
HAL Id: hal-00738320
https://hal.science/hal-00738320v1

Submitted on 12 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An eventual alpha partition-participant detector for
MANETs

Léon Lim, Denis Conan

To cite this version:
Léon Lim, Denis Conan. An eventual alpha partition-participant detector for MANETs. EDCC
’12 : Ninth European Dependable Computing Conference, May 2012, Sibiu, Romania. pp.25-36,
�10.1109/EDCC.2012.15�. �hal-00738320�

https://hal.science/hal-00738320v1
https://hal.archives-ouvertes.fr

An Eventual α Partition-Participant Detector for MANETs

Léon Lim and Denis Conan

Institut Télécom, Télécom SudParis

UMR CNRS Samovar

Évry, France

firstname.lastname@telecom-sudparis.eu

Abstract—With Mobile Ad hoc Networks (MANETs), com-
munication between mobile users is possible without any in-
frastructure. MANETs are already a necessary part of wireless
systems. Due to arbitrary node arrivals, departures, crashes
and movements, network partitioning may arise resulting in
a degradation of the service, but not necessarily in its inter-
ruption. In this paper, we propose a distributed system model
for partitionable systems. We then specify and implement a
partition-participant detector that captures the liveness of a
partition even if the partition is not completely stable. Its role
is to detect the minimal stability condition to guarantee that
eventually all the stable processes in an α-Set elect the same
leader.

Keywords-MANETs; models for dynamic partitionable sys-
tems; partitions; partition-participant detector; stability con-
dition.

I. INTRODUCTION

Mobile Ad hoc Networks (MANETs) are self-organizing

networks without any fixed infrastructure. Due to node

arrivals, departures, crashes and movements, MANETs are

very dynamic networks. Dynamic networks are character-

ized by being subject to topology changes. The topology

changes occur both rapidly and unexpectedly. The graph

of nodes is not necessarily completely connected. Nodes

can only broadcast messages to nodes that are within their

transmission range. Hence, MANETs are often referred to

as multihop wireless ad hoc networks: It may happen that

a message sent by a node should be routed through a set

of intermediate nodes. Furthermore, communication links

between nodes are considered unidirectional. For instance,

a node can receive a message from another node while

having insufficient remaining energy to send a message

back. Disconnections, failures and the mobility of nodes can

isolate a node or a group of nodes from the other participants

of the system. Thus, a distributed system built over MANETs

may be split into partitions: Nodes that neither crash nor

leave the system might not be mutually reachable. Therefore,

distributed systems that are built over MANETs must be

partition-tolerant so that network partitioning may result in

a degradation of the service but not in its interruption.

In this paper, we focus on dynamic systems built over

networks that may partition permanently [2], [3] and in

which several partitions may evolve concurrently and in-

dependently from each other [6], [15], [9]. Partitions can

merge into larger partitions when the communication links

between them are re-established. Note that in contrast to

partitionable systems, in primary-partition systems, such

merge and split operations are not allowed —i.e., only a

single partition can exist and all the non-faulty processes are

required to agree on the composition of that partition [6],

[26]. Collaborative applications [11], resource allocation

management [7], and distributed monitoring [23] are exam-

ples of applications that support partitioning. Partitions may

experiment with some eventual stability so that the liveness

of the computation can be guaranteed —i.e., a stability

period lasts long enough in order to eventually allow all

the participant nodes of the partition to communicate in a

timely manner.

In our partitionable system model, processes may leave

and join the system. We consider that there are infinitely

many processes, but each run has a maximum concurrency

level that is finite —i.e., the number of processes that have

joined minus the number of processes that have left is finite.

This corresponds to the infinite arrival model with bounded

concurrency defined in [20] and investigated in [1]. In this

model, the set of correct processes is not known in advance

and runs can have infinitely many processes as time elapses.

