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On the Influence of the Algebraic Degree of F−1

on the Algebraic Degree of G ◦ F
Christina Boura and Anne Canteaut

Abstract—We present a study on the algebraic degree of
iterated permutations seen as multivariate polynomials. The main
result shows that this degree depends on the algebraic degree
of the inverse of the permutation which is iterated. This result
is also extended to non-injective balanced vectorial functions
where the relevant quantity is the minimal degree of the inverse
of a permutation expanding the function. This property has
consequences in symmetric cryptography since several attacks or
distinguishers exploit a low algebraic degree, like higher-order
differential attacks, cube attacks and cube testers, or algebraic
attacks. Here, we present some applications of this improved
bound to a higher-degree variant of the block cipher KN , to the
block cipher Rijndael-256 and to the inner permutations of the
hash functions ECHO and JH.

Index Terms—algebraic degree, higher-order differential at-
tacks, hash functions, block ciphers.

I. INTRODUCTION

Most of the symmetric cryptographic primitives that are
used nowadays, including block ciphers and hash functions,
base their designs on an inner function that is iterated a high
number of times. This transformation, called the round func-
tion, is very often a permutation. The algebraic degree of this
permutation, i.e., the degree of the corresponding multivariate
polynomial, is a quantity that plays an important role on the
security of the symmetric primitive. Actually, a cryptographic
primitive of low algebraic degree is vulnerable to many
attacks, for instance higher-order differential attacks [1], [2],
[3], algebraic attacks [4], [5] or cube attacks [6].

Here, we show that, even if the inverse of the round
permutation F is never used in practice, as it is the case for
Feistel ciphers or for hash functions, its degree also plays a
fundamental role on the degree of the composition G ◦F and
in consequence on the overall degree of the primitive. Even if
the degree of the round function is high, if the degree of the
inverse is low, the degree of the cipher will be much lower
than expected. This result helps in general the understanding of
the evolution of the algebraic degree of iterated permutations.
Several earlier works have established new bounds on the
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degree of such permutations: most notably, [7] connects the
degree of G ◦ F with the divisibility of the Walsh spectrum
of F by a high power of 2 and a recent result [8] applies to
the families of functions composed of several smaller balanced
functions. Here, we derive some new bounds on the degree of
G◦F which involve the degree of F−1. In the design of some
particular ciphers, the nonlinear building blocks in the round
function are not permutations. This is for example the case
for the DES that uses a collection of eight 6 × 4 balanced
functions. Obviously, the notion of inverse does not exist for
such functions. However, we show that the overall degree of
the cipher depends on the minimal degree of the inverse of
any permutation expanding the output of the function. Thus,
a result, similar to the one for permutations, can be derived.

As illustrations, we apply our results to KN ′, a variant
of KN , a cipher proposed by Knudsen and Nyberg in [9].
In this variant, the quadratic round permutation which was
originally used in KN is replaced by a function with higher
degree but derived from a permutation whose inverse has
algebraic degree 2. Our new bounds are also applied to the
cipher Rijndael-256 and to two hash functions accepted for
Round 2 in the SHA-3 competition, ECHO and JH.

The rest of the paper is organized as follows. After some
preliminaries on the algebraic degree of a vectorial function,
different attack techniques that exploit a low algebraic degree
are recalled in Section II. Section III presents the main result
on the influence of the inverse of a permutation F to the
degree of G◦F and includes some corollaries. A variant of the
main result for non-injective balanced functions is presented in
Section IV. Finally, an attack on a variant of the block cipher
KN [9] is illustrated in Section V, together with applications
to Rijndael-256 and to some hash functions.

II. EXPLOITING A LOW ALGEBRAIC DEGREE IN
CRYPTANALYSIS

The whole paper focuses on functions F from Fn
2 into Fm

2 .
The coordinates of such a function F are the m Boolean func-
tions Fi, 1 ≤ i ≤ m, such that F (x) = (F1(x), . . . , Fm(x))
for all x. The algebraic degree of F is defined by the algebraic
degrees of its coordinates as follows.

Definition 2.1: Let f be a function from Fn
2 into F2. Then,

f can be uniquely written as a multivariate polynomial in
F2[x1, . . . , xn]/(x

2
1−x1), . . . , (x2n−xn), named its algebraic

normal form:

f(x1, . . . , xn) =
∑

u=(u1,...,un)∈Fn
2

au

n∏
i=1

xui
i .
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The (algebraic) degree of f is then defined as

deg f = max{wt(u) : u ∈ Fn
2 , au 6= 0} ,

where wt denotes the Hamming weight of a binary vector.
For a function F from Fn

2 into Fm
2 , m ≥ 1, the (algebraic)

degree of F is the maximal algebraic degree of its coordinates.
Moreover, the coefficients au in the algebraic normal form
of a Boolean function f can be easily computed from 2wt(u)

pairs of inputs-outputs of f as follows [10]:

au =
∑
x�u

f(x) ,

where x � u means that xi ≤ ui for all i, and the sum is
computed modulo 2. It is worth noticing that, when all the
2n values of f are known, the 2n coefficients of the algebraic
normal form can be computed all together by the Moebius
transform with time complexity O(n2n) [11, p. 286].

From the other side, every vectorial function F from Fn
2 into

Fn
2 can also be seen as a univariate polynomial over F2n . This

representation is possible because F2n can be identified with
an n-dimensional vector space over F2. Thus, for every such
F , there exists a unique univariate polynomial representation
over F2n , of degree at most 2n − 1,

F (x) =

2n−1∑
i=0

bix
i, bi ∈ F2n .

In this case, it can be shown that the algebraic degree of F
represented in such a way is given by

degF = max{wt(i) : 0 ≤ i < 2n and bi 6= 0} ,
where wt(i) denotes the Hamming weight of the n-bit vector
corresponding to the binary expansion of i (see, e.g. [12,
Def. 4]).

