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We present a study on the algebraic degree of iterated permutations seen as multivariate polynomials. The main result shows that this degree depends on the algebraic degree of the inverse of the permutation which is iterated. This result is also extended to non-injective balanced vectorial functions where the relevant quantity is the minimal degree of the inverse of a permutation expanding the function. This property has consequences in symmetric cryptography since several attacks or distinguishers exploit a low algebraic degree, like higher-order differential attacks, cube attacks and cube testers, or algebraic attacks. Here, we present some applications of this improved bound to a higher-degree variant of the block cipher KN , to the block cipher Rijndael-256 and to the inner permutations of the hash functions ECHO and JH.

I. INTRODUCTION

Most of the symmetric cryptographic primitives that are used nowadays, including block ciphers and hash functions, base their designs on an inner function that is iterated a high number of times. This transformation, called the round function, is very often a permutation. The algebraic degree of this permutation, i.e., the degree of the corresponding multivariate polynomial, is a quantity that plays an important role on the security of the symmetric primitive. Actually, a cryptographic primitive of low algebraic degree is vulnerable to many attacks, for instance higher-order differential attacks [START_REF] Lai | Higher order derivatives and differential cryptanalysis[END_REF], [START_REF] Knudsen | Truncated and higher order differentials[END_REF], [START_REF] Moriai | Higher order differential attak of CAST cipher[END_REF], algebraic attacks [START_REF] Courtois | Cryptanalysis of block ciphers with overdefined systems of equations[END_REF], [START_REF] Courtois | Algebraic attacks on stream ciphers with linear feedback[END_REF] or cube attacks [START_REF] Dinur | Cube attacks on tweakable black box polynomials[END_REF].

Here, we show that, even if the inverse of the round permutation F is never used in practice, as it is the case for Feistel ciphers or for hash functions, its degree also plays a fundamental role on the degree of the composition G • F and in consequence on the overall degree of the primitive. Even if the degree of the round function is high, if the degree of the inverse is low, the degree of the cipher will be much lower than expected. This result helps in general the understanding of the evolution of the algebraic degree of iterated permutations. Several earlier works have established new bounds on the degree of such permutations: most notably, [START_REF] Canteaut | Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis[END_REF] connects the degree of G • F with the divisibility of the Walsh spectrum of F by a high power of 2 and a recent result [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF] applies to the families of functions composed of several smaller balanced functions. Here, we derive some new bounds on the degree of G • F which involve the degree of F -1 . In the design of some particular ciphers, the nonlinear building blocks in the round function are not permutations. This is for example the case for the DES that uses a collection of eight 6 × 4 balanced functions. Obviously, the notion of inverse does not exist for such functions. However, we show that the overall degree of the cipher depends on the minimal degree of the inverse of any permutation expanding the output of the function. Thus, a result, similar to the one for permutations, can be derived.

As illustrations, we apply our results to KN , a variant of KN , a cipher proposed by Knudsen and Nyberg in [START_REF] Nyberg | Provable security against a differential attack[END_REF]. In this variant, the quadratic round permutation which was originally used in KN is replaced by a function with higher degree but derived from a permutation whose inverse has algebraic degree 2. Our new bounds are also applied to the cipher Rijndael-256 and to two hash functions accepted for Round 2 in the SHA-3 competition, ECHO and JH.

The rest of the paper is organized as follows. After some preliminaries on the algebraic degree of a vectorial function, different attack techniques that exploit a low algebraic degree are recalled in Section II. Section III presents the main result on the influence of the inverse of a permutation F to the degree of G•F and includes some corollaries. A variant of the main result for non-injective balanced functions is presented in Section IV. Finally, an attack on a variant of the block cipher KN [START_REF] Nyberg | Provable security against a differential attack[END_REF] is illustrated in Section V, together with applications to Rijndael-256 and to some hash functions.

II. EXPLOITING A LOW ALGEBRAIC DEGREE IN

CRYPTANALYSIS

The whole paper focuses on functions F from F n 2 into F m 2 . The coordinates of such a function F are the m Boolean functions F i , 1 ≤ i ≤ m, such that F (x) = (F 1 (x), . . . , F m (x)) for all x. The algebraic degree of F is defined by the algebraic degrees of its coordinates as follows.

Definition 2.1: Let f be a function from F n 2 into F 2 . Then, f can be uniquely written as a multivariate polynomial in F 2 [x 1 , . . . , x n ]/(x 2 1x 1 ), . . . , (x 2 nx n ), named its algebraic normal form:

f (x 1 , . . . , x n ) = u=(u1,...,un)∈F n 2 a u n i=1
x ui i .

The (algebraic) degree of f is then defined as

deg f = max{wt(u) : u ∈ F n 2 , a u = 0}
, where wt denotes the Hamming weight of a binary vector.

For a function F from F n 2 into F m 2 , m ≥ 1, the (algebraic) degree of F is the maximal algebraic degree of its coordinates. Moreover, the coefficients a u in the algebraic normal form of a Boolean function f can be easily computed from 2 wt(u) pairs of inputs-outputs of f as follows [START_REF] Carlet | Boolean functions[END_REF]:

a u = x u f (x) ,
where x u means that x i ≤ u i for all i, and the sum is computed modulo 2. It is worth noticing that, when all the 2 n values of f are known, the 2 n coefficients of the algebraic normal form can be computed all together by the Moebius transform with time complexity O(n2 n ) [11, p. 286].

From the other side, every vectorial function

F from F n 2 into F n
2 can also be seen as a univariate polynomial over F 2 n . This representation is possible because F 2 n can be identified with an n-dimensional vector space over F 2 . Thus, for every such F , there exists a unique univariate polynomial representation over F 2 n , of degree at most 2 n -1,

F (x) = 2 n -1 i=0 b i x i , b i ∈ F 2 n .
In this case, it can be shown that the algebraic degree of F represented in such a way is given by

deg F = max{wt(i) : 0 ≤ i < 2 n and b i = 0} ,
where wt(i) denotes the Hamming weight of the n-bit vector corresponding to the binary expansion of i (see, e.g. [START_REF] Carlet | Codes, bent functions and permutations suitable for DES-like cryptosystems[END_REF]Def. 4]).