This uncertainty leads to two different issues: (1) discovering

the finite set of processes that will be part of a partition

and (2) dealing with a possibly infinite set of processes

that may wake up at any time. In such a context, it would

be interesting to be able to detect the existence of stable

partitions in which stable processes are able to communicate

with each other in a timely manner. Partition-participant

detectors are oracles associated with processes that give the

set of stable processes that belong to a partition. Like failure

detectors [14], a partition-participant detector can make

mistakes, but it eventually computes the set of processes

that belong to the partition [8]. Note that, unlike a failure

detector, the specification of a partition-participant detector

must be based on the ability of processes to communicate

with each other rather than detecting correct processes. The

reason is that nodes may enter or leave a partition so that

the set of processes is neither fixed nor known in advance.

Another motivation for our work concerns the problem

of the specification of a partitionable group membership.

Basically, a group membership service specifies the view a

process has on the current partition it belongs to. Group

membership is a basic building block for partition-aware

applications that are able to make progress in multiple con-

current partitions without blocking [10]. Two prominent dy-

namic partitionable systems that specify partitionable group

membership are presented in [9] and [15]. In these articles,

the authors argue that fault-tolerant applications on top of

a partitionable system usually rely on such a service. They

extend the definition of the eventually perfect failure detector

to partitionable systems in order to provide a membership

service. These detectors eventually detect all the mutually

reachable processes. They differ about their liveness prop-

erty: (1) liveness must only hold in stable partitions [15],

and (2) liveness must be ensured in every partition [9]. [15]

defines a completely stable partition as “a set of processes

that are eventually alive and connected to each other, and

the link from any process in this set to any process outside

the set is down”. Contrarily to our work, [15] considers a

static and fully connected distributed system. Futhermore,

the specification of [15] does not ensure the liveness of the

system when processes are forever intermittently mutually

reachable. This unstable case disappears in the specification

of [9] with the consideration of fair channels, and thus [9]

guarantees liveness not only in stable partitions. However, as

stated in [24], these two specifications are not satisfactory.

For instance, the specification in [15] can be satisfied by a

“trivial but useless implementation”1 and the specification

in [9] cannot be implemented without strong synchrony

assumptions2.

As a consequence, there is a critical need for the def-

inition of a dynamic partitionable system model which is

implementable and strong enough, and which guarantees

the liveness property not only in completely stable parti-

tions. In operational MANETs, the problem becomes even

more complex since they can experience a wide amount of

churn [27]: Nodes join and leave the system at arbitrary

times and arbitrarily fast. Therefore, partitions may never

be completely stable —i.e., it is possible that groups of

nodes are unable to progress and terminate useful distributed

computations such as leader election or consensus. Nodes

which stay in a partition during a long enough period of

time are said to be stable, and unstable otherwise. Stable

1The terms “useless” and “trivial” are originally highlighted in [24].
They show that their trivial but useless implementation, while satisfying
the safety and liveness properties of the specification of [15], does not
provide “strong” guarantees to applications. The implementation allows the
following scenario: For each process p, each non singleton view is followed
by a singleton view.

2It was observed in [24] that [9] implements a specification that is based
on a time dependent property (definition of reachability) in a system model
that is based on time independent property (definition of fair channels).
In [9], the reachability relation is defined as follows. If p sends message
m to q at time t, then q receives m if and only if q is reachable form p at
time t. However, as pointed out in [24], reachability is not time invariant:
Process q can be reachable from process p at time t, and unreachable at
time t′ > t.

and unstable nodes can coexist in the context of a partition.

Nevertheless, it is desirable to avoid that unstable nodes

prevent the progress of stable ones. Thus, the stability

condition should be weakened in order to allow distributed

computations to terminate despite of the presence of unstable

nodes in the partition. In other words, useful computations

should be executed only by a set of α stable nodes as

it is shown in [22]. This weak stability condition better

fits to dynamic systems. However, the system model in

[22] is defined for primary-partition systems in which it

is not possible to have several stable partitions that run

concurrently and independently.

Our Contributions. In this paper, we propose a model

that characterizes the dynamic behavior of MANETs. We

define a weak stability condition which guarantees the

liveness of partitions even if they are not completely stable.

We also propose an eventual α partition-participant detector,

denoted ♦αPPD, whose role is to make trade-offs between

agreement and progress by eventually detecting the stability

condition. In addition, ♦αPPD eventually determines the

leader among them.

