
HAL Id: hal-00738349
https://hal.science/hal-00738349v1

Submitted on 5 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Knowledge-Based Approach to Augment Applications
with Interaction Traces

Olivier Curé, Yannick Prié, Pierre-Antoine Champin

To cite this version:
Olivier Curé, Yannick Prié, Pierre-Antoine Champin. A Knowledge-Based Approach to Augment Ap-
plications with Interaction Traces. EKAW 2012, Oct 2012, Galway, Ireland. pp.317-326, �10.1007/978-
3-642-33876-2_28�. �hal-00738349�

https://hal.science/hal-00738349v1
https://hal.archives-ouvertes.fr

A Knowledge-Based Approach To Augment

Applications With Interaction Traces

Olivier Curé1, Yannick Prié2, Pierre-Antoine Champin2

1 Université Paris-Est, LIGM, CNRS UMR 8049, France. ocure@univ-mlv.fr
2 Université Lyon 1, LIRIS, CNRS UMR 5205, F-69622, France

{yannick.prie, pierre-antoine.champin}@liris.cnrs.fr

Abstract. This paper presents a trace-based framework for assisting personal-

ization and enrichment of end-user experience in an application. We propose a

modular ontology-based architecture, to provide semantics for interaction traces,

observed elements and their associated objects, and we extend existing inference

services, with a declarative and generic approach, in order to reason with those

interaction traces. We present the architecture of our framework and its reasoning

levels, provide a proof of concept on a medical Web application, and emphasize

that different kinds of actors can benefit from the supported inferences.

1 Introduction

We present an assistance framework for personalizing and enriching end-user applica-

tion interactions. These features rely on user profiles generated from interaction traces

that provide information on how data is used and created. Our declarative approach

is based on explicitly modeled interaction traces consisting of recordings of observed

elements (henceforth obsels) that are collected during the use of the application.

A first contribution is to provide a Description Logics (DL) [4] based approach to

modeling traces by constructing a global knowledge base of entities and actions that

can be reasoned upon. The semantics of interaction traces, obsels and their associated

objects are provided through mappings to DL concepts or roles. DL formalism has been

selected because it enables to reason in a sound and complete manner, and enables inter-

operability by underlying Semantic Web technologies. Another contribution is to define

means of reasoning over various levels of interaction knowledge. Standard (i.e. sub-

sumption) and non-standard DL inferences support these services. In order to represent

uncertainty, a probabilistic approach is used. Various levels of reasoning are presented

that support various kinds of user assistance based on the manipulated objects, traces,

and user profiles. Moreover, we have implemented this approach in an existing medi-

cal application, and have shown its interest by adding several functionalities that have

proven valuable to various actors of this system, from admin to end-users.

This paper is organized as follows. Sec. 2 is dedicated to related works. Sec. 3 details

how an application can be augmented with our framework for managing interaction

traces, while Sec. 4 describes the different reasoning approaches. In Sec. 5, we provide

an evaluation on our running example, emphasize on the system’s inferences adequacy.

Application

Decision module

Interaction traces module

Ontologies

General Trace

Ontology

Trace Generic

Ontology

Domain Trace

Bridge Ontology

Domain Specific

Ontology

Interaction Traces

Mappings

Reasoner

Domain database

Admin module

1

2

3

4

4

4

 Graph Generator

5

6
7

7

8

Fig. 1. Architecture overview of an application enriched with a trace-based system for assistance

2 Related works

Interaction traces have long been considered a valuable source of information, either

for an a posteriori analysis of the activity, or during the traced activity in order to pro-

vide some kind of user-assistance [13]. The latter is based on the assumption that the

traces can help to automatically build a user’s profile, instead of requiring the user’s to

manually provide their personal information and preferences [11]. Different paradigms

have been explored to provide trace-based user-assistance, such as case-based reason-

ing (traces can be used to dynamically generate cases corresponding to a problem at

hand [10]), or machine learning (traces are used as a training set for further recommen-

dations [11]). Traces can also be modeled using ontologies, allowing complex infer-

ences to be performed in order to assist the user [7]. Like our system, this work uses

Semantic Web technologies to represent ontologies. There is indeed a growing interest

in modeling temporal information related to users’ activity on the Semantic Web [6].

