. Lecture Notes in Computer Science, vol. 3156.

Springer, 2004, pp. 16–29.

[7] P. Gauravaram and K. Okeya, “Side Channel Analysis

of Some Hash Based MACs: A Response to SHA-3

Requirements,” in ICICS 2008, ser. Lecture Notes in

Computer Science, vol. 5308. Springer, 2008, pp.

111–127.

[8] O. Benoı̂t and T. Peyrin, “Side-Channel Analysis of Six

SHA-3 Candidates,” in CHES 2010, ser. Lecture Notes

in Computer Science, vol. 6225. Springer, 2010, pp.

140–157.

[9] M. Zohner, M. Kasper, and M. Stöttinger, “Side Chan-

nel Evaluation of SHA-3 Candidates,” First Interna-

tional Workshop on Trustworthy Embedded Devices

TRUSTED, 2011.

[10] P. Gauravaram, L. Knudsen, K. Matusiewicz,

F. Mendel, C. Rechberger, M. Schläffer, and

S. Thomsen, “Grøstl- A SHA-3 candidate,” Submission

to NIST (Round 3), 2011.

[11] N. Ferguson, S. Lucks, B. Schneier, D. Whiting,

M. Bellare, T. Kohno, J. Callas, and J. Walker, “The

Skein Hash Function Family,” Submission to NIST

(Round 3), 2010.

[12] K. Yasuda, “”Sandwich” Is Indeed Secure: How to

Authenticate a Message with Just One Hashing,” in

ACISP 2007, ser. Lecture Notes in Computer Science,

vol. 4586. Springer, 2007, pp. 355–369.

[13] T. S. Messerges, E. A. Dabbish, and R. H. Sloan,

“Investigations of Power Analysis Attacks on Smart-

cards,” in USENIX Workshop on Smartcard Technol-

ogy, 1999, pp. 151–162.

[14] L. Goubin and J. Patarin, “DES and Differential Power

Analysis (The ”Duplication” Method),” in CHES 1999,

ser. Lecture Notes in Computer Science, vol. 1717.

Springer, 1999, pp. 158–172.

[15] L. Goubin, “A Sound Method for Switching between

Boolean and Arithmetic Masking,” in CHES 2001,

ser. Lecture Notes in Computer Science, vol. 2162.

Springer, 2001, pp. 3–15.

[16] J.-S. Coron and A. Tchulkine, “A New Algorithm for

Switching from Arithmetic to Boolean Masking,” in

CHES 2003, ser. Lecture Notes in Computer Science,

vol. 2779. Springer, 2003, pp. 89–97.

2626