The rest of the paper is organized as follows. We dis-

cuss some related works in Section II. In Section III, we

model dynamic partitionable systems and define a weak

stability condition. We specify and implement the eventual α
partition-participant detector and also provide its correctness

proof in Section IV. We conclude the paper in Section V.

II. RELATED WORK

Distributed models that consider dynamic systems with a

stability condition (α processes) can be founded in [22],

[17], [19]. In [19], the model involves unreliable failure

detectors with α denoting the smallest number of stable

processes in the system. A stable process is a process

that is running and never suspected unless it fails. Every

process that fails is eventually permanently suspected by

every correct process. The model is designed for primary-

partition systems. In [22], the value of α plays the role

of the value (n − f) in static models, where n is the

total number of processes in the system and f is the

maximal number of crashed processes. Like in our work,

the authors state that a dynamic distributed system must

present some stability period in order to guarantee progress

and termination of the computation. However, the distributed

system is not partitionable. In [17], the authors extend the

QUERY-RESPONSE communication mechanism of [22] by

considering the mobility of nodes, and propose a failure

detector ♦SM that eventually detects the set of known and

stable processes: a process is known if it has joined the

system and has been identified by a stable process; a process

is stable if after having entered the system, it never departs.

The local value of α of a process p is computed as the

value of the neighborhood density of p minus the maximum

number of faulty processes in p’s neighborhood. Again, the

model in [17] is designed for primary-partition systems.

[5] considers sparse MANETs where the node density is

relatively low so that disconnections and network partitions

are common. In such a context, the end-to-end connectiv-

ity between nodes is a temporary feature that emerges at

arbitrary intervals of time. Among the set of processes S
in the system, a small group G is formed for the purpose

of reaching consensus. Among the n ≥ 3 nodes of G, at

most f processes (with 0 < f < n/2) can crash over the

lifetime of G. Nodes in S \G act as routers and cooperate

to discover and maintain the connectivity between nodes of

G. Consensus can be solved if a majority of operative nodes

exist for a long enough period of time. But, messages cannot

be lost during these stable periods and partitioning cannot be

permanent —i.e, the distributed system is a primary-partition

system.

In [29], the authors aim to characterize dynamic dis-

tributed systems and consider the infinite arrival model

with a maximum concurrency level b —i.e., this is called

the infinite arrival model with b-bounded concurrency [1].

They propose the specification of an oracle called HB∗ to

implement the Ω failure detector that eventually identifies

the unique leader in the system. HB∗ provides a list called

alive whose length is the value of the bounded concurrency

b containing processes deemed to be up in the system.

HB∗ embeds a stability property stating that eventually the

good processes take fixed positions inside the alive list.

However, even if the problem of network partitioning is

considered during perturbed periods, this work caters for the

eventual connectivity overlay [28] —i.e., eventually, there is

no partition. The model in [29] abstracts processes deployed

over WANs whereas our model abstracts processes deployed

over MANETs. Furthermore, the network graph in [29]

is fully connected, a property that is basically assumed

when considering that the network does not partition per-

manently [2], [3]. In contrast, we consider that the network

of mobile nodes is not fully connected and that it can

permanently partition —i.e., paths between mobile nodes

are dynamically built over time.

The notion of heartbeat failure detector HB was gener-

alized in [2] for partitionable networks. The module HB
outputs an array with one non-negative number for each

process of the system. The heartbeat sequence numbers of

the processes not in the same partition are bounded. Our

partition-participant detector is inspired by this work. But,

in [2], the system is static, the number of nodes of the system

is known, and nodes do neither move nor leave the system.

By analogy with the concept of partition-participant de-

tector, the notion of participant detector was introduced

in [13] for solving the problem of bootstrapping a MANET.

Participant detectors capture the minimal information that

a process must have about the other participant processes

to reach a consensus with unknown participants (CUP) in a

fault-free scenario. The participant detector module is used

for detecting the initially unknown set of processes Π in a

MANET. Like in our approach, both the identity and the

number of processes are initially unknown. [18] extended

the work in [13] and identified the minimal synchrony

assumption for solving fault-tolerant CUP (FT-CUP) and

uniform FT-CUP. However, both in [13] and [18], the authors

do not consider permanent partitioning of the network. The

model is designed for primary-partition systems where the

total number of processes is fixed and the network is always

connected. In our work, not only the system is dynamic

and partitionable, but the set of processes in the system is

unknown in advance and the network is not fully connected.