Many statistical attacks against symmetric cryptosystems
exploit the fact that a family of functions (Fk)k∈K (resp.
of permutations), whose inputs and outputs can be computed
from plaintext/ciphertext pairs, is not pseudorandom. Several
properties may be used to distinguish Fk from a randomly
chosen function, including the fact that some given coefficients
in its algebraic normal form are not distributed as it is
expected for a family of randomly chosen functions. The
simplest attack exploiting some property of the coefficients
of the algebraic normal form is the higher-order differential
attack introduced by Knudsen [2]: this attack uses that, for
all values of k, all coordinates of Fk have degree strictly
less than n, in general, and strictly less than n − 1, in
the case of a permutation. The algebraic degree of Fk is
then of primary importance since the data complexity of this
cryptanalysis is proportional to 2degFk [13], [14]. The higher-
order differential attack has been generalized to other types
of symmetric primitives, especially to stream ciphers, under
different names (including cube distinguishers) in [15], [16],
[17], [18], [19]. Cube attacks [6] and algebraic attacks [4], [5]
also exploit low-degree relations between some components
of the cryptosystem, but they mainly aim at reducing the time
complexity for recovering the secret key from a low-degree
distinguisher. Finally, even if both univariate and multivariate

degrees are related, all these attacks must be distinguished
from the attacks exploiting a low univariate degree, like the
interpolation attack and its variants [20], [21], [22].

In the case of iterated block ciphers, i.e., ciphers con-
sisting of several iterations of the same round permutation
parametrized by different round keys, the target function Fk

usually corresponds to the encryption function where the last
round is omitted. Then, the fact that Fk has a low degree can be
used to recover the last-round subkey either by an exhaustive
search [20], or by setting up a low-degree algebraic system in
these subkey bits which can be solved with time complexity
depending on the algebraic degree of the round function [23],
[3]. Predicting the evolution of the degree of the cipher when
the number of rounds varies is then one of the main issues in
higher-order differential attacks.

III. ON THE DEGREE OF G ◦ F WHEN F IS A PERMUTATION

A. General problem

We now focus on the following general problem: let F be a
function from Fn

2 into Fn
2 and G be a function from Fn

2 into
Fm

2 , for some m. Then, we aim at exhibiting some particular
classes of functions F such that the trivial bound

deg(G ◦ F ) ≤ deg(F ) deg(G)

can be improved.
The following two families corresponding to some common

situations in cryptographic applications have been previously
identified in [7] and [8].

Proposition 3.1: [7] Let F be a function from Fn
2 into Fn

2

and G be a function from Fn
2 into Fm

2 . Assume that all Walsh
coefficients of F , i.e., all∑

x∈Fn
2

(−1)b·F (x)+a·x, a, b ∈ Fn
2

are divisible by 2` for some integer ` ≥ 1, then

deg(G ◦ F ) ≤ n− `+ degG .

When F is a permutation, we can deduce the following
corollary which involves the degree of F−1.

Corollary 3.1: Let F be a permutation of Fn
2 and let G be

a function from Fn
2 into Fm

2 . Then, we have

deg(G ◦ F ) ≤ n− 1−
⌈ n− 1

min(degF,degF−1)

⌉
+ degG .

Proof: Obviously, the sets of all Walsh coefficients of a
permutation and of its inverse are the same since∑

x∈Fn
2

(−1)b·F (x)+a·x =
∑
x∈Fn

2

(−1)a·F−1(x)+b·x .

Moreover, a lower bound of the highest power of 2 which
divides all Walsh coefficients of a Boolean function can be
derived from Katz theorem [24]: for any function F and any
nonzero b ∈ Fn

2 , we have∑
x∈Fn

2

(−1)b·F (x)+a·x ≡
∑
x∈Fn

2

(−1)b·F (x) (mod 2d
n−1
deg F e+1) .
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Since F is a permutation, any nonzero linear combination
of its coordinates is balanced, which means that the right-
hand side is of the congruence is equal to zero. Then, by
applying this result both to F and F−1, we obtain that all
Walsh coefficients of F are divisible by 2` with

` ≥ 1 +
⌈ n− 1

min(degF,degF−1)

⌉
.

In particular, if F−1 is quadratic, Corollary 3.1 leads to

deg(G ◦ F ) ≤
⌊n− 1

2

⌋
+ degG ,

which may provide some relevant information if degG ≤
dn−12 e.

It has been recently shown in [8] that the bound given by
Proposition 3.1 can be improved when F corresponds to the
parallel applications of smaller balanced functions, i.e., F =
(S1, . . . , Ss). This particular situation is actually very common
in cryptography for obvious implementation reasons.

B. Main result

We now show that the upper bound given by Corollary 3.1
can be improved. This improvement relies on the following
theorem which bounds the maximum degree for the product
of any k coordinates of F , for all 1 ≤ k ≤ n. The following
notation will then be extensively used.

Definition 3.1: Let F be a function from Fn
2 into Fm

2 . For
any integer k, 1 ≤ k ≤ m, δk(F ) denotes the maximal
algebraic degree of the product of any k (or fewer) coordinates
of F :

δk(F ) = max
K⊂{1,...,m},|K|≤k

deg

(∏
i∈K

Fi

)
.

In particular, δ1(F ) = degF .
Theorem 3.1: Let F be a permutation on Fn

2 . Then, for any
integers k and `, δ`(F−1) < n−k if and only if δk(F ) < n−`.

Proof: We only have to show that if δ`(F−1) < n − k
then δk(F ) < n−`. Indeed, the reciprocal relation is obtained
by exchanging the roles of F and F−1.

Let π : x 7→ ∏
i∈K Fi(x), with |K| ≤ k. For L ⊂

{1, . . . , n}, with |L| ≤ `, we denote by aL the coefficient
of the monomial

∏
j 6∈L xj of degree n − |L|. We will show

that aL = 0.

aL =
∑
x∈Fn

2
xj=0,j∈L

π(x)

= #{x ∈ Fn
2 : xj = 0, j ∈ L and Fi(x) = 1, i ∈ K}

mod 2

= #{y ∈ Fn
2 : yi = 1, i ∈ K and F−1j (y) = 0, j ∈ L}

mod 2 ,

where the last equality comes from the fact that F is a per-
mutation, implying that there is a one-to-one correspondence

between x and y = F (x). Additionally, F−1j (y) = 0 for all
j ∈ L if and only if

∏
j∈L(1 + F−1j (y)) = 1. Then,

aL = #
{
y ∈ Fn

2 : yi = 1, i ∈ K and∏
j∈L

(1 + F−1j (y)) = 1
}
mod 2 . (1)

Now, we define the Boolean function

HK,L : {x ∈ Fn
2 : xi = 1, i ∈ K} → F2

x 7→ ∏
i∈L(1 + F−1i (x)) .

We have
aL = wt(HK,L) mod 2 .