[1] combine statistical analysis with a semantic model and rules in order to measure the

health of on-line communities by analyzing the behavior of their users. There has been

other work aiming at integrating time in DL [3] and Semantic Web technologies [2,

12]; however those approaches consider time as a dimension orthogonal to the data. As

such, they are not adapted to our approach where time is merely a property of every

obsel.

3 A framework for integrating interaction traces in applications

Fig. 1 describes the different information flows between the components of our ar-

chitecture. The user interacts (1) with the application, causing updates to the domain

database (2) and the interaction traces component (3). In the latter, a subset of the end-

user interactions is stored as temporally situated interaction traces, e.g. start of a session

or description of an item. This subset of interactions is defined through a set of map-

ping assertions (Mappings component) between interaction traces and elements of the

ontologies. Note that some mapping assertions also relate the database with the ontol-

ogy (4). A set of interaction traces, mapping assertions and ontologies is used by the

Graph generator to define a global graph (5), containing the overall information in-

volved in the process of describing interactions. Moreover, it integrates metadata such

as object specific information coming from the ontologies and/or the domain database.

The global graph is passed to the reasoner (6) to generalize on the represented informa-

tion, computing subsumption relationships between ontology concepts. The generaliza-

tions are both stored as (transformed) interaction traces and in the domain database (7),

e.g. to store end-user models which will be used to personalize the application together

with information directly coming from the traces. Finally, the Admin module enables

to manage and query information stored as raw or transformed interaction traces (8) to

detect assets and drawbacks of the application, e.g. objects that are rarely accessed, etc.

Representation of Interaction Traces. We use the meta-model proposed in [9] for man-

aging interaction traces: a trace is defined as a list of timestamped obsels, holding a set

of attributes and relations. Each trace is related to a trace model, defining the different

types of obsel the trace can contain, and which attributes and relations obsels of each

type can have. A trace-based management system (TBMS) collects obsels from the ap-

plication in so-called primary traces. A TBMS also manages transformed traces, which

are computed based on the content of other traces, providing higher levels of interpreta-

tion. Hence we have three knowledge containers for each trace: its metadata , its model,

and the list of contained obsels. In our framework, the set of obsels recorded in an inter-

action trace is the representation of an end-user’s interactions with a given application.

They mainly correspond to CRUD (Create, Read, Update, Delete) operations, but can

be extended to higher level operations (e.g. Copy, Paste).

Each end-user session is represented by a single trace, satisfying the schema (idT,

idU, ssDate, seDate) where attributes respectively identify an interaction trace, the sub-

ject of the trace (i.e. the end-user whose activity is recorded), the session start and end

dates. Traces then contain a number of obsels describing the data operations performed

within the application during the session. Obsels satisfy the schema (idT, obselDate,

idObj, op, objField, oldValue, newValue) where idT references the containing trace,

obselDate is the timestamp of the obsel (and must be comprised between ssDate and

seDate of the containing trace), idObj identifies the object impacted by the interaction,

op identifies the data operation performed on that object, objField identifies the object’s

field impacted by the operation, if appropriate, and oldValue and newValue contain, if

appropriate, the field value before and after the operation respectively. The last three

attributes are optional, depending on the kind of operation. That is a Retrieve operation

does not impact a specific field of an object and has none of those three attributes; a

Delete operation only has an old value, an Insert operation only has a new value and an

Update operation has the three attributes filled in.

Ontologies for traces. A particular attention has been given to the ease of plugging in

and out ontologies and to provide a comprehensive decoupled organization. The default

setting of our framework consists of the following 4 ontologies. The general trace ontol-

ogy provides a model for a high-level view of interaction traces. It contains 3 concepts:

Trace, Obsel and Subject (the user whose interaction was traced); 2 object properties:

describes and composedOf, respectively relating an interaction trace to its subject and

its obsels; 4 datatype properties, supporting subject identification and temporal infor-

General Trace Ontology Trace Generic Ontology Domain Trace Bridge
Ontology

Domain Specific Ontology

Trace

Subject

Obsel

Date

String

describes

hasSubjectID

performedAt
composedOf

startSession

endSession

DataOperation

Retrieve

ModifyOperation

Update Delete Create

StringnewValue

oldValueoldValue

newValue

Object

Field

String

hasObjectID

onField

onObject

Form

Allo Phyto Homeo

Drug
sideEffect

Molecule

contraIndication

TherapeuticClass

hasForm
hasSideEffect

hasContraIndication
treats

contains

......