In a previous work [8], we have proposed an eventual

partition-participant detector using dynamic paths which

eventually detects the participant nodes of stable partitions

in MANETs. Liveness is only guaranteed in completely

stable partitions. In this paper, we extend the concept of

simple dynamic paths into SADDM paths which are more

suitable for MANETs and provide liveness properties even

if partitions are not completely stable. A SADDM path

combines the lossy property of a fair link3 [9] and the

timeliness property of an eventually timely link4 [4]. The

idea of the combination of the lossy property of a fair

link and the timeliness property of an eventually timely

link was inspired by [25] through the notion of ADD (Aver-

age Delayed/Dropped) link. SADDM paths are dynamically

built. With them, an infinite number of messages may be

lost or arbitrarily delayed, but some subset of messages not

too sparsely distributed in time is guaranteed to be received

in a timely manner.

[30], [21] characterize group mobility and predict par-

titioning in location-aware MANETs. [30] proposes a

velocity-based mobility model. The node velocities are as-

sumed to be known to the server which runs a data clustering

algorithm. As the authors argue, in real systems, another

mechanism is required to efficiently collect the velocities

from all the mobile nodes. This is a non trivial task since

networks can partition. In addition, node mobility is not the

only parameter that is responsible for network partitioning.

Other parameters such as node failures and disconnections

should also be considered. In [21], a node exchanges its

location and its speed to all its one-hop neighbors and

calculates the probability that a link will be broken based on

distances between nodes. As in [30], only the mobility of

nodes is considered. More generally, [30], [21] adopt a prob-

abilistic partition prediction/prevention approach whereas

our proposition is based on deterministic partition detection.

3If a message is sent from p to q an infinite number of times, and p and
q are not permanently unreachable from each other, then q receives m an
infinite number of times.

4There is a time after which all the messages that are sent are received
timely.

III. MODEL

In this section, we define processes that communicate

with each other by passing messages through wireless

communication links in Sections III-A and III-B. Then,

we distinguish different kinds of links, and define their

properties in Section III-C. We illustrate these properties

in Section III-D. Afterwards, we introduce the notions of

partition and partition-participant detector in Section III-E.

Finally, we introduce the stable condition and the stability

criterion that ensure progress in Sections III-F and III-G,

and present an example of a distributed system configuration

with stable partitions in Section III-H.

A. Processes

We consider a dynamic distributed system model made

up of mobile uniquely-identified nodes. We consider one

process per node executing programs by taking steps. Thus

the system consists of an infinite countable set of processes

Π = {. . . pi, pj , pk . . . }. Processes are also denoted p, q, r,

etc.

We consider the infinite arrival model with bounded

concurrency [20]: In any bounded period of time, only

finitely many nodes take steps; the total number of nodes in

a single run may grow to infinity as time passes; however,

each run has a maximum concurrency level that is finite but

unknown. Contrarily to static systems, in dynamic systems,

processes do not know Π, i.e., the processes in Π do not

necessarily know each other. A correct process never fails.

A faulty process fails by crashing (and as a consequence

leaves the system). Correct processes may leave and join

the system.

In order to simplify the presentation without loss of

generality, we assume the existence of a global clock which

is not accessible by the processes. We take the range T of

the clock’s tick to be the set of natural numbers N.

B. Links

We assume the MANET communication model in which

nodes do not send point-to-point messages but broadcast

messages that will be received by those nodes that are

in their transmission range. If a process q is within the

transmission range of a process p, we say that there is a link

between p and q, denoted p q. Links are unidirectional

and the network is not necessarily completely connected.

Messages are uniquely identified and there is no upper bound

on message transmission delays. We also assume that q
receives a message m from p at most once (no duplication)

and only if p previously broadcast m (no creation).