HK,L is a function of n−k variables and it has degree at most
δ`(F

−1). Then, as by hypothesis δ`(F−1) < n − k, HK,L is
of even Hamming weight and thus aL = 0, which means that
δk(F ) < n− `.
This theorem explains for instance the observation reported
in [25] on the inverse of the quadratic permutation χ over
F5

2 used in the hash function KECCAK [26]. Since δ1(χ) =
degχ = 2, we have δ2(χ−1) < 4.

The following (less precise) result can be derived from the
trivial bound on δ`(F−1).

Corollary 3.2: Let F be a permutation of Fn
2 and let G be

a function from Fn
2 into Fm

2 . Then, we have

deg(G ◦ F ) < n−
⌊n− 1− degG

deg(F−1)

⌋
.

Proof: Obviously, deg(G ◦ F ) ≤ δdegG(F ). But the
previous theorem shows that δdegG(F ) < n − ` for some
integer ` if and only if δ`(F−1) < n − degG. However, we
have from the trivial bound that δ`(F−1) ≤ `deg(F−1). It
follows that δ`(F−1) < n−degG for any integer ` satisfying

` ≤
⌊n− 1− degG

deg(F−1)

⌋
.

Indeed, if n− degG 6≡ 0 (mod deg(F−1)), we have⌊n− 1− degG

deg(F−1)

⌋
=
⌊n− degG

deg(F−1)

⌋
.

Otherwise, ⌊n− 1− degG

deg(F−1)

⌋
=
n− degG

deg(F−1)
− 1 .

Therefore, in all cases, we have

deg(F−1)
⌊n− 1− degG

deg(F−1)

⌋
< n− degG ,

implying that

δ`(F
−1) ≤ `deg(F−1)

≤ deg(F−1)
⌊n− 1− degG

deg(F−1)

⌋
< n− degG .

We then deduce that

δdegG(F ) < n−
⌊n− 1− degG

deg(F−1)

⌋
.

Obviously, the upper bound in the previous theorem gets better
when the degree of F−1 decreases. Moreover, if G is balanced,
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this bound is relevant only if it improves the trivial bound
deg(G◦F ) < n. It then provides some information if degG ≤
n−1−degF−1, while the bound in Corollary 3.1 was relevant
only for degG <

⌈
n−1

min(degF,degF−1)

⌉
.

C. Some corollaries

Some simple corollaries of Theorem 3.1 can be obtained
by setting k = 1 in the theorem. In this case, we have
deg(F−1) < n − ` if and only if δ`(F ) < n − 1. We then
deduce the following result.

Corollary 3.3: Let F be a permutation of Fn
2 . Then,

deg(F−1) = n−min{k : δk(F ) ≥ n− 1} .

In particular, deg(F−1) = n−1 if and only if deg(F ) = n−1.
It is worth noticing that almost all permutations over Fn

2 have
maximal algebraic degree (n − 1), since this class includes
in particular all permutations with univariate degree (2n− 2),
which correspond to almost all permutations [27], [28], [29].
For instance, any transposition is an involution with algebraic
degree (n− 1).

We can also deduce from Corollary 3.3 that, for any integer
k such that

k ≤
⌈ n− 1

degF

⌉
− 1

we have
δk(F ) ≤ k degF < n− 1 .

It follows that

min{k : δk(F ) ≥ n− 1} ≥
⌈ n− 1

degF

⌉
,

implying that

deg(F−1) ≤ n−
⌈ n− 1

degF

⌉
.

We then recover in a different way the bound on deg(F−1)
which can be derived from Katz theorem [24] on the divisibil-
ity of the Walsh spectrum of a permutation. Actually, all Walsh
coefficients of F are divisible by

⌈
n−1
degF

⌉
+ 1 and it is well-

known that the degree of a function whose Walsh coefficients
are divisible by 2` is at most (n+1−`) (see, e.g. [7, Prop. 3]).

Corollary 3.3 also implies the following.
Corollary 3.4: Let F be a permutation of Fn

2 . Then, the
product of k coordinates of F has degree (n− 1) if and only
if n− deg(F−1) ≤ k ≤ n− 1.

In particular, δn−1(F ) = n− 1.
Proof: Corollary 3.3 implies that the smallest k such that

δk(F ) ≥ n − 1 is equal to n − deg(F−1). Moreover, it is
known that δk(F ) = n if and only if k = n. Finally, since
n−deg(F−1) ≤ n− 1, we deduce that δn−1(F ) = n− 1, for
any permutation of Fn

2 .
The above results can also be used for improving the bound

on deg(G ◦ F ) found in [8] when F is the concatenation of
several smaller permutations.

Theorem 3.2: Let F be a permutation from Fn
2 into Fn

2

corresponding to the concatenation of s smaller permutations,

S1, . . . , Ss, defined over Fn0
2 . Then, for any function G from

Fn
2 into Fm

2 , we have

deg(G ◦ F ) ≤ n− n− deg(G)

γ
, (2)

where

γ = max
1≤i≤n0−1

n0 − i
(n0 −max1≤j≤s δi(Sj))

.

Most notably, we have

γ ≤ max
1≤j≤s

max

(
n0 − 1

n0 − deg(Sj)
,
n0
2
− 1, deg(S−1j )

)
.

Proof: We denote by γi the quantity

γi =
n0 − i

n0 −max1≤j≤s δi(Sj)
,

and we will try to compute the maximal γi for 1 ≤ i ≤ n0−1,
i.e. γ.

For i = 1,

γ1 = max
1≤j≤s

n0 − 1

(n0 − deg(Sj))
.

For 2 ≤ i < n0 − max
1≤j≤s

deg(S−1j ), we get from Corol-

lary 3.4 that max
1≤j≤s

δi(Sj) ≤ n0 − 2, and thus

γi = max
1≤j≤s

n0 − i
(n0 − δi(Sj))

≤ n0 − i
2
≤ n0 − 2

2
.

Finally, for the remaining indexes, i.e. for i ≥ n0 −
max
1≤j≤s

deg(S−1j ), we get that

γi = max
1≤j≤s

n0 − i
(n0 − δi(Sj))

≤ n0 − i ≤ max
1≤j≤s

deg(S−1j ).

IV. GENERALIZATION TO BALANCED FUNCTIONS FROM
Fn

2 INTO Fm
2 WITH m < n

In some symmetric primitives, the functions used to provide
confusion are not permutations, but balanced functions F :
Fn

2 → Fm
2 , with m < n. An example of this design is the first

encryption standard cipher, DES [30], whose round function
uses the parallel application of eight different 6 × 4 Sboxes,
all of them of degree 5 in six variables.