Fig. 2. Ontology-based framework for considering both traces and domain objets

mation. The trace generic ontology supports the definition of a set of obsels and corre-

sponds to a hierarchy of concepts some of which subsume concepts of the general trace

ontology. It aims to specify data operations needed to reason with interaction traces.

The domain specific ontology describes the semantics of the objects observed in the

interaction traces. In opposition to the other ontologies of the architecture, this compo-

nent may integrate an ABox.Obviously, the more information is provided on observed

objects (either in a TBox or an ABox), the more accurate the results of our inferences.

The domain trace bridge ontology links the trace generic ontology to the domain spe-

cific ontology. It contains 2 concepts: Object and Field, and 2 properties to identify an

object and relate an object to its fields. These 2 concepts subsume some of the concepts

of the domain specific ontology and are related to some of the trace generic ontology

concepts via object properties, e.g. onObject and hasField.

Example 1: Fig .2 provides a comprehensive view of a framework instance for our

medical application. The domain trace bridge ontology provides information on drug

objects which have a certain form (i.e. allopathy or homeopathy), treat some therapeutic

classes and contain some molecules. Two other concepts of this ontology, namely Con-

traIndication and SideEffect are subsumed by the Field concept of the domain trace

bridge ontology. Note that only Drug is subsumed by the Object concept from the

bridge ontology, so only operations on drugs will be recorded in the trace. However,

Molecule and TherapeuticClass can be used as external knowledge to support infer-

ences on drugs and the related obsels.

If our framework was to be used in a completely different domain, the domain spe-

cific ontology would have to be replaced. The modular structure would however make

it easy to reuse an existing Semantic Web ontology for the new application domain, and

link it to the other ontologies through mappings to the domain trace bridge ontology.

4 Reasoning over traces

We model interaction traces using a set of ontologies, using DL to provide them with

model-theoretic semantics [4]. A DL knowledge base (KB) is composed of a TBox

External Knowledge

Retrieve :obsel1 Create

:obsel2

:field1 contraIndication

:u1

:field2 sideEffect

:obj1

Allo

AntiPyretic

Paracetamol

3595583
Iproniazide

Nausea

:obsel3

Delete

:t1

5

contains

hasObjectId

hasForm

treats

type

onField

hasNewValue
type

onObject

type

onObject

onField

hasOldValue

type

onObject

type

composedOf

composedOf

composedOf

hasSubjectId

describes

idT

1

...

idU

5

...

ssDate

2011/09/10 03:00

...

seDate

2011/09/10 04:15

...

IdT

1

1

1

obselDate

2011/09/10 03:02

2011/09/10 03:03

2011/09/10 03:05

idObj

3595583

3595583

3595583

op

Retrieve

Create

Delete

objField

contraIndication

sideEffet

oldvalue

Nausea

newvalue

Iproniazide

(a)

(b)

Fig. 3. A trace extract and its graph instance (with some data omitted for readability)

and an ABox which respectively correspond to a set of terminological axioms and con-

cept/property assertions. A key feature of DLs is to integrate in the system the following

set of standard inferences: concept satisfaction and subsumption, instance checking, re-

alization and retrieval. Although we use some of these inferences, we also adapt two

non standard DL inferences named Most Specific Concept (MSC) and Least Common

Subsumer (LCS) [4]. The MSC of an individual αwrt a KB is the concept description C

such that (i) α is an instance of C and (ii) if there is another concept C’ of which α is an

instance of, then C’ is more general w.r.t. subsumption than C. The LCS of a given set S

of concept descriptions is the most specific concept (wrt the subsumption relationship)

subsuming all concepts descriptions in S . In general, they are computed with either

a structural subsumption algorithm or via the specification of a normal form. Within

our framework, MSC is used to generate DL concepts (hence models) from individuals

corresponding to instances of interaction traces, obsels or their objects. Given these in-

stances, the system generates concept description in the ELDL [5] which underpins the

OWL2 EL fragment. This DL presents good properties in terms of reasoning: subsump-

tion is polynomial even if one allows for cyclic terminologies and the MSC of an ABox

individual always exists. Moreover, users’ goals and intentions are too complex to be

entirely accounted for by formal inferences. To handle this uncertainty, we use Proba-

bilistic EL[8], an extension of EL that associates probabilities to concept descriptions.