C. Fairness, Reachability and Timeliness

We distinguish three kinds of links: (1) eventually down,

(2) eventually up and (3) forever intermittently up. An

eventually up link eventually transports messages without

losing any of them. An eventually down link eventually stops

transporting messages. Finally, a forever intermittently up

link can lose messages it transports arbitrarily. In our model,

forever intermittently links are the root of the instability of

the system. They result in two processes being forever in-

termittently mutually reachable. In the worst case, no useful

computations can be terminated if two processes p and q are

not mutually reachable at those times at which they attempt

to communicate with each other. To avoid this bad scenario,

we assume the fairness property on communication links

between processes that are at least forever intermittently

reachable (including processes that are eventually forever

reachable). Similarly to [9], a fair link is defined as follows.

Definition 1. Fair link. A link p q is said to be fair if

p broadcasts a message m to q an infinite number of times

and q is correct, then q receives m from p an infinite number

of times.

Observe that eventually up links and forever intermittently

up links are both captured into fair links. Thus, in the sequel,

we do not distinguish them.

We denote a sequence of processes (p1p2 . . . pn), in which

the links p1 p2, . . . , pn−1 pn are fair, as a fair path

from p1 to pn, denoted FAIR(p1p2 . . . pn).
By definition, a fair link can lose messages due to

communication failures. The reachability relation captures

these communication failures. With fair links, reachability

is defined similarly to [2] and as suggested in [24].

Definition 2. Reachability. Given two processes p and q, q
is reachable from p if and only if there is a fair path from

p to q. We denote this relation of reachability of q from p

as p ⇁ q, that is p ⇁ q
def
≡ FAIR(p . . . q).

If process q is reachable from process p, and vice-versa,

we write p ⇌ q. We also say that p and q are mutually

reachable. Notice that the definition of fair link is time

independent and that our definition of reachability, contrary

to the definition of [9], is also time independent.

A link that intermittently loses messages may satisfy the

fairness property. However, it is worth pointing out that fair

links may suffer from arbitrary delays and/or losses such

that there exists no “finite stable period” in which processes

can communicate “fast enough” in order to compute and

terminate a useful computation during that period. Thus, we

make the additional assumption that follows. We define the

concept of SADDM (Simple Average Delayed/Dropped of a

Message) links5 and SADDM paths where communication

delays between two processes are bounded during stable

periods. A SADDM link allows messages to be lost or

arbitrarily delayed, but guarantees that some subset of the

messages sent on the link will be received in a timely

manner. In addition, such messages are not too sparsely

5This concept of SADDM link is inspired by [25] through the notion of
ADD link (named channel in that paper).

p

sl

y

x

o

r

q

abc abc

z

SADDM link non SADDM linktransmission range of z

v

u w

v

Figure 1. SADDM links and SADDM paths

distributed in time. A SADDM link is defined as follows.

Definition 3. SADDM link. Let β and δ be two constants,

and [t1, t2] be a finite time interval during which p broad-

casts a message m to q at least β times. A link p q is

said to be a SADDM link if q receives m at least once by

time t1 + δ, with δ > t2 − t1.

We now define a SADDM path as a sequence of SADDM

links as follows.

Definition 4. SADDM path. A sequence of processes

(p1 . . . pn) is a SADDM path if ∀i ∈ [1, n − 1] the link

pi pi+1 is SADDM and i 6= j =⇒ pi 6= pj .

This definition means that there exists a constant c such

that, for each finite time interval φ = [τ1, τ2] during which p1
broadcasts a message m to pn at least βc times, pn receives

at least one of these messages through SADDM(p1p2 . . . pn) by

time τ1 + βc + cδ, with βc + cδ > τ2 − τ1. The constants

β and δ are the same as the ones used in the definition of

a SADDM link. Since the concurrency is bounded, βc + cδ
is bounded. A SADDM path from process p to process q
is denoted by SADDM(p . . . q)φ with respect to an interval φ.

The subscript interval φ on the path is omitted when it is

unambigous.

D. Illustrative example of SADDM paths

The notions of SADDM links and SADDM paths are

presented in Figure 1. Dashed circles are used to represent

the transmission range of processes. Solid arrows correspond

to SADDM links, otherwise arrows are dashed. Processes u
and w can communicate with each other in a timely manner

since there exist SADDM links from u to w and from w
to u. This is the same for processes x and y. In addition,

processes p, q, r, s and l can communicate with each other in

a timely manner since there exists a SADDM path between

any two of them. This is also the case for the set of processes

{a, b, c}. Process u cannot communicate with any process in

{p, q, r, s, l} since there is no SADDM path from a process

in this set to u. This is also the case for processes o and v.