An interesting problem is to be able to predict in some
manner the evolution of the algebraic degree of the cipher
after few rounds of encryption. Clearly, as the Sboxes of DES
are not permutations, they cannot be inverted. Nevertheless,
similar results as before can be deduced.

Definition 4.1: Let F : Fn
2 → Fm

2 , with m < n, F =
(F1, . . . , Fm), be a balanced function. A permutation P of Fn

2

is called an expansion of F if its first m output coordinates
correspond to the coordinates of F , i.e., for all i, 1 ≤ i ≤ m,

Pi(x) = Fi(x), ∀x ∈ Fn
2 .

In other words, F is expanded in a permutation with n outputs
in the following way: as F is balanced, each of the 2m

vectors of Fm
2 is taken by F exactly 2n−m times. We then

complete all of these equal vectors by concatenating to each
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of them a different element of Fn−m
2 in order to obtain 2n−m

different vectors of Fn
2 . For instance, if (n,m) = (6, 4), then

v = (0, 1, 1, 0) is a vector in the image set of F obtained for
exactly four inputs, namely a, b, c and d in F6

2. Then, an ex-
pansion of F can be defined by associating to a, b, c and d the
four different vectors of F6

2, (0, 1, 1, 0, 0, 0), (0, 1, 1, 0, 0, 1),
(0, 1, 1, 0, 1, 0) and (0, 1, 1, 0, 1, 1). These four images are
obtained by concatenating v = (0, 1, 1, 0) with all elements of
F2

2. There are (2n−m!)2
m

different expansions of a given F .
Theorem 4.1: Let F be a balanced function from Fn

2 to Fm
2 ,

with m < n. Let k and ` be two integers with 1 ≤ k ≤ m and
1 ≤ ` < n. Then, the following three properties are equivalent.

(i) There exists a permutation PF of Fn
2 expanding F

such that, in any product of ` coordinates of P−1F , all
monomials of degree greater than or equal to (n−k)
have degree strictly less than (n − m) in the last
n−m variables.

(ii) For any permutation PF of Fn
2 expanding F , we

have that, in any product of ` coordinates of P−1F , all
monomials of degree greater than or equal to (n−k)
have degree strictly less than (n − m) in the last
n−m variables.

(iii) δk(F ) < n− `.
Proof: Let K ⊂ {1, . . . ,m} and L ⊂ {1, . . . , n}. Let πK

denote the product of the coordinates Fi for i ∈ K. Then,
the coefficient aK,L of the monomial

∏
i∈{1,...,n}\L xi in the

algebraic normal form of F is given by

aK,L =
∑
x∈Fn

2
xj=0,j∈L

πK(x)

= #{x ∈ Fn
2 : xj = 0, j ∈ L and

Fi(x) = 1, i ∈ K} mod 2

= #{x ∈ Fn
2 : xj = 0, j ∈ L and

(PF )i(x) = 1, i ∈ K} mod 2

where the last equality holds for any expansion PF of F . Then,
as PF is a permutation, setting y = PF (x) leads to

aK,L = #{y ∈ Fn
2 : yi = 1, i ∈ K and

(P−1F )j(y) = 0, j ∈ L} mod 2 ,

implying that aK,L = 0 if and only if the Boolean function

HK,L : {x ∈ Fn
2 : xi = 1, i ∈ K} → F2

x 7→∏i∈L(1 + (P−1F )i(x))

has degree strictly less than (n− k).
Let us first prove that (i) implies (iii). We deduce from the

previous reasoning that, if Condition (i) holds, any monomial
of degree greater than or equal to (n− k) in the ANF of the
n-variable Boolean function

x 7→
∏
i∈L

(1 + (P−1F )i(x))

is not a factor of xm+1 . . . xn. Therefore, the restriction of such
a monomial to any set {x ∈ Fn

2 : xi = 1, i ∈ K} with K ⊂
{1, . . . ,m} has degree strictly less than (m−k)+ (n−m) =
(n − k). It follows that, for any choice of K ⊂ {1, . . . ,m},

HK,L has degree strictly less than (n − k). Then, we have:
(ii) ⇒ (i) ⇒ (iii).

Conversely, we can prove that (iii) implies (ii). Suppose
that (ii) does not hold, i.e., there exists some permutation PF

expanding F and some set L ⊂ {1, . . . ,m} such that the n-
variable Boolean function

π′L : x 7→
∏
i∈L

(P−1F )i(x)

contains a monomial of the form xm+1 . . . xn
∏

i∈I xi for
some set I ⊂ {1, . . . ,m} of size at least (m − k). We can
suppose that L is the smallest such set for inclusion (otherwise,
we choose the smallest L′ ⊂ L satisfying the property). Let
us choose K = {1, . . . ,m} \ I where xm+1 . . . xn

∏
i∈I xi is

the monomial with the highest degree of this form in the ANF
of π′L. By hypothesis, the size of K is at most k, and it is
greater than or equal to 1 since π′L cannot have degree n when
|L| < n [8, Prop 1]. Since L is minimal for inclusion and

HK,L(x) =
∑
L′⊆L

∏
i∈L′

(P−1F )i(x) ,

it is clear that HK,L has degree (n − k) if and only if the
restriction of π′L to the set {x ∈ Fn

2 : xi = 1, i ∈ K} has
degree (n − k). However, the algebraic normal form of π′L
contains the monomial xm+1 . . . xn

∏
i 6∈K xi, implying that

HK,L has degree at least (n − k). It follows that, for these
particular choices of L and K, aK,L = 1 implying that there
exists some product of k or fewer coordinates of F which has
degree greater than or equal to (n− `). Finally, it follows that
all three properties are equivalent.

A corollary similar to Corollary 3.2 can be deduced now
for the case of non-injective balanced functions.

Corollary 4.1: Let F be a balanced function from Fn
2 into

Fm
2 and G a function from Fm

2 into Fk
2 . For any permutation

F ∗ expanding F , we have

deg(G ◦ F ) < n−
⌊n− 1− degG

deg(F ∗−1)

⌋
.

Proof: Let F ∗ be a permutation expanding F . We have
shown in the proof of Corollary 3.2 that the trivial bound
implies that δ`(F ∗−1) < n− degG for any

` ≤
⌊n− 1− degG

deg(F ∗−1)

⌋
.

It follows that, when ` satisfies this condition, the product of
any ` coordinates of F ∗−1 does not contain any monomial of
degree (n − degG). Since Condition (i) in Theorem 4.1 is
satisfied, we deduce that

deg(G ◦ F ) ≤ δdegG(F ) < n−
⌊n− 1− degG

deg(F ∗−1)

⌋
.