As seen in Fig. 1(5), the reasonner works on a global graph generated from differ-

ent knowledge sources. Fig. 3(a) presents some interaction traces performed over our

medical application while Fig. 3(b) displays its associated instance graph. Note that the

contains, treats and hasForm properties associated to the :obj1 node can not be gener-

ated from the interaction traces. In fact they correspond to external knowledge retrieved

from the domain database. This is a difference with the original TBMS approach [9].

A major advantage of using ontologies is the ability to generalize patterns discovered

with type inference, i.e. the most common concept that satisfies a given situation.

Inferencing over various levels of interaction knowledge. The analysis of the end-user’s

behavior can be performed at different levels. We propose 5 of them which cover a wide

range of relevant features and still support a generic approach. They correspond to the

main DL concept abstractions found in our ontologies: Field, Object, Obsel, Trace and

Subject. These levels require different forms of processing: a finite model checking

approach handled with a simple query answering interface; or a more elaborate logical

reasoning. Inference services provided by each level build on the previous ones.

The Field level is the most specialized level and little information can be retrieved

from it. Intuitively, it enables to retrieve which kind of fields specified in the Domain

specific ontology have been observed. Hence a simple query answering interface is suffi-

cient. For instance, the question: “Which fields have been observed?” may be answered

with an enumeration of subconcepts of the Field concept that have been effectively

observed. This query may help to detect which fields are never operated upon.

The Object level is central as it is the first one to require logical reasoning and all

remaining levels build on its inferences. Both query answering and logical reasoning

are needed at this level. For instance, query answering can be used to identify objects

operated upon. The main logical reasoning of this level enables to generalize on a given

object description (detailed in Sec. 4).

The Obsel level enables to study the operation associated to an observed object.

Typical queries are CRUD-like and reasoning amounts to generalize obsel description.

The Trace level is an interesting level due to the non-functionality of the com-

posedOf property, i.e. a trace can be composed of several obsels. Moreover, an interac-

tion trace is associated to some temporal values representing its begin and end session

dates. Thus, a query answering approach can answer to questions such as “When was

a trace recorded? How long did it last?”. Logical reasoning is mainly concerned with

generalizing a given interaction trace. An interesting aspect of reasoning at this level in-

volves considering ordered sequences of generalized traces. By storing the result of that

generalization as transformed traces, we can then query sequences of similar sessions.

Finally, the Subject level enables to infer over a set of interactions performed by an

end-user. Query answering can be used to reply to the following questions for a given

end-user: “When did this user use the application for the last time?”, “How often does

this user use the application?”. We can also consider queries involving a group of end-

users, i.e. queries aggregating over end-users. Logical reasoning amounts essentially in

defining an end-user profile (i.e. concept descriptions) given her set of interaction traces.

In our running example, this user profile aims to define her pharmacology expertise, i.e.

in terms of molecules, therapeutic classes and drug forms she is an expert in.

Reasoning method. The reasoning methods needed by our levels of analysis are based

on the following 3 algorithms. The first algorithm, simpMSC, corresponds to a simpli-

fied version of MSC and aims to generate a DL concept description for any individual

present in the global graph. These DL concepts are specified by the following normal

form:
�

Ai ⊓
�
∃r jAk where Ai and Ak are atomic concepts and r j is an object property.

The algorithm takes as input an individual α and acts as follows. For all assertions of

the form Γ(α) (i.e. defining the type of α), it creates a conjunction AC of Γs. Moreover,

for all assertions of the form r(α, β) with r an object property assertion, it creates a con-

junction EQ of ∃r.β. The algorithm returns as output AC ⊓ EQ. This algorithm is used

at both the Object and Obsel levels respectively to produce a DL concept for an object

in terms of elements of the Domain specific ontology and an obsel in terms of elements

of the Trace generic ontology and Domain specific ontology.