Many statistical attacks against symmetric cryptosystems exploit the fact that a family of functions (F k ) k∈K (resp. of permutations), whose inputs and outputs can be computed from plaintext/ciphertext pairs, is not pseudorandom. Several properties may be used to distinguish F k from a randomly chosen function, including the fact that some given coefficients in its algebraic normal form are not distributed as it is expected for a family of randomly chosen functions. The simplest attack exploiting some property of the coefficients of the algebraic normal form is the higher-order differential attack introduced by Knudsen [START_REF] Knudsen | Truncated and higher order differentials[END_REF]: this attack uses that, for all values of k, all coordinates of F k have degree strictly less than n, in general, and strictly less than n -1, in the case of a permutation. The algebraic degree of F k is then of primary importance since the data complexity of this cryptanalysis is proportional to 2 deg F k [START_REF] Bhattacharyya | Optimal testing of Reed-Muller codes[END_REF], [START_REF] Alon | Testing Reed-Muller codes[END_REF]. The higherorder differential attack has been generalized to other types of symmetric primitives, especially to stream ciphers, under different names (including cube distinguishers) in [START_REF] Saarinen | Chosen-IV statistical attacks on eStream ciphers[END_REF], [START_REF] Englund | A framework for chosen IV statistical analysis of stream ciphers[END_REF], [START_REF] Fischer | Chosen IV statistical analysis for key recovery attacks on stream ciphers[END_REF], [START_REF] Vielhaber | Breaking ONE.FIVIUM by AIDA an algebraic IV differential attack[END_REF], [START_REF] Aumasson | Distinguishers for the compression function and output transformation of Hamsi-256[END_REF]. Cube attacks [START_REF] Dinur | Cube attacks on tweakable black box polynomials[END_REF] and algebraic attacks [START_REF] Courtois | Cryptanalysis of block ciphers with overdefined systems of equations[END_REF], [START_REF] Courtois | Algebraic attacks on stream ciphers with linear feedback[END_REF] also exploit low-degree relations between some components of the cryptosystem, but they mainly aim at reducing the time complexity for recovering the secret key from a low-degree distinguisher. Finally, even if both univariate and multivariate degrees are related, all these attacks must be distinguished from the attacks exploiting a low univariate degree, like the interpolation attack and its variants [START_REF] Jakobsen | The interpolation attack on block ciphers[END_REF], [START_REF] Aoki | Efficient evaluation of security against generalized interpolation attack[END_REF], [START_REF] Sun | New cryptanalysis of block ciphers with low algebraic degree[END_REF].

In the case of iterated block ciphers, i.e., ciphers consisting of several iterations of the same round permutation parametrized by different round keys, the target function F k usually corresponds to the encryption function where the last round is omitted. Then, the fact that F k has a low degree can be used to recover the last-round subkey either by an exhaustive search [START_REF] Jakobsen | The interpolation attack on block ciphers[END_REF], or by setting up a low-degree algebraic system in these subkey bits which can be solved with time complexity depending on the algebraic degree of the round function [START_REF] Shimoyama | Improving the Higher Order Differential Attack and Cryptanalysis of the KN Cipher[END_REF], [START_REF] Moriai | Higher order differential attak of CAST cipher[END_REF]. Predicting the evolution of the degree of the cipher when the number of rounds varies is then one of the main issues in higher-order differential attacks.

III. ON THE DEGREE OF G • F WHEN F IS A PERMUTATION

A. General problem

We now focus on the following general problem: let F be a function from F n 2 into F n 2 and G be a function from

F n 2 into F m
2 , for some m. Then, we aim at exhibiting some particular classes of functions F such that the trivial bound

deg(G • F ) ≤ deg(F ) deg(G)
can be improved.

The following two families corresponding to some common situations in cryptographic applications have been previously identified in [START_REF] Canteaut | Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis[END_REF] and [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF].

Proposition 3.1: [START_REF] Canteaut | Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis[END_REF] Let F be a function from

F n 2 into F n 2
and G be a function from

F n 2 into F m 2 .
Assume that all Walsh coefficients of F , i.e., all

x∈F n 2 (-1) b•F (x)+a•x , a, b ∈ F n 2 are divisible by 2 for some integer ≥ 1, then deg(G • F ) ≤ n -+ deg G .
When F is a permutation, we can deduce the following corollary which involves the degree of F -1 .

Corollary 3.1: Let F be a permutation of F n 2 and let G be a function from F n 2 into F m 2 . Then, we have

deg(G • F ) ≤ n -1 - n -1 min(deg F, deg F -1 )
+ deg G .

Proof: Obviously, the sets of all Walsh coefficients of a permutation and of its inverse are the same since

x∈F n 2 (-1) b•F (x)+a•x = x∈F n 2 (-1) a•F -1 (x)+b•x .
Moreover, a lower bound of the highest power of 2 which divides all Walsh coefficients of a Boolean function can be derived from Katz theorem [START_REF] Katz | On a theorem of Ax[END_REF]: for any function F and any nonzero b ∈ F n 2 , we have

x∈F n 2 (-1) b•F (x)+a•x ≡ x∈F n 2 (-1) b•F (x) (mod 2 n-1 deg F +1 ) .
Since F is a permutation, any nonzero linear combination of its coordinates is balanced, which means that the righthand side is of the congruence is equal to zero. Then, by applying this result both to F and F -1 , we obtain that all Walsh coefficients of F are divisible by 2 with

≥ 1 + n -1 min(deg F, deg F -1 )
.

In particular, if F -1 is quadratic, Corollary 3.1 leads to

deg(G • F ) ≤ n -1 2 + deg G , which may provide some relevant information if deg G ≤ n-1 2 
. It has been recently shown in [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF] that the bound given by Proposition 3.1 can be improved when F corresponds to the parallel applications of smaller balanced functions, i.e., F = (S 1 , . . . , S s ). This particular situation is actually very common in cryptography for obvious implementation reasons.

B. Main result

We now show that the upper bound given by Corollary 3.1 can be improved. This improvement relies on the following theorem which bounds the maximum degree for the product of any k coordinates of F , for all 1 ≤ k ≤ n. The following notation will then be extensively used.

Definition 3.1: Let F be a function from F n 2 into F m 2 . For any integer k, 1 ≤ k ≤ m, δ k (F ) denotes the maximal algebraic degree of the product of any k (or fewer) coordinates of F :

δ k (F ) = max K⊂{1,...,m},|K|≤k deg i∈K F i .
In particular, δ 1 (F ) = deg F . Theorem 3.1: Let F be a permutation on F n 2 . Then, for any integers k and , δ (F -1 ) < n-k if and only if δ k (F ) < n-.