It is known that the product of k coordinates of a balanced
function F with n input variables has degree n if and only
if k = n (see, e.g. [8, Prop 1]). Moreover, when F is a
permutation, we have shown in Corollary 3.4 that the degree
of F−1 determines whenever the product of some coordinates
of F has degree (n− 1). Here, we provide a similar result in
the case where F is a non-injective balanced function.
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Corollary 4.2: Let F be a balanced function from Fn
2 to

Fm
2 , with m < n. Then, δm(F ) ≤ n − 2 if and only if, for

any y ∈ Fm
2 , the 2n−m preimages of y by F sum to zero, i.e.,∑

x:F (x)=y

x = 0

where the sum corresponds to the addition in Fn
2 .

Proof: From Theorem 4.1 applied with k = m and ` = 1,
we know that δm(F ) ≤ n − 2 if and only if there exists
some permutation PF expanding F such that any monomial
with degree at least (n − m) in the ANF of any coordinate
of P−1F is not a factor of xm+1 . . . xn. Since a monomial of
degree less than (n −m) cannot be a factor of xm+1 . . . xn,
this equivalently means that any monomial in the ANF of any
coordinate of P−1F is not a factor of xm+1 . . . xn. Let

f : Fm
2 × Fn−m

2 → F2

(x, y) 7→ [P−1F (x, y)]i ,

for some i. For any (u, v) ∈ Fm
2 × Fn−m

2 , au,v de-
notes the coefficient in the ANF of f of the monomial∏

i,ui 6=0 xi
∏

i,vi 6=0 xm+1+i. Let 1n−m denote the all-one vec-
tor in Fn−m

2 . For any x ∈ Fm
2 and y ∈ Fn−m

2 , we have

f(x, y) =
∑
v�y

∑
u�x

au,v

 ,

where x � y means that xi ≤ yi for all i. Then∑
y∈Fn−m

2

f(x, y) =
∑

y∈Fn−m
2

∑
v�y

∑
u�x

au,v


≡

∑
v∈Fn−m

2

Nv

∑
u�x

au,v

 (mod 2) ,

where

Nv = #{y ∈ Fn−m
2 : v � y} mod 2 = 2n−m−wt(v) mod 2 .

Then, Nv = 0 except when v is the all-one vector. Therefore,∑
y∈Fn−m

2

f(x, y) =
∑
u�x

au,1n−m
.

We then deduce that all au,1n−m = 0 for u ∈ Fm
2 if and

only if ∑
y∈Fn−m

2

f(x, y) = 0

for all x ∈ Fm
2 . It is worth noticing that this property is similar

to the property used in cube attacks [6, Theorem 1].
Since this property holds for any coordinate f of P−1F , the

required condition equivalently means that, for any x ∈ Fm
2 ,∑

y∈Fn−m
2

P−1F (x, y) = 0 ,

where the sum is an addition in Fn
2 . By definition of PF ,

all elements P−1F (x, y) when y ∈ Fn−m
2 correspond to the

preimages of x under F . The condition can then be written as∑
z:F (z)=x

z = 0 .

V. APPLICATIONS TO SOME SYMMETRIC PRIMITIVES

In this section, we will show how the previous results can be
used in order to predict the evolution of the algebraic degrees
of some chosen permutations that are the main building blocks
of some well-known block ciphers and hash functions.

A. Attacking the KN -cipher and its variant

One of the first examples in the literature of a concrete
attack exploiting the low algebraic degree of a symmetric
primitive is the higher-order differential attack presented by
Jakobsen and Knudsen [20] against the KN -cipher. This con-
struction, a.k.a CRADIC [31], has been proposed by Nyberg
and Knudsen in [9]. It is a 6-round Feistel cipher over F64

2

with a 198-bit secret key. Its round permutation is defined as
follows (see Figure 1):

F32
2 × F32

2 → F32
2 × F32

2

(x, y) 7→ (y, x+ T ◦ S (E(x) + ki))

where ki is the ith round subkey, E is a linear expansion from
F32

2 into F33
2 , T is a linear truncation from F33

2 into F32
2 and

S is the power function x3 over F233 . In this definition, the
finite field F233 is identified with the vector space F33

2 .

ST E

ki

xi−1 yi−1

xi yi

Fig. 1. Round i of the KN -cipher

The main motivation behind this design is that the choice
of S, which is the only nonlinear part in the cipher, guarantees
an optimal resistance to both linear and differential attacks.
Thus, x3 over F2n , n odd, was chosen, since it is an almost
bent function [32]. More precisely, some lower bounds on
the probabilities of the best differential and of the best linear
approximation show that 6 rounds of this cipher are resistant
to these attacks.

However, one of the main weaknesses of this cipher, iden-
tified by Jakobsen and Knudsen [20], is that the encryption
function has a low algebraic degree. Indeed, for any r-round
Feistel cipher, it can be observed that, when the right half
of the input y0 is a constant, the function which associates
the left part of the output xr to the left part of the input
x0 has degree at most (degS)r−2. Therefore, since the Sbox
in the KN -cipher is quadratic, there exists a distinguisher
for r rounds with data and time complexity 22

r−2+1. This
must be compared to the best known generic attacks against
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any 4-round and 5-round Feistel ciphers with 64-bit blocks,
which have respective data complexities 216 and 232 [33].
Here, the whole encryption function can be distinguished
from a random permutation with data complexity 217. Also,
the 33-bit last round key k6 can be recovered with average
time complexity 214 and data complexity 29 pairs of chosen
plaintexts-ciphertexts [23]. Therefore, it is now well-known
that, in an r-round Feistel cipher, the Sbox must be chosen
such that (degS)r−2 is much higher than half of the block
size. But, there is no condition on the degree of the inverse
of S since S−1 is involved neither in the encryption function
nor in the decryption function. The degree of S−1 may only
affect the complexity of some algebraic attacks [4]. Therefore,
a variant of this cipher, that we name KN ′, suggested by
Nyberg and Knudsen in the same paper [9] does not present the
same weakness. This variant is obtained by modifying S and
using instead the inverse of a quadratic permutation. Actually,
it is known that any permutation and its inverse present the
same resistance to differential and linear cryptanalysis [34].
But, a major difference is that S and S−1 may have different
algebraic degrees. For instance, if S is a quadratic power
permutation over F2n , n odd, i.e., S(x) = x2

s+1 with
gcd(s, n) = 1, then the algebraic degree of S−1 is equal
to n+1

2 [32]. Since the implementation complexity of the
inverse of x3 over F233 is unacceptable in most applications,
we consider the nonlinear function over F32