E. Partition and Partition-Participant Detectors

The network is partitionable. Several disjoint sub-sets of

processes may co-exist such that the processes in each sub-

set are mutually reachable and processes in two sub-sets

are not mutually reachable. ⇌ is an equivalence relation

and partitions are defined by equivalence classes of this

relation. The partition of process p is denoted PARTp =
{q ∈ Π|p⇌ q}.

In order to ensure that a useful computation can progress

and terminate, a partition has to satisfy some form of

eventual stability. Processes in partitions that present some

eventual stability are called stable processes. A process is

stable in the context of some partition. A partition pattern

is a function P : Π×T → 2Π, where P(p, t) denotes the set

of processes that p believes to be in its partition at time t. A

process can join and leave a partition arbitrarily. Thus, the

function P is not necessarily monotonic in time. Similarly

to failure detectors [14], partition-participant detectors are

distributed oracles associated with each process. The failure

detector proposed in [14] is for primary-partition systems in

which every pair of processes in the fixed and known set Π is

connected by a reliable communication channel. The failure

detector is used to state which processes are in Π, that is

which processes are correct: A process is correct if it is not

suspected to have crashed by any process in a failure pattern.

Differently to failure detectors, in partitionable systems, due

to processes entering and leaving a partition, and since Π is

neither fixed nor known in advance, the specification of a

partition-participant detector has to be based on the ability

of processes in a partition to communicate with each other

rather than individual processes being correct or crashed.

F. Stability Property and Stability Condition

In primary-partition systems made up of |Π| processes, if

there exists a majority of processes that can communicate

with each other during a long enough period of time, then the

system is said to be stable for that period [12]. By analogy,

in partitionable systems, a partition becomes stable during

a period when all the correct processes in that partition can

communicate with each other during that period. So far, we

have not defined such a period. To do so, as in [22], let

us define a time interval ∆ = [tb, te] as being a period. tb
and te are defined by the application processes: tb is the

beginning time of the application whereas te is its ending

time. Practically speaking, the execution of the application

may also be divided into phases, the phases then becoming

the periods. In every stable period ∆, stable processes can

communicate through SADDM paths. The stable partition

associated with ∆ is denoted by ∆PARTp, and is defined

as follows.

Definition 5. Stable Partition Per Period. The stable parti-

tion per period ∆ of process p is the set of all the correct

processes q, denoted ∆PARTp, such that there exist at least

a SADDM path from p to q and a SADDM path from q to

p.

To simplify the presentation, we consider only one period

in the rest of the paper. During a period, the stable property

is a property that remains true once it holds —i.e., it holds

after the stabilization time STp which is unknown to the

processes. A stable partition associated to some process p is

then denoted by ♦PARTp which is defined as follows.

Definition 6. Stable Partition. The stable partition of process

p is the set of correct processes q, denoted ♦PARTp, such

that there exists a time STp after which SADDM(p . . . q) and

SADDM(q . . . p) exist.

The validity period of the definition of a stable partition

is the duration of an execution —i.e., in practice, a process

is stable if the SADDM paths exist long enough for the

algorithm to terminate. Then, we define the concept of a

stable process in the context of a stable partition as follows.

Definition 7. Stable Process. For any two correct processes

p and q, if there exists a time t after which process q ∈
♦PARTp, then q is stable in ♦PARTp.

In the sequel of the paper, by a short abuse of language, q
of the previous definition will be said to be a stable process,

without mentioning the name of the partition, such that we

will say that q is stable.

A partition may never be completely stable —i.e.,

♦PARTp may never exist. Such a behavior can prevent

the progress of processes in a partition, and in the worst

case, can block the system. The issue is then to weaken the

stability property and allow useful computations to terminate

with safety guarantees. Since stable and unstable nodes can

coexist in the context of a partition, it is desirable to avoid

unstable nodes from preventing the progress of stable ones.