Proof: We only have to show that if δ (F -1 ) < nk then δ k (F ) < n -. Indeed, the reciprocal relation is obtained by exchanging the roles of F and F -1 .

Let π : x → i∈K F i (x), with |K| ≤ k. For L ⊂ {1, . . . , n}, with |L| ≤ , we denote by a L the coefficient of the monomial j ∈L x j of degree n -|L|. We will show that a L = 0.

a L = x∈F n 2 xj =0,j∈L π(x) = #{x ∈ F n 2 : x j = 0, j ∈ L and F i (x) = 1, i ∈ K} mod 2 = #{y ∈ F n 2 : y i = 1, i ∈ K and F -1 j (y) = 0, j ∈ L} mod 2 ,
where the last equality comes from the fact that F is a permutation, implying that there is a one-to-one correspondence between x and y = F (x). Additionally, F -1 j (y) = 0 for all j ∈ L if and only if j∈L (1 + F -1 j (y)) = 1. Then,

a L = # y ∈ F n 2 : y i = 1, i ∈ K and j∈L (1 + F -1 j (y)) = 1 mod 2 . (1) 
Now, we define the Boolean function

H K,L : {x ∈ F n 2 : x i = 1, i ∈ K} → F 2 x → i∈L (1 + F -1 i (x)) . We have a L = wt(H K,L ) mod 2 .
H K,L is a function of n-k variables and it has degree at most δ (F -1 ). Then, as by hypothesis δ (F -1 ) < nk, H K,L is of even Hamming weight and thus a L = 0, which means that δ k (F ) < n -. This theorem explains for instance the observation reported in [START_REF] Duan | Improved zero-sum distinguisher for full round Keccak-f permutation[END_REF] on the inverse of the quadratic permutation χ over F 5 2 used in the hash function KECCAK [START_REF] Bertoni | The KECCAK reference[END_REF]. Since

δ 1 (χ) = deg χ = 2, we have δ 2 (χ -1 ) < 4.
The following (less precise) result can be derived from the trivial bound on δ (F -1 ).

Corollary 3.2: Let F be a permutation of F n 2 and let G be a function from

F n 2 into F m 2 . Then, we have deg(G • F ) < n - n -1 -deg G deg(F -1
) .

Proof:

Obviously, deg(G • F ) ≤ δ deg G (F ).
But the previous theorem shows that δ deg G (F ) < nfor some integer if and only if δ (F -1 ) < ndeg G. However, we have from the trivial bound that δ (F -1 ) ≤ deg(F -1 ). It follows that δ (F -1 ) < ndeg G for any integer satisfying

≤ n -1 -deg G deg(F -1 ) . Indeed, if n -deg G ≡ 0 (mod deg(F -1 )), we have n -1 -deg G deg(F -1 ) = n -deg G deg(F -1 ) . Otherwise, n -1 -deg G deg(F -1 ) = n -deg G deg(F -1 ) -1 .
Therefore, in all cases, we have

deg(F -1 ) n -1 -deg G deg(F -1 ) < n -deg G , implying that δ (F -1 ) ≤ deg(F -1 ) ≤ deg(F -1 ) n -1 -deg G deg(F -1 ) < n -deg G .
We then deduce that

δ deg G (F ) < n - n -1 -deg G deg(F -1
) .

Obviously, the upper bound in the previous theorem gets better when the degree of 

F -1 decreases. Moreover, if G is balanced, this bound is relevant only if it improves the trivial bound deg(G•F ) < n. It then provides some information if deg G ≤ n-1-deg F -1 ,

C. Some corollaries

Some simple corollaries of Theorem 3.1 can be obtained by setting k = 1 in the theorem. In this case, we have deg(F -1 ) < nif and only if δ (F ) < n -1. We then deduce the following result.

Corollary 3.3: Let F be a permutation of F n 2 . Then,

deg(F -1 ) = n -min{k : δ k (F ) ≥ n -1} .
In particular, deg(

F -1 ) = n-1 if and only if deg(F ) = n-1.
It is worth noticing that almost all permutations over F n 2 have maximal algebraic degree (n -1), since this class includes in particular all permutations with univariate degree (2 n -2), which correspond to almost all permutations [START_REF] Konyagin | Enumerating permutation polynomials over finite fields by degree[END_REF], [START_REF] Das | The number of permutation polynomials of a given degree over a finite field[END_REF], [START_REF] Wells | The degrees of permutation polynomials over finite fields[END_REF]. For instance, any transposition is an involution with algebraic degree (n -1).

We can also deduce from Corollary 3.3 that, for any integer

k such that k ≤ n -1 deg F -1 we have δ k (F ) ≤ k deg F < n -1 .
It follows that

min{k : δ k (F ) ≥ n -1} ≥ n -1 deg F , implying that deg(F -1 ) ≤ n - n -1 deg F .
We then recover in a different way the bound on deg(F -1 ) which can be derived from Katz theorem [START_REF] Katz | On a theorem of Ax[END_REF] on the divisibility of the Walsh spectrum of a permutation. Actually, all Walsh coefficients of F are divisible by n-1 deg F + 1 and it is wellknown that the degree of a function whose Walsh coefficients are divisible by 2 is at most (n+1-) (see, e.g. [START_REF] Canteaut | Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis[END_REF]Prop. 3]).

Corollary 3.3 also implies the following.

Corollary 3.4: Let F be a permutation of F n 2 . Then, the product of k coordinates of F has degree (n -1) if and only if n -deg(F -1 ) ≤ k ≤ n -1.
In particular,

δ n-1 (F ) = n -1. Proof: Corollary 3.3 implies that the smallest k such that δ k (F ) ≥ n -1 is equal to n -deg(F -1 ). Moreover, it is known that δ k (F ) = n if and only if k = n. Finally, since n -deg(F -1 ) ≤ n -1, we deduce that δ n-1 (F ) = n -1, for any permutation of F n 2 .
The above results can also be used for improving the bound on deg(G • F ) found in [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF] when F is the concatenation of several smaller permutations.

Theorem 3.2: Let F be a permutation from

F n 2 into F n 2
corresponding to the concatenation of s smaller permutations, S 1 , . . . , S s , defined over F n0 2 . Then, for any function

G from F n 2 into F m 2 , we have deg(G • F ) ≤ n - n -deg(G) γ , (2) 
where

γ = max 1≤i≤n0-1 n 0 -i (n 0 -max 1≤j≤s δ i (S j ))
.