2 composed of
four parallel applications of the same function σ̃ defined over
F8

2 like in KN :

σ̃ : F8
2 → F8

2

x 7→ t ◦ σ (e(x)))

where e is an affine expansion from F8
2 into F9

2 with maximal
rank, t is a truncation from F9

2 into F8
2, and σ is the inverse

of a quadratic power permutation x 7→ x2
s+1 over F29 , e.g.,

σ(x) = x171 which is the inverse of x3. This function, which
is the only nonlinear part of the cipher, has algebraic degree 5.
It is worth noticing that it has a high univariate degree which
prevents interpolation attacks. The round function of KN ′ is
depicted on Figure 2. It is defined by

F32
2 × F32

2 → F32
2 × F32

2

(x, y) 7→ (y, x+ L′ ◦ S̃ (L(x) + ki))

where S̃ corresponds to four parallel applications of σ̃, ki is
the i-th 32-bit subkey, and L and L′ are two linear bijections
over F32

2 which aim at providing diffusion.
While the trivial bound does not provide any relevant infor-

mation on the degree of the left part of the output for 5 rounds
or more, Theorem 3.1 shows that KN ′-cipher can also be
broken by the attack proposed by Jakobsen and Knudsen. At
this aim, we study the algebraic degree of the function which
maps x0, the left half of the plaintext, to xr which is the left
half of the output of the cipher after r rounds. In the following,
we denote by Fk the function over F32

2 defined by:

Fk(x) = L′ ◦ S̃ (L(x) + k) .

L′ L

ki

xi−1 yi−1

xi yi

σ

σ

σ

σ

e

e

e

e

t

t

t

t

Fig. 2. Round i of KN ′-cipher

Then, we have

x2 = x0 + Fk1(y0)

x3 = y0 + Fk2 (x0 + Fk1(y0))

x4 = x0 + Fk1(y0) + Fk3 (y0 + Fk2 (x0 + Fk1(y0))) .

Let us now denote by x the element of F36
2 defined by

x = E (L(x0 + Fk1
(y0)) + k2)

where E is the linear expansion from F32
2 into F36

2 composed
of 4 applications of the smaller expansion e. Then, x0 can be
computed from x by

x0 = L−1 (E?(x) + k2) + Fk1(y0)

where E? is the function from F36
2 into F32

2 defined by
E? (E(x)) = x and E?(x) = 0 if x 6∈ ImE . Such a function
exists since E has maximum rank. Then, x4 can be written as
a function of x

x4 = L−1 (E?(x) + k2) + Fk3 (y0 + L′ ◦ T ◦ S(x)) ,

where S is the permutation of F36
2 corresponding to four

parallel applications of σ, and T is the function from F36
2

into F32
2 defined by four applications of the truncation t. Now,

since
x5 = x3 + Fk4(x4)

we deduce that

x5+x3 = Fk4

[
L−1 (E?(x) + k2) + Fk3

(y0 + L′ ◦ T ◦ S(x))
]
.

The degree of x5 as a function of x0 is at most the maximum
between the degree of x3, which is at most 5, and the degree
of x5+x3, seen as a function of x. We then focus on this last
quantity. We write

x5 + x3 = G ◦ S(x)

with

G(y) = Fk4

[
L−1

(
E?(S−1(y)) + k2

)
+ Fk3

(y0 + L′ ◦ T (y))
]
.

Degree of G. Since Fk4
has degree 5, G can be decom-

posed as a sum of terms, each consisting of the product of
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i coordinates of S−1 multiplied by the product of at most
(5− i) coordinates of S. Since S−1 has degree 2, we get that

degG ≤ max
0≤i≤5

(2i+ δ5−i(S)) .

From Theorem 3.1, it is known that δ5(S) < 36 − b 302 c,
implying that δ5(S) ≤ 20. Therefore, we deduce that degG ≤
2 + δ4(S) ≤ 22.

Degree of G ◦ S. We now apply Corollary 3.2 for upper-
bounding the degree of G◦S, exploiting the fact that S−1 has
degree 2. Then, we get

deg(G ◦ S) < 36−
⌊35− 22

2

⌋
,

or equivalently,
deg(G ◦ S) ≤ 29 ,

and we finally find that x5 is a function of degree at most 29
of x0. This leads to a distinguisher on 5 rounds of KN ′ with
data complexity 230 that improves the generic distinguisher. It
is worth noticing that the same upper bound can be derived
from Theorem 3.2 which additionally exploits the fact that S
corresponds to the concatenation of 4 permutations σ defined
over F9

2.
Variant with non-bijective Sboxes. The nonlinear function

in KN ′ can also be seen as the concatenation of 4 balanced
Sboxes σ′ from F9

2 into F8
2. Instead of applying Corollary 3.2

based on the degree of the inverse of the nonlinear function S,
we can then rely on the existence of a permutation S∗

expanding the 36 × 32 Sbox, with deg((S∗)−1) = 2. Then,
Corollary 4.2 applies and also shows that x5 is a function of
degree at most 29 of x0.

It is worth noticing that, if we consider another variant of
the KN -cipher using the inverse of x3 over F233 as an Sbox,
Corollary 3.2 leads to a distinguisher on 4 rounds exploiting
that x4 has degree at most 25. But, finding a relevant bound
on the degree of x5 remains an open problem.

B. On the algebraic degree of Rijndael-256

Rijndael-128 [35] is the algorithm selected by the NIST in
2000 as the winner of the AES competition in order to replace
the DES. Rijndael-Nb, with Nb ∈ {128, 160, 192, 224, 256}
has the form of a Substitution-Permutation-network. The key
size Nk varies between 128, 192 and 256 bits. Its round
transformation applies to an Nb-bit state, that is represented by
a 4× t-byte matrix A = (ai,j), with t = Nb/32. For instance,
the states for Rijndael-128 and Rijndael-256 are depicted on
Figure 3.

a0,0 a0,0a0,1 a0,1a0,2 a0,2a0,3 a0,3a0,4 a0,5 a0,6 a0,7

a1,0 a1,0a1,1 a1,1a1,2 a1,2a1,3 a1,3a1,4 a1,5 a1,6 a1,7

a2,0 a2,0a2,1 a2,1a2,2 a2,2a2,3 a2,3a2,4 a2,5 a2,6 a2,7

a3,0 a3,0a3,1 a3,1a3,2 a3,2a3,3 a3,3a3,4 a3,5 a3,6 a3,7

Fig. 3. The states of Rijndael-256 and Rijndael-128

Four basic layers are composing a round of the Rijndael-Nb

transformation.