Example 2: Consider the :obj1 individual in Fig. 3. Its assertion set contains: a type

definition Drug(:obj1), 3 object property assertions (contains(:obj1, Paracetamol),

hasForm(:obj1, Allo) and treats(:obj1,AntiPyretic)) and a data type property asser-

tion: (hasOb jectID(:obj1,3595583)). The execution of simpMSC over this individual

returns: Drug ⊓ ∃contains.Paracetamol ⊓ ∃treats.AntiPyretic ⊓ ∃hasForm.Allo.

The second algorithm, probLCS, corresponds to an approximation of LCS ex-

tended with probabilities on concepts. We use the notation of [8]: a concept Trace ⊓

∃composedO f (P=1/2Retrieve⊓∃onOb ject.O1) describes an interaction trace composed

of an obsel on object O1 and a Retrieve data operation with probability 0.5. We re-

strict probabilities to occur in front of DL concepts and allow disjunction in the form

A ⊔ B ⊑ C since it can be eliminated modulo the introduction of the new concept C.

The input of this algorithm is a set of concept descriptions produced by simpMSC. In

a first step, a disjunction of atomic concepts is computed. That is, it counts the number

of occurrences of each non quantified atomic concepts over the set of descriptions and

produces a probabilistic formula for each of them where the probability is the number of

occurrences of this concept divided by the total number of occurrences of the set. In the

second step, for each distinct existentially quantified property, the first step is applied

over its set of concepts. The probLCS algorithm serves at the Trace level to specify a

probabilistic view of the obsels present in an interaction trace.

Example 3: Consider the obsels of Fig. 3 (i.e. :obselsi with i ∈ [1,3]). Ap-

plying simpMSC to these obsel individuals yields the respective concepts (where

O1 is the concept description from Ex. 2): Retrieve ⊓ ∃onOb ject.O1, Create ⊓

∃onField.ContraIndication ⊓ ∃onOb ject.O1, Delete ⊓ ∃onField.S ideE f f ect ⊓

∃onOb ject.O1. Computing probLCS over this set yields the following concept:

(P=1/3Retrieve⊔P=1/3Create⊔P=1/3Delete) ⊓ ∃onField.(P=1/3 ContraIndication⊔P=1/3

SideEffect) ⊓ ∃onOb ject.P=3/3O1

The last algorithm, setProb, operates on a set of probabilistic concepts to create a

generalized concept, using the notion of concept comparability.

Definition 1: The comparability property, defined over the normal form of a prob-

abilistic concept, i.e.
�

(S C) ⊓
�

(∃rS C) where S C, standing for Simple Concept, is

a disjunction of probabilistic atomic concept, is stated as follows: non quantified sim-

ple concepts are comparable and simple concepts existentially quantified by the same

property are also comparable. No other concepts are comparable.

Given this comparability property, the generalization of probabilistic concepts is

defined as summing the probabilities of comparable simple concepts. To compute a

relevant sum, all probabilities are expressed over the total number of occurrences found

locally. This approach enables to sum properties and to have a coherent global view of

the distribution of probabilities. The setProb algorithm is used at the Subject level when

a generalization of interaction traces described by a given end-user is required.

Example 4: Consider the composition of the 2 following interaction traces:

- (P=1/3Retrieve ⊔ P=1/3Create ⊔ P=1/3Delete) ⊓ ∃onField.(P=1/3 ContraIndication

⊔P=1/3 SideEffect) ⊓ ∃onOb ject.P=3/3O1

- (P=2/4Retrieve ⊔ P=2/4U pdate) ⊓ ∃onField.(P=2/4 SideEffect) ⊓ ∃onOb ject.P=4/4O2

The execution of setProb over these interaction traces yields: (P=3/7Retrieve ⊔

P=1/7Create ⊔ P=1/7Delete ⊔ P2/7U pdate) ⊓ ∃onField.(P=1/7 ContraIndication ⊔P=3/7

SideEffect) ⊓ ∃onOb ject.(P=3/7 O1 ⊔ P4/7 O2)

The probabilities of the concept description computed by setProb represent the un-

certainty of our conclusions about the user’s activity at a certain level. In the context of

the Subject level, this concept description serves to create an approximation of a user

model. A threshold θ is used to cope with the uncertainty of our approximation.

Definition 2: Given a probabilistic DL concept, a certain rewriting of this concept

wrt a threshold θ is computed by retaining only the inner concepts whose probability is

superior or equal to θ.