Most notably, we have

γ ≤ max 1≤j≤s max n 0 -1 n 0 -deg(S j ) , n 0 2 -1, deg(S -1 j ) .
Proof: We denote by γ i the quantity

γ i = n 0 -i n 0 -max 1≤j≤s δ i (S j )
, and we will try to compute the maximal γ i for 1 ≤ i ≤ n 0 -1, i.e. γ.

For i = 1, γ 1 = max 1≤j≤s n 0 -1 (n 0 -deg(S j ))
.

For 2 ≤ i < n 0max 1≤j≤s deg(S -1 j ), we get from Corollary 3.4 that max 1≤j≤s δ i (S j ) ≤ n 0 -2, and thus

γ i = max 1≤j≤s n 0 -i (n 0 -δ i (S j )) ≤ n 0 -i 2 ≤ n 0 -2 2 .
Finally, for the remaining indexes, i.e. for i ≥ n 0max 1≤j≤s deg(S -1 j ), we get that

γ i = max 1≤j≤s n 0 -i (n 0 -δ i (S j )) ≤ n 0 -i ≤ max 1≤j≤s deg(S -1 j ). IV. GENERALIZATION TO BALANCED FUNCTIONS FROM F n 2 INTO F m 2 WITH m < n
In some symmetric primitives, the functions used to provide confusion are not permutations, but balanced functions F :

F n 2 → F m 2 ,
with m < n. An example of this design is the first encryption standard cipher, DES [START_REF]Data Encryption Standard (DES)[END_REF], whose round function uses the parallel application of eight different 6 × 4 Sboxes, all of them of degree 5 in six variables.

An interesting problem is to be able to predict in some manner the evolution of the algebraic degree of the cipher after few rounds of encryption. Clearly, as the Sboxes of DES are not permutations, they cannot be inverted. Nevertheless, similar results as before can be deduced.

Definition 4.1:

Let F : F n 2 → F m 2 , with m < n, F = (F 1 , . . . , F m ), be a balanced function. A permutation P of F n 2
is called an expansion of F if its first m output coordinates correspond to the coordinates of F , i.e., for all i, 1 ≤ i ≤ m,

P i (x) = F i (x), ∀x ∈ F n 2 .
In other words, F is expanded in a permutation with n outputs in the following way: as F is balanced, each of the 2 m vectors of F m 2 is taken by F exactly 2 n-m times. We then complete all of these equal vectors by concatenating to each of them a different element of F n-m 2 in order to obtain 2 n-m different vectors of F n 2 . For instance, if (n, m) = (6, 4), then v = (0, 1, 1, 0) is a vector in the image set of F obtained for exactly four inputs, namely a, b, c and d in F 6 2 . Then, an expansion of F can be defined by associating to a, b, c and d the four different vectors of F 6 2 , (0, 1, 1, 0, 0, 0), (0, 1, 1, 0, 0, 1), (0, 1, 1, 0, 1, 0) and (0, 1, 1, 0, 1, 1). These four images are obtained by concatenating v = (0, 1, 1, 0) with all elements of F 2 2 . There are (2 n-m !) 2 m different expansions of a given F . Theorem 4.1: Let F be a balanced function from F n 2 to F m 2 , with m < n. Let k and be two integers with 1 ≤ k ≤ m and 1 ≤ < n. Then, the following three properties are equivalent.

(i) There exists a permutation P F of F n 2 expanding F such that, in any product of coordinates of P -1 F , all monomials of degree greater than or equal to (n-k) have degree strictly less than (nm) in the last nm variables. (ii)

For any permutation P F of F n 2 expanding F , we have that, in any product of coordinates of P -1 F , all monomials of degree greater than or equal to (n-k) have degree strictly less than (nm) in the last nm variables. (iii) δ k (F ) < n -.

Proof: Let K ⊂ {1, . . . , m} and L ⊂ {1, . . . , n}. Let π K denote the product of the coordinates F i for i ∈ K. Then, the coefficient a K,L of the monomial i∈{1,...,n}\L x i in the algebraic normal form of F is given by

a K,L = x∈F n 2 xj =0,j∈L π K (x) = #{x ∈ F n 2 : x j = 0, j ∈ L and F i (x) = 1, i ∈ K} mod 2 = #{x ∈ F n 2 : x j = 0, j ∈ L and (P F ) i (x) = 1, i ∈ K} mod 2
where the last equality holds for any expansion P F of F . Then, as P F is a permutation, setting y = P F (x) leads to

a K,L = #{y ∈ F n 2 : y i = 1, i ∈ K and (P -1 F ) j (y) = 0, j ∈ L} mod 2 ,
implying that a K,L = 0 if and only if the Boolean function

H K,L : {x ∈ F n 2 : x i = 1, i ∈ K} → F 2 x → i∈L (1 + (P -1 F ) i (x)) has degree strictly less than (n -k).
Let us first prove that (i) implies (iii). We deduce from the previous reasoning that, if Condition (i) holds, any monomial of degree greater than or equal to (nk) in the ANF of the n-variable Boolean function

x → i∈L (1 + (P -1 F ) i (x))
is not a factor of x m+1 . . . x n . Therefore, the restriction of such a monomial to any set {x ∈ F n 2 :

x i = 1, i ∈ K} with K ⊂ {1, . . . , m} has degree strictly less than (m -k) + (n -m) = (n -k).
It follows that, for any choice of K ⊂ {1, . . . , m}, H K,L has degree strictly less than (nk). Then, we have: (ii) ⇒ (i) ⇒ (iii).

Conversely, we can prove that (iii) implies (ii). Suppose that (ii) does not hold, i.e., there exists some permutation P F expanding F and some set L ⊂ {1, . . . , m} such that the nvariable Boolean function

π L : x → i∈L (P -1 F ) i (x)
contains a monomial of the form x m+1 . . . x n i∈I x i for some set I ⊂ {1, . . . , m} of size at least (mk). We can suppose that L is the smallest such set for inclusion (otherwise, we choose the smallest L ⊂ L satisfying the property). Let us choose K = {1, . . . , m} \ I where x m+1 . . . x n i∈I x i is the monomial with the highest degree of this form in the ANF of π L . By hypothesis, the size of K is at most k, and it is greater than or equal to 1 since π L cannot have degree n when |L| < n [8, Prop 1]. Since L is minimal for inclusion and

H K,L (x) = L ⊆L i∈L (P -1 F ) i (x) ,
it is clear that H K,L has degree (nk) if and only if the restriction of π L to the set {x ∈ F n 2 : x i = 1, i ∈ K} has degree (nk). However, the algebraic normal form of π L contains the monomial x m+1 . . . x n i ∈K x i , implying that H K,L has degree at least (nk). It follows that, for these particular choices of L and K, a K,L = 1 implying that there exists some product of k or fewer coordinates of F which has degree greater than or equal to (n -). Finally, it follows that all three properties are equivalent.