• SubBytes: The only nonlinear transformation of the
cipher. Every byte is updated by an 8×8 Sbox of degree
7. The inverse transformation has the same degree.

• ShiftRows: Linear transformation that rotates to the
left the bytes in each row by a certain offset. This offset
depends on the block size Nb. The offset is for example
{0, 1, 2, 3} for Rijndael-128 and {0, 1, 3, 4} for Rijndael-
256.

• MixColumns: Linear transformation that applies in par-
allel to every column of the state.

• AddRoundKey: The combination of the state with the
round subkey using bitwise XOR.

A round R of the transformation applied to a state S
corresponds thus to

AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes(S).
The number of rounds depends on the block size and on the
key size. These values can be found in Table I.

TABLE I
NUMBER OF ROUNDS FOR THE RIJNDAEL BLOCK CIPHER.

Nb

128 160 192 224 256

Nk

128 10 11 12 13 14
192 12 12 12 13 14
256 14 14 14 14 14

As seen from the description, the only source of nonlinearity
for Rijndael-Nb is the SubBytes transformation. This trans-
formation has algebraic degree 7. By using the trivial bound
as an estimation for the degree, we can see that the degree
after two rounds is at most 72 = 49 and after three rounds
it is bounded by max(Nb − 1, 73). Thus, it may be believed
that only 3 rounds of encryption are enough for achieving the
maximal degree.

We will show, using the results of Section III, that the above
estimates of the required number of rounds are way too small.
We will see in particular that for Rijndael-256, at least 7 rounds
are needed to achieve the maximal degree.

We start by giving a bound for the degree of two rounds of
Rijndael-256. By using the superSbox view [36], we can see
these two rounds as the parallel application of eight copies
of a function S32 operating on 32-bit words, followed by
a linear transformation. S32 corresponds to a so-called SDS
transformation: it consists of two layers of four 8×8 balanced
Sboxes of degree 7, separated by a linear layer. Therefore, we
can use Theorem 2 of [8] and get that

degR2 = degS32 ≤ 32− 32− 7

7
< 29 .

As the state of Rijndael-256 is wide, after two rounds of
the permutation, not all the parts of the state have been mixed
together. Thus we can apply a similar approach as before and
see three rounds of the permutation as the parallel application
of two copies of a function S128, operating now on 128-bit
words, followed again by a linear layer. Theorem 2 of [8] gives
now

degR3 = degS128 ≤ 128− 128− 28

7
< 114.
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Let F = R2. F is a permutation of degree at most 28
and its inverse has degree at most 28 too. Using that (R3) ◦
F = R5, we get a bound for the degree of Rijndael-256 after
five rounds. From Theorem 3.2, we get that the constant γ
associated to F = R2 is at most 28 and we deduce finally
that

degR5 ≤ 256− 256− 113

28
< 251.

We get a similar result for six rounds, by considering F = R3,
which has degree at most 113. Since degF−1 ≤ 113, the
corresponding constant γ is at most 113, leading to

degR6 ≤ 256− 256− 113

113
< 255.

Therefore, at least 7 rounds are needed to achieve the
maximal degree 255.

In order to make a comparison with previously known
bounds and to see at what extension they are improved, we
present in Table II upper bounds for Rijndael-256 coming
from four different sources. The first column presents the
results obtained by using the trivial bound, and the second
column combines it with the superSbox view. Since the Walsh
spectrum of the AES Sbox is divisible by 4 only, the bound
from [7] provides the same results as the superSbox view. The
last column illustrates the new results. A − in the table means
that the obtained bound corresponds to the maximal degree of
a permutation, and thus provides no information.

TABLE II
UPPER BOUNDS FOR r ITERATIONS OF THE RIJNDAEL-256 ROUND

PERMUTATION OBTAINED BY USING THE TRIVIAL BOUND, THE TRIVIAL
BOUND TOGETHER WITH THE SUPERSBOX VIEW (OR THE BOUND

FROM [7]) AND THE NEW RESULTS, RESPECTIVELY.

# rounds trivial bound superSbox and [7] this paper
1 7 7 7
2 49 31 28
3 − 127 113
4 − − 235
5 − − 250
6 − − 254

C. Application to the ECHO hash function

The ECHO [37] hash function has been designed by Be-
nadjila et al. for the NIST SHA-3 competition. It uses the
HAIFA mode of operation. Its compression function has a
2048-bit input (corresponding to the chaining value and a
message block whose respective lengths depend on the size
of the message digest), and it outputs a 512-bit or a 1024-bit
value. It relies on a 2048-bit AES-based permutation P .

The permutation P updates a 2048-bit state, which can
be seen as a 4 × 4 AES state, composed of 128-bit
words. In every round R, three operations modify the state.
These are the BIG.SubWords, BIG.ShiftRows and
BIG.MixColumns transformations. These transformations
can be seen as generalizations of the three classical AES
transformations. In particular,
• BIG.SubWords is a nonlinear transformation applied

independently to every 128-bit cell. It consists of two
AES rounds.

• The BIG.ShiftRows and BIG.MixColumns trans-
formations are exact analogues of the AES ShiftRows
and MixColumns transformations respectively, with the
only difference that they do not operate on bytes but on
128-bit words.

The number of rounds r is specified to be 8 for the 256-bit
candidate. Finally, each bit in the output of the compression
function is defined as a linear combination of some output bits
of P and some input bits.

We will see how the algebraic degree of the permutation
P varies with the number of rounds. We will show that the
degree does not increase as predicted and reaches its maximum
value much later than expected. The algebraic degree of the
permutation P was believed to be high, as in every round R

the input has to pass twice through the Sbox layer, of degree 7.
As 74 = 2401, two rounds seemed to be enough to achieve
the highest possible degree.
BIG.SubWords is the only source of nonlinearity in the

round permutation. It is a 128-bit transformation correspond-
ing to two rounds of AES. Its degree thus matches the degree
of the S32 transformation of Rijndael-256 and is hence at
most 28. The two-round permutation R2 is a permutation of the
set of 2048-bit states, but it can be decomposed as four parallel
applications of a permutation S512 operating on 512-bit words,
followed by a linear layer. We will determine the degree of
any of these four applications. After the first round of the
permutation P every bit of the state consists of polynomials
of degree at most 28. By applying to this state the first layer
of Sboxes in every BIG.SubWords, the degree gets at most
7·28 = 196. We can apply now the bound of Theorem 2 in [8]
to get the following bound on the degree of R2:

deg R2 = degS512 ≤ 512− 512− 196

7
< 467 .