The certain rewriting of a probabilistic concept wrt to a threshold θ serves to gener-

ate a model for a given subject. That is the remaining concepts of the description specify

the expertise/point of interest of the end-user.

Example 5: Consider the probabilistic concept generated in Ex. 4 and a thresh-

old θ=1/3. The certain version corresponds to: (Retrieve) ⊓ ∃ onField.(SideEffect) ⊓ ∃

onObject.(O1 ⊔ O2) where the drug O1 (resp. O2) has form Allo, treats Cough and

contains Dextromethorphan (resp. has form Phyto and treats the respiratory system).

This enables to define a user model corresponding to a domain expert involved in Re-

trieve data operation and side effect field over allopathic and phytotherapeutic drugs of

both the Cough and respiratory system, containing the Dextromethorphan molecule.

Finally, testing subsumption of concepts filling the onObject property is performed.

Intuitively, using the Domain specific ontology, the system checks for concepts cover-

ing wrt. to subsumption. Thus a set of subsumed concepts are replaced with the super

concept. This approach limits the size of generated user models and improves their rel-

evance by relating them to named concepts rather than complex concepts expressions.

5 Trace-based assistance in a self-prescription application

Reasoning occurs at the different levels of interaction knowledge. Several kinds of ac-

tors (end-user, staffmanager and developer) can benefit from various inference services.

At the Object level, the system can efficiently compute statistics on frequently mod-

ified objects and fields and hence provide up-to-date information on market evolution.

The Obsel reasoning level enables to detect repetitive operations performed on same

category objects. The system then proposes the end-user to execute them automatically

on the remaining objects in this category, as soon as it has been repeated more than a

given threshold (defaulting to 3). This kind of information also supports the discovery

of some integrity constraints, e.g. which fields or objects are most frequently updated

for the drug category of homeopathy or respiratory system. For example, it is relatively

frequent in the medical domain that some molecules are being attributed new proper-

ties. This may cause drugs containing that molecule to change from OTC to requiring

a prescription. After the end-user has changed the state of 3 such drugs, the system

will offer to make the change to all remaining drugs. Before the adoption of our trace

reasoning level, all modifications had to performed manually.

In our medical application, all modifications are double-checked by an expert of

this product’s category, i.e. either form, molecule or therapeutic class. For instance, a

homeopathy expert usually does not have the expertise to check information on the

allopathy drug category. The Subject level automatically generates this expertise profile

for each user based on their interaction traces. Based on these user models, we are able

to personalize the home page of each end-user in the following way: (i) she is only asked

to check drugs in her domain of expertise, (ii) she is provided with a list of contacts in

her domain of expertise and (iii) health news displayed in the application are prioritized

according to her domain of expertise. This approach has simplified the tasks of our team

of health care professionals and has significantly lowered time delivery of data updates.

The administration tool is also very useful to improve our system. Due to different

forms of reasoning, it enables to identify drug categories not frequently operated upon

(obsel level), to control the cleaning/checking activity of a given domain expert (trace

level), to detect domains of expertise missing in a team of end-users, to discover who

checks and/or overrules the updates of a given expert (subject level), etc.

Evaluation. We have conducted an evaluation to highlight our framework’s assets and

weaknesses on certain criteria related to Subject level reasoning and user profiles: a)

productivity gain of end-users, b) correctness of the models generated for each end-user.

The experimentations have been conducted on our medical application over a real data-

set involving 12 health care professionals over 3 months and resulting in the recording

of 420 interaction traces and over 23000 obsels.

The first experiment tackles the gain of productivity of end-users. The experimenta-

tion took place after a period of 2 months of recording interaction traces.None of them

were aware of the existence of the framework. Given the user models generated after the

recording of 2 months of interaction traces, we divided the group of 12 end-users into