A corollary similar to Corollary 3.2 can be deduced now for the case of non-injective balanced functions.

Corollary 4.1: Let F be a balanced function from

F n 2 into F m 2 and G a function from F m 2 into F k 2 .
For any permutation F * expanding F , we have

deg(G • F ) < n - n -1 -deg G deg(F * -1
) .

Proof: Let F * be a permutation expanding F . We have shown in the proof of Corollary 3.2 that the trivial bound implies that δ (F * -1 ) < ndeg G for any

≤ n -1 -deg G deg(F * -1
) .

It follows that, when satisfies this condition, the product of any coordinates of F * -1 does not contain any monomial of degree (ndeg G). Since Condition (i) in Theorem 4.1 is satisfied, we deduce that

deg(G • F ) ≤ δ deg G (F ) < n - n -1 -deg G deg(F * -1
) .

It is known that the product of k coordinates of a balanced function F with n input variables has degree n if and only if k = n (see, e.g. [8, Prop 1]). Moreover, when F is a permutation, we have shown in Corollary 3.4 that the degree of F -1 determines whenever the product of some coordinates of F has degree (n -1). Here, we provide a similar result in the case where F is a non-injective balanced function. where the sum corresponds to the addition in F n 2 . Proof: From Theorem 4.1 applied with k = m and = 1, we know that δ m (F ) ≤ n -2 if and only if there exists some permutation P F expanding F such that any monomial with degree at least (nm) in the ANF of any coordinate of P -1 F is not a factor of x m+1 . . . x n . Since a monomial of degree less than (nm) cannot be a factor of x m+1 . . . x n , this equivalently means that any monomial in the ANF of any coordinate of P -1 F is not a factor of x m+1 . . . x n . Let

f : F m 2 × F n-m 2 → F 2 (x, y) → [P -1 F (x, y)] i , for some i. For any (u, v) ∈ F m 2 × F n-m 2 , a u,v de- notes the coefficient in the ANF of f of the monomial i,ui =0 x i i,vi =0 x m+1+i . Let 1 n-m denote the all-one vec- tor in F n-m 2 . For any x ∈ F m 2 and y ∈ F n-m 2 , we have f (x, y) = v y   u x a u,v   ,
where x y means that x i ≤ y i for all i. Then

y∈F n-m 2 f (x, y) = y∈F n-m 2 v y   u x a u,v   ≡ v∈F n-m 2 N v   u x a u,v   (mod 2) ,
where

N v = #{y ∈ F n-m 2 : v y} mod 2 = 2 n-m-wt(v) mod 2 .
Then, N v = 0 except when v is the all-one vector. Therefore,

y∈F n-m 2 f (x, y) = u x a u,1n-m .
We then deduce that all a u,1n-m = 0 for u ∈ F m 2 if and only if

y∈F n-m 2 f (x, y) = 0 for all x ∈ F m 2 .
It is worth noticing that this property is similar to the property used in cube attacks [START_REF] Dinur | Cube attacks on tweakable black box polynomials[END_REF]Theorem 1].

Since this property holds for any coordinate f of P -1 F , the required condition equivalently means that, for any x ∈ F m 2 ,

y∈F n-m 2 P -1 F (x, y) = 0 ,
where the sum is an addition in F n 2 . By definition of P F , all elements P -1 F (x, y) when y ∈ F n-m 2 correspond to the preimages of x under F . The condition can then be written as z:F (z)=x z = 0 .

V. APPLICATIONS TO SOME SYMMETRIC PRIMITIVES

In this section, we will show how the previous results can be used in order to predict the evolution of the algebraic degrees of some chosen permutations that are the main building blocks of some well-known block ciphers and hash functions.

A. Attacking the KN -cipher and its variant

One of the first examples in the literature of a concrete attack exploiting the low algebraic degree of a symmetric primitive is the higher-order differential attack presented by Jakobsen and Knudsen [START_REF] Jakobsen | The interpolation attack on block ciphers[END_REF] against the KN -cipher. This construction, a.k.a CRADIC [START_REF] Nyberg | Provable" security against differential and linear cryptanalysis[END_REF], has been proposed by Nyberg and Knudsen in [START_REF] Nyberg | Provable security against a differential attack[END_REF]. It is a 6-round Feistel cipher over F 64 2 with a 198-bit secret key. Its round permutation is defined as follows (see Figure 1):

F 32 2 × F 32 2 → F 32 2 × F 32 2 (x, y) → (y, x + T • S (E(x) + k i ))
where k i is the ith round subkey, E is a linear expansion from F 32 2 into F 33 2 , T is a linear truncation from F 33 2 into F 32 2 and S is the power function x 3 over F 2 33 . In this definition, the finite field F 2 33 is identified with the vector space F 33 2 .
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k i x i-1 y i-1
x i y i

Fig. 1. Round i of the KN -cipher

The main motivation behind this design is that the choice of S, which is the only nonlinear part in the cipher, guarantees an optimal resistance to both linear and differential attacks. Thus, x 3 over F 2 n , n odd, was chosen, since it is an almost bent function [START_REF]Differentially uniform mappings for cryptography[END_REF]. More precisely, some lower bounds on the probabilities of the best differential and of the best linear approximation show that 6 rounds of this cipher are resistant to these attacks.