Let F = R2. F is then a permutation of degree at most
466. From Theorem 3.2, the constant γ associated to this
permutation is at most 466, as the degrees of R2 and of its
inverse are both upper-bounded by 466, therefore

degF 2 = deg R4 ≤ 2048− 2048− 466

466
< 2045.

As for Rijndael, these results compared with the previously
known bounds are summarized in Table III.

TABLE III
UPPER BOUNDS FOR r ITERATIONS OF THE ROUND PERMUTATION OF

ECHO OBTAINED BY USING THE TRIVIAL BOUND, THE TRIVIAL BOUND
TOGETHER WITH THE SUPERSBOX VIEW (OR THE BOUND FROM [7]) AND

THE NEW RESULTS, RESPECTIVELY.

# rounds trivial bound superSbox and [7] this paper
1 49 31 28
2 − 511 466
3 − − 1991
4 − − 2044

The same bounds hold for the inverse round transformation.
Due to this observation, we are able to distinguish the inner
permutation in ECHO from a random one. This can be done
for instance by constructing many zero-sum partitions of
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size 22045, i.e., partitions of the input set F2048
2 into 8 sets

X1, . . . , X8 of size 22045 such that all elements in each Xi

sum to zero and the corresponding images P (x), x ∈ Xi sum
to zero too [38], [39]. Such a partition can be constructed by
the method introduced in [39] and detailed in Proposition 2
of [38]. Let V be any subspace of F2048

2 with codimension 3
and W be its complement. Then, the eight sets

Xi = {(R4)−1(ai + v), v ∈ V }, ai ∈W
form a zero-sum partition of F2048

2 for P of size 22045.

D. Application to the JH hash function

JH [40] is a hash function family, having some members
submitted to the NIST hash function competition. It has been
chosen in late 2010 to be one of the five finalists of the contest.

The compression function in JH is constructed from a block
cipher with constant key. This compression function is based
on an inner permutation, named Ed and is composed of
42 steps of a round function Rd, where d = 8 for the SHA-3
candidate. Rd applies to a state of 2d+2 bits, divided into 4-bit
words. It consists of 3 different layers: an Sbox layer, a linear
layer and a permutation layer Pd.
• The Sbox layer corresponds to the parallel application of

2d Sboxes to the state. Two different Sboxes, S0 and S1,
are used in JH. Both of them, as also their inverses, are
of degree 3. The selection of the Sbox to use is made by
the bits of the round constant, which are not xored to the
state as done in other constructions.

• The linear layer mixes the 2d words two by two.
• The permutation Pd permutes the words of the state.

Two rounds of Rd, for d = 4, can be seen in Figure 4.

S S S S S S S S S S S S S S S S

L L L L L L L L

S S S S S S S S S S S S S S S S

L L L L L L L L

a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

Fig. 4. Two rounds of R4

A round of the permutation is of algebraic degree 3, as the
only source of nonlinearity of the cipher comes from the 4-bit
Sboxes. Thus, if we try to estimate the evolution of the degree
by using the trivial bound, we can see that the degree of the
permutation after 6 rounds is at most deg(R6

8) ≤ 36 = 729
and consequently the maximal degree seems to be reached just
7 rounds of encryption only. We will show by applying the

results of Section III that the algebraic degree of JH does not
increase as expected.

An important observation on the structure of the R8 permu-
tation is that for r ≤ 8, r rounds of R8, denoted by Rr

8, can
be seen as the concatenation of 29−r permutations Sr over
F2r+1

2 . Thus, for 2 ≤ r ≤ 8, a bound on the degree of Rr
8 can

be obtained with Theorem 2 in [8]:

deg(Rr
8) ≤ 2r+1 − 2r+1 − deg(Rr−1

8 )

3
.

The bounds on the degree up to 8 rounds of the permutation,
given by the above formula can be seen in Table IV. The same
bounds hold for the inverse permutation.

# Rounds Bound on deg(Rr
8)

1 3
2 6
3 12
4 25
5 51
6 102
7 204
8 409

TABLE IV
UPPER BOUNDS ON THE DEGREE OF UP TO 8 ROUNDS OF THE JH

PERMUTATION.

Using now Theorem 3.2, we get that the constant γ(S8) of
the permutation S8 over F512

2 is at most 409. Thus we have
that

degR16
8 ≤ 1024− 1024− deg(R8

8)

γ(S8)
< 1023.

The same technique applied to 9 to 16 rounds leads to
the results presented in Table V, with a comparison with the
previous best results.

TABLE V
UPPER BOUNDS FOR r ITERATIONS OF THE ROUND PERMUTATION OF JH,

OBTAINED BY USING THE TRIVIAL BOUND, THE SUPERSBOX VIEW (OR
THE BOUND FROM [7]) AND THE NEW RESULTS, RESPECTIVELY.

# rounds trivial bound superSbox and [7] this paper
1 3 3 3
2 9 7 6
3 27 15 12
4 81 31 25
5 243 63 51
6 729 127 102
7 − 255 204
8 − 511 409
9 − − 819
10 − − 921
11 − − 972
12 − − 999
13 − − 1011
14 − − 1017
15 − − 1020
16 − − 1022

VI. CONCLUSIONS

Our work points out that, in many situations, the algebraic
degree of an iterated function does not grow as fast as expected
with the number of rounds. In particular, the degree of the
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inverse of the iterated permutation or, in the case of a non-
injective function, the minimal degree of the inverse of a
permutation expanding the function, has some influence on
the degree of the iterated function. This observation can be
used for exhibiting non-ideal behaviors in some cryptographic
primitives, like block ciphers or hash functions. However, turn-
ing such distinguishers into real attacks, like a key-recovery
attack on a cipher or a (second)-preimage attack on a hash
function, is a difficult problem. The most promising approach
consists in combining some properties of the algebraic normal
form of an inner function (e.g., its low degree) and the solving
of some algebraic system, as proposed in [3], [41]. Another
open problem is to determine the impact of our result on
some stream ciphers which appear to be vulnerable to several
attacks exploiting the existence of some function with a low
degree [6], [42].
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