3 homogeneous (i.e. based on the precision of their models) groups of 4 persons. Then

over a period of 3 weeks, we conducted a survey over the evolution of the precision of

the check box. This box is displayed on the home page of each end-user and contains

a list of drugs that have been recently modified and which need a checking by another

health care professionals before being put into production. Hence, it is an invitation for

end-users to control the information associated to a given drug. For group #1, the check

box did not benefit from the inferences of the framework. The end-users hence had to

browse the list of drugs to find by themselves the ones in which they have some exper-

tise. For group #2, the check box was progressively taking benefit from the 2 months

of analysis. That is in the first week, the box benefited from the user model deduced

after 3 weeks of analysis, in the second week, it benefited from 6 weeks of analysis

and in the last week it used the models generated over the 2 months of analysis. In the

case of group #3, the check box benefited from the 2 months of analysis right from day

one of the experimentation. Participants in each group rated the adequacy of the drugs

presented in the check box according to their medical expertise. A Likert scale with 5

ordered responses was used, ranging from ’5=strongly adapted’ to ’1= not adapted’.

Fig. 4(a) emphasizes that group #1 does not see any improvement in adequacy of the

box list. As expected, through the period of the evaluation, participants of group #2

sensed an improvement in the adaptability of the proposed list of drugs. Finally, the

improvement was felt right away for members of group #3.

Fig. 4. Results of experimentations

The second experiment was conducted right after the first one and once all end-users

were informed about the existence and aim of the framework. We presented a compre-

hensive view (i.e. presented in natural language) of the user model generated for each

participants (out of the 2 months plus 3 weeks of storing interaction traces on experi-

ment #1) and asked them to rate (using the same Likert scale as in (1)) the precision of

their profile. Fig. 4(b) presents the average of individual results over members of the 3

groups. The averages range from 4.5 for group #1 to 4.75 for group #3. We consider

these results to be satisfactory as it rewards the work invested on this framework. Any-

how, the quality of these results is related to the well-defined expertise of each health

care professional participating to the project.

References

1. S. Angeletou, M. Rowe, and H. Alani, Modelling and analysis of user behaviour in online

communities, in International Semantic Web Conference (1), 2011, pp. 35–50.
2. D. Anicic, P. Fodor, S. Rudolph, and N. Stojanovic, EP-SPARQL: a unified language for

event processing and stream reasoning, WWW, New York, NY, USA, 2011, pp. 635–644.
3. A. Artale and E. Franconi, Temporal description logics, in Handbook of Temporal Reason-

ing in Artificial Intelligence, M. Fisher and als, eds., vol. 1, Elsevier, 2005, pp. 375–388.
4. F. Baader and al, eds., The Description Logic Handbook: Theory, Implementation, and Ap-

plications, Cambridge University Press, 2003.
5. F. Baader, S. Brandt, and C. Lutz, Pushing the el envelope, in IJCAI, 2005, pp. 364–369.
6. P.-A. Champin and A. Passant, SIOC in Action – Representing the Dynamics of Online Com-

munities, in 6th Int. Conf. on Semantic Systems, I-SEMANTICS ’10, Graz, Austria, 2010.
7. T. Groza, S. Handschuh, and K. Mller, The NEPOMUK project - on the way to the social

semantic desktop, Graz, Austria, 2007. peer-reviewed.
8. V. Gutiérrez-Basulto, J. C. Jung, C. Lutz, and L. Schröder, A closer look at the probabilis-

tic description logic prob-el, in AAAI, 2011.
9. J. Laflaquière, L. S. Settouti, Y. Prié, and A. Mille, A trace-based System Framework for

Experience Management and Engineering, in EME’06 in conjunction with KES’06, 2006.
10. B. Smyth, P. Briggs, M. Coyle, andM. OMahony, A Case-Based perspective on social web

search, in Case-Based Reasoning Research and Development, vol. 5650 of Lecture Notes in

Computer Science, Seattle, WA, USA, 2009, Springer Berlin / Heidelberg, pp. 494–508.
11. K. Sugiyama, K. Hatano, and M. Yoshikawa, Adaptive web search based on user profile

constructed without any effort from users, WWW, New York, USA, 2004, pp. 675–684.
12. J. Tappolet and A. Bernstein, Applied temporal RDF: efficient temporal querying of RDF

data with SPARQL, in The Semantic Web: Research and Applications, vol. 5554, Heraklion,

Crete, Greece, 2009, Springer Berlin / Heidelberg, pp. 308–322.
13. A. Wexelblat, History-rich tools for social navigation, in CHI 98 conference summary on

Human factors in computing systems, CHI ’98, New York, NY, USA, 1998, pp. 359–360.