However, one of the main weaknesses of this cipher, identified by Jakobsen and Knudsen [START_REF] Jakobsen | The interpolation attack on block ciphers[END_REF], is that the encryption function has a low algebraic degree. Indeed, for any r-round Feistel cipher, it can be observed that, when the right half of the input y 0 is a constant, the function which associates the left part of the output x r to the left part of the input x 0 has degree at most (deg S) r-2 . Therefore, since the Sbox in the KN -cipher is quadratic, there exists a distinguisher for r rounds with data and time complexity 2 2 r-2 +1 . This must be compared to the best known generic attacks against any 4-round and 5-round Feistel ciphers with 64-bit blocks, which have respective data complexities 2 16 and 2 32 [START_REF] Patarin | Security of random Feistel schemes with 5 or more rounds[END_REF]. Here, the whole encryption function can be distinguished from a random permutation with data complexity 2 17 . Also, the 33-bit last round key k 6 can be recovered with average time complexity 2 14 and data complexity 2 9 pairs of chosen plaintexts-ciphertexts [START_REF] Shimoyama | Improving the Higher Order Differential Attack and Cryptanalysis of the KN Cipher[END_REF]. Therefore, it is now well-known that, in an r-round Feistel cipher, the Sbox must be chosen such that (deg S) r-2 is much higher than half of the block size. But, there is no condition on the degree of the inverse of S since S -1 is involved neither in the encryption function nor in the decryption function. The degree of S -1 may only affect the complexity of some algebraic attacks [START_REF] Courtois | Cryptanalysis of block ciphers with overdefined systems of equations[END_REF]. Therefore, a variant of this cipher, that we name KN , suggested by Nyberg and Knudsen in the same paper [START_REF] Nyberg | Provable security against a differential attack[END_REF] does not present the same weakness. This variant is obtained by modifying S and using instead the inverse of a quadratic permutation. Actually, it is known that any permutation and its inverse present the same resistance to differential and linear cryptanalysis [START_REF] Nyberg | S-boxes and round functions with controllable linearity and differential uniformity[END_REF]. But, a major difference is that S and S -1 may have different algebraic degrees. For instance, if S is a quadratic power permutation over F 2 n , n odd, i.e., S(x) = x 2 s +1 with gcd(s, n) = 1, then the algebraic degree of S -1 is equal to n+1 2 [START_REF]Differentially uniform mappings for cryptography[END_REF]. Since the implementation complexity of the inverse of x 3 over F 2 33 is unacceptable in most applications, we consider the nonlinear function over F 32 2 composed of four parallel applications of the same function σ defined over F 8 2 like in KN :

σ : F 8 2 → F 8 2 x → t • σ (e(x)))
where e is an affine expansion from F 8 2 into F 9 2 with maximal rank, t is a truncation from F 9 2 into F 8 2 , and σ is the inverse of a quadratic power permutation x → x 2 s +1 over F 2 9 , e.g., σ(x) = x 171 which is the inverse of x 3 . This function, which is the only nonlinear part of the cipher, has algebraic degree 5. It is worth noticing that it has a high univariate degree which prevents interpolation attacks. The round function of KN is depicted on Figure 2. It is defined by

F 32 2 × F 32 2 → F 32 2 × F 32 2 (x, y) → (y, x + L • S (L(x) + k i ))
where S corresponds to four parallel applications of σ, k i is the i-th 32-bit subkey, and L and L are two linear bijections over F 32 2 which aim at providing diffusion. While the trivial bound does not provide any relevant information on the degree of the left part of the output for 5 rounds or more, Theorem 3.1 shows that KN -cipher can also be broken by the attack proposed by Jakobsen and Knudsen. At this aim, we study the algebraic degree of the function which maps x 0 , the left half of the plaintext, to x r which is the left half of the output of the cipher after r rounds. In the following, we denote by F k the function over F 32 2 defined by: Then, we have

F k (x) = L • S (L(x) + k) .
x 2 = x 0 + F k1 (y 0 )
x 3 = y 0 + F k2 (x 0 + F k1 (y 0 ))

x 4 = x 0 + F k1 (y 0 ) + F k3 (y 0 + F k2 (x 0 + F k1 (y 0 ))) .
Let us now denote by x the element of F 36 2 defined by

x = E (L(x 0 + F k1 (y 0 )) + k 2 )
where E is the linear expansion from F 32 2 into F 36 2 composed of 4 applications of the smaller expansion e. Then, x 0 can be computed from x by

x 0 = L -1 (E (x) + k 2 ) + F k1 (y 0 )
where E is the function from F 36 2 into F 32 2 defined by E (E(x)) = x and E (x) = 0 if x ∈ ImE. Such a function exists since E has maximum rank. Then, x 4 can be written as a function of x

x 4 = L -1 (E (x) + k 2 ) + F k3 (y 0 + L • T • S(x)) ,
where S is the permutation of F 36 2 corresponding to four parallel applications of σ, and T is the function from F 36 2 into F 32 2 defined by four applications of the truncation t. Now, since

x 5 = x 3 + F k4 (x 4 )
we deduce that

x 5 +x 3 = F k4 L -1 (E (x) + k 2 ) + F k3 (y 0 + L • T • S(x)) .
The degree of x 5 as a function of x 0 is at most the maximum between the degree of x 3 , which is at most 5, and the degree of x 5 + x 3 , seen as a function of x. We then focus on this last quantity. We write

x 5 + x 3 = G • S(x)
with

G(y) = F k4 L -1 E (S -1 (y)) + k 2 + F k3 (y 0 + L • T (y)) .
Degree of G. Since F k4 has degree 5, G can be decomposed as a sum of terms, each consisting of the product of i coordinates of S -1 multiplied by the product of at most (5i) coordinates of S. Since S -1 has degree 2, we get that

deg G ≤ max 0≤i≤5 (2i + δ 5-i (S)) .
From Theorem 3.1, it is known that δ 5 (S) < 36 - 30 2 , implying that δ 5 (S) ≤ 20. Therefore, we deduce that deg G ≤ 2 + δ 4 (S) ≤ 22.

Degree of G • S. We now apply Corollary 3.2 for upperbounding the degree of G • S, exploiting the fact that S -1 has degree 2. Then, we get

deg(G • S) < 36 - 35 -22 2 , or equivalently, deg(G • S) ≤ 29 ,
and we finally find that x 5 is a function of degree at most 29 of x 0 . This leads to a distinguisher on 5 rounds of KN with data complexity 2 30 that improves the generic distinguisher. It is worth noticing that the same upper bound can be derived from Theorem 3.2 which additionally exploits the fact that S corresponds to the concatenation of 4 permutations σ defined over F 9 2 . Variant with non-bijective Sboxes. The nonlinear function in KN can also be seen as the concatenation of 4 balanced Sboxes σ from F 9 2 into F 8 2 . Instead of applying Corollary 3.2 based on the degree of the inverse of the nonlinear function S, we can then rely on the existence of a permutation S * expanding the 36 × 32 Sbox, with deg((S * ) -1 ) = 2. Then, Corollary 4.2 applies and also shows that x 5 is a function of degree at most 29 of x 0 .

It is worth noticing that, if we consider another variant of the KN -cipher using the inverse of x 3 over F 2 33 as an Sbox, Corollary 3.2 leads to a distinguisher on 4 rounds exploiting that x 4 has degree at most 25. But, finding a relevant bound on the degree of x 5 remains an open problem.

B. On the algebraic degree of Rijndael-256

Rijndael-128 [START_REF] Daemen | The Design of Rijndael: AES -The Advanced Encryption Standard[END_REF] is the algorithm selected by the NIST in 2000 as the winner of the AES competition in order to replace the DES. Rijndael-N b , with N b ∈ {128, 160, 192, 224, 256} has the form of a Substitution-Permutation-network. The key size N k varies between 128, 192 and 256 bits. Its round transformation applies to an N b -bit state, that is represented by a 4 × t-byte matrix A = (a i,j ), with t = N b /32. For instance, the states for Rijndael-128 and Rijndael-256 are depicted on Figure 3. • SubBytes: The only nonlinear transformation of the cipher. Every byte is updated by an 8 × 8 Sbox of degree 7. The inverse transformation has the same degree. • ShiftRows: Linear transformation that rotates to the left the bytes in each row by a certain offset. This offset depends on the block size N b . The offset is for example {0, 1, 2, 3} for Rijndael-128 and {0, 1, 3, 4} for Rijndael-256.

• MixColumns: Linear transformation that applies in parallel to every column of the state. • AddRoundKey: The combination of the state with the round subkey using bitwise XOR. A round R of the transformation applied to a state S corresponds thus to

AddRoundKey • MixColumns • ShiftRows • SubBytes(S).
The number of rounds depends on the block size and on the key size. These values can be found in Table I. As seen from the description, the only source of nonlinearity for Rijndael-N b is the SubBytes transformation. This transformation has algebraic degree 7. By using the trivial bound as an estimation for the degree, we can see that the degree after two rounds is at most 7 2 = 49 and after three rounds it is bounded by max(N b -1, 7 3 ). Thus, it may be believed that only 3 rounds of encryption are enough for achieving the maximal degree.

We will show, using the results of Section III, that the above estimates of the required number of rounds are way too small. We will see in particular that for Rijndael-256, at least 7 rounds are needed to achieve the maximal degree.

We start by giving a bound for the degree of two rounds of Rijndael-256. By using the superSbox view [START_REF]Understanding Two-Round Differentials in AES[END_REF], we can see these two rounds as the parallel application of eight copies of a function S 32 operating on 32-bit words, followed by a linear transformation. S 32 corresponds to a so-called SDS transformation: it consists of two layers of four 8 × 8 balanced Sboxes of degree 7, separated by a linear layer. Therefore, we can use Theorem 2 of [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF] and get that

deg R 2 = deg S 32 ≤ 32 - 32 -7 7 < 29 .
As the state of Rijndael-256 is wide, after two rounds of the permutation, not all the parts of the state have been mixed together. Thus we can apply a similar approach as before and see three rounds of the permutation as the parallel application of two copies of a function S 128 , operating now on 128-bit words, followed again by a linear layer. Theorem 2 of [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF] gives now

deg R 3 = deg S 128 ≤ 128 - 128 -28 7 < 114. Let F = R 2 .
F is a permutation of degree at most 28 and its inverse has degree at most 28 too. Using that (R 3 ) • F = R 5 , we get a bound for the degree of Rijndael-256 after five rounds. From Theorem 3.2, we get that the constant γ associated to F = R 2 is at most 28 and we deduce finally that deg R Therefore, at least 7 rounds are needed to achieve the maximal degree 255.

In order to make a comparison with previously known bounds and to see at what extension they are improved, we present in Table II upper bounds for Rijndael-256 coming from four different sources. The first column presents the results obtained by using the trivial bound, and the second column combines it with the superSbox view. Since the Walsh spectrum of the AES Sbox is divisible by 4 only, the bound from [START_REF] Canteaut | Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis[END_REF] provides the same results as the superSbox view. The last column illustrates the new results. Ain the table means that the obtained bound corresponds to the maximal degree of a permutation, and thus provides no information. 

C. Application to the ECHO hash function

The ECHO [START_REF] Benadjila | SHA-3 Proposal: ECHO[END_REF] hash function has been designed by Benadjila et al. for the NIST SHA-3 competition. It uses the HAIFA mode of operation. Its compression function has a 2048-bit input (corresponding to the chaining value and a message block whose respective lengths depend on the size of the message digest), and it outputs a 512-bit or a 1024-bit value. It relies on a 2048-bit AES-based permutation P .

The permutation P updates a 2048-bit state, which can be seen as a 4 × 4 AES state, composed of 128-bit words. In every round R, three operations modify the state. These are the BIG.SubWords, BIG.ShiftRows and BIG.MixColumns transformations. These transformations can be seen as generalizations of the three classical AES transformations. In particular,

• BIG.SubWords is a nonlinear transformation applied independently to every 128-bit cell. It consists of two AES rounds.

• The BIG.ShiftRows and BIG.MixColumns transformations are exact analogues of the AES ShiftRows and MixColumns transformations respectively, with the only difference that they do not operate on bytes but on 128-bit words. The number of rounds r is specified to be 8 for the 256-bit candidate. Finally, each bit in the output of the compression function is defined as a linear combination of some output bits of P and some input bits.

We will see how the algebraic degree of the permutation P varies with the number of rounds. We will show that the degree does not increase as predicted and reaches its maximum value much later than expected. The algebraic degree of the permutation P was believed to be high, as in every round R the input has to pass twice through the Sbox layer, of degree 7. As 7 4 = 2401, two rounds seemed to be enough to achieve the highest possible degree.

BIG.SubWords is the only source of nonlinearity in the round permutation. It is a 128-bit transformation corresponding to two rounds of AES. Its degree thus matches the degree of the S 32 transformation of Rijndael-256 and is hence at most 28. The two-round permutation R 2 is a permutation of the set of 2048-bit states, but it can be decomposed as four parallel applications of a permutation S 512 operating on 512-bit words, followed by a linear layer. We will determine the degree of any of these four applications. After the first round of the permutation P every bit of the state consists of polynomials of degree at most 28. By applying to this state the first layer of Sboxes in every BIG.SubWords, the degree gets at most 7•28 = 196. We can apply now the bound of Theorem 2 in [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF] to get the following bound on the degree of R 2 :

deg R 2 = deg S 512 ≤ 512 - 512 -196 7 < 467 . Let F = R 2 .
F is then a permutation of degree at most 466. From Theorem 3.2, the constant γ associated to this permutation is at most 466, as the degrees of R 2 and of its inverse are both upper-bounded by 466, therefore

deg F 2 = deg R 4 ≤ 2048 - 2048 -466 466 < 2045.
As for Rijndael, these results compared with the previously known bounds are summarized in Table III. The same bounds hold for the inverse round transformation. Due to this observation, we are able to distinguish the inner permutation in ECHO from a random one. This can be done for instance by constructing many zero-sum partitions of size 2 2045 , i.e., partitions of the input set F 2048 2 into 8 sets X 1 , . . . , X 8 of size 2 2045 such that all elements in each X i sum to zero and the corresponding images P (x), x ∈ X i sum to zero too [START_REF] Boura | Zero-sum distinguishers for iterated permutations and application to Keccak-f and Hamsi-256[END_REF], [START_REF] Aumasson | Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi[END_REF]. Such a partition can be constructed by the method introduced in [START_REF] Aumasson | Zero-sum distinguishers for reduced Keccak-f and for the core functions of Luffa and Hamsi[END_REF] and detailed in Proposition 2 of [START_REF] Boura | Zero-sum distinguishers for iterated permutations and application to Keccak-f and Hamsi-256[END_REF]. Let V be any subspace of F 2048 2 with codimension 3 and W be its complement. Then, the eight sets A round of the permutation is of algebraic degree 3, as the only source of nonlinearity of the cipher comes from the 4-bit Sboxes. Thus, if we try to estimate the evolution of the degree by using the trivial bound, we can see that the degree of the permutation after 6 rounds is at most deg(R 6 8 ) ≤ 3 6 = 729 and consequently the maximal degree seems to be reached just 7 rounds of encryption only. We will show by applying the results of Section III that the algebraic degree of JH does not increase as expected.

X i = {(R 4 ) -1 (a i + v), v ∈ V }, a i ∈ W
An important observation on the structure of the R 8 permutation is that for r ≤ 8, r rounds of R 8 , denoted by R r 8 , can be seen as the concatenation of 2 9-r permutations S r over F 2 r+1 2 . Thus, for 2 ≤ r ≤ 8, a bound on the degree of R r 8 can be obtained with Theorem 2 in [START_REF] Boura | Higher-order differential properties of Keccak and Luffa[END_REF]:

deg(R r 8 ) ≤ 2 r+1 - 2 r+1 -deg(R r-1 8 ) 3
.

The bounds on the degree up to 8 rounds of the permutation, given by the above formula can be seen in Table IV 

VI. CONCLUSIONS

Our work points out that, in many situations, the algebraic degree of an iterated function does not grow as fast as expected with the number of rounds. In particular, the degree of the inverse of the iterated permutation or, in the case of a noninjective function, the minimal degree of the inverse of a permutation expanding the function, has some influence on the degree of the iterated function. This observation can be used for exhibiting non-ideal behaviors in some cryptographic primitives, like block ciphers or hash functions. However, turning such distinguishers into real attacks, like a key-recovery attack on a cipher or a (second)-preimage attack on a hash function, is a difficult problem. The most promising approach consists in combining some properties of the algebraic normal form of an inner function (e.g., its low degree) and the solving of some algebraic system, as proposed in [START_REF] Moriai | Higher order differential attak of CAST cipher[END_REF], [START_REF] Dinur | An improved algebraic attack on Hamsi-256[END_REF]. Another open problem is to determine the impact of our result on some stream ciphers which appear to be vulnerable to several attacks exploiting the existence of some function with a low degree [START_REF] Dinur | Cube attacks on tweakable black box polynomials[END_REF], [START_REF]Breaking Grain-128 with dynamic cube attacks[END_REF].

  while the bound in Corollary 3.1 was relevant only for deg G < n-1 min(deg F,deg F -1 ) .

Corollary 4 . 2 :

 42 Let F be a balanced function from F n 2 to F m 2 , with m < n. Then, δ m (F ) ≤ n -2 if and only if, for any y ∈ F m 2 , the 2 n-m preimages of y by F sum to zero, i.e.,x:F (x)=yx = 0
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2 d0 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10 a 11 a 12 a 13 a 14 a 15 b 0 b 1 b 2 b 3 b 4 b 5 b 6 b 7 b 8 b 9 b 10 b 11 b 12 b 13 b 14 b 15
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TABLE I NUMBER

 I OF ROUNDS FOR THE RIJNDAEL BLOCK CIPHER.

					N b		
			128 160 192 224 256
		128	10	11	12	13	14
	N k	192	12	12	12	13	14
		256	14	14	14	14	14

TABLE IV UPPER

 IV . The same bounds hold for the inverse permutation. BOUNDS ON THE DEGREE OF UP TO 8 ROUNDS OF THE JH PERMUTATION. Using now Theorem 3.2, we get that the constant γ(S 8 ) of the permutation S 8 over F 512 2 is at most 409. Thus we have that The same technique applied to 9 to 16 rounds leads to the results presented in Table V, with a comparison with the previous best results.

	# Rounds Bound on deg(R r 8 )	
	1	3	
	2	6	
	3	12	
	4	25	
	5	51	
	6	102	
	7	204	
	8	409	
	deg R 16 8 ≤ 1024 -	1024 -deg(R 8 8 ) γ(S 8 )	< 1023.

TABLE V UPPER

 V BOUNDS FOR r ITERATIONS OF THE ROUND PERMUTATION OF JH, OBTAINED BY USING THE TRIVIAL BOUND, THE SUPERSBOX VIEW (OR THE BOUND FROM[START_REF] Canteaut | Degree of composition of highly nonlinear functions and applications to higher order differential cryptanalysis[END_REF]) AND THE NEW RESULTS, RESPECTIVELY.

	# rounds	trivial bound superSbox and [7] this paper
	1	3	3	3
	2	9	7	6
	3	27	15	12
	4	81	31	25
	5	243	63	51
	6	729	127	102
	7	-	255	204
	8	-	511	409
	9	-	-	819
	10	-	-	921
	11	-	-	972
	12	-	-	999
	13	-	-	1011
	14	-	-	1017
	15	-	-	1020
	16	-	-	1022
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