So, useful computations should be executed only by a set

of α processes among the stable processes. The intuition

is that α expresses the trade-off between agreement and

progress. It is up to the application to provide an appropriate

value of α through another service. α is a parameter of the

partition-participant detector module. It is the responsibility

of the application to choose a suitable value of α —i.e.,

the minimum number of participants. Thus, we define the

stability condition associated to a process p as follows.

Definition 8. Stability Condition. |♦PARTp| ≥ αp.

Stable processes are forever mutually reachable after the

minimal stabilization time STp. Unfortunately, processes

cannot know STp. Then, since all the nodes have different

battery power, bandwidth capability, mobility behavior, etc.,

only a sub-set of mutually reachable nodes is selected to

take part to the computation. The participating members are

selected among mutually reachable nodes by some stability

criterion to form a partition that may possibly satisfy the

stability condition. We define in the next section a stability

criterion for selecting the nodes that are detected to be

“enough stable”.

G. Stability Criterion

A stability criterion is a parameter that is used to de-

termine which nodes are the most stable ones, the ones that

may be “marked” as stable. We call this kind of set of nodes

a tentative set. Application designers may choose different

stability criteria per application execution. Furthemore, the

choice of the appropriate parameter will be influenced by

the needs of the application.

In this paper, we choose the time-based stability criterion

hbqp ≥ thresholdp, with hbqp being a function that depends

on the number of heartbeat messages received by p from q
(hbqp increases if q is present in p’s partition and decreases

otherwise), and with thresholdp ≥ 1. q is marked as stable

by p if hbqp ≥ thresholdp, and is removed from p’s tentative

set if hbqp = 0 —i.e., p does not receive any heartbeat from

q anymore. With this stability criterion, we can eliminate

a node from participating if it disappears while tolerating

sporadic disconnections. In addition, heartbeat counters are

also used to state whether processes are currently mutually

reachable.

H. Illustrative example of stable partitions

In Figure 2, we complement Figure 1 to illustrate the

definitions of stable process, stability condition, and stable

partition. Black disks represent unstable nodes whereas

white disks depict stable processes. Each stable partition is

enclosed by a solid circle. There are eventually fives stable

partitions ♦PARTo,♦PARTp,♦PARTw,♦PARTa and

♦PARTx, with their value of α equals to 1, 4, 2, 3 and 2,

respectively. Processes can move inside the stable partition.

Remark that stable partitions are not necessarily isolated

from other nodes of the network: All the links from any

process in a stable partition to any process outside the

partition are not necessarily down. For instance, process u
in ♦PARTw can receive messages broadcast by processes

in ♦PARTp in a timely manner through some SADDM

paths, but processes in ♦PARTp cannot receive messages

broadcast by u in a timely manner since there is no SADDM

path from any process in ♦PARTw to q. Therefore, u is

unstable in the context of ♦PARTp, but is stable in the

context of ♦PARTw.

p

sl

y

x

o

r

q

abc abc

stable partition stable process unstable process
(e.g. mobile node)

z

SADDM link non SADDM linktransmission range of z

v

u w

♦PARTo

α = 1

♦PARTp

α = 4

♦PARTw

α = 2

♦PARTx

α = 2

♦PARTa

α = 3

Figure 2. Stable partitions and their stability condition

IV. EVENTUAL α PARTITION-PARTICIPANT DETECTOR

In this section, we develop the specification and give

an implementation of the eventual α partition-participant

detector.

A. Specification

An eventual α partition-participant detector ♦αPPD
is a distributed oracle that eventually detects the set of

stable processes α-Set in a partition. The processes in α-

Set are chosen according to the stability criterion hbqp ≥
thresholdp. ♦αPPD also eventually elects a unique leader

among α-Set. α-Set at p eventually stops changing and a

unique leader is eventually elected but there is no knowledge

of when this happens. Several processes may think they are

leaders. However, when the stability condition |α-Set| ≥ α
holds after some stabilization time (or for a long enough

period of time), a unique leader may be elected. ♦αPPD
satisfies the following properties:

• P1: Eventual α-Set stability: There is a time after which

any two stable processes in α-Set have the same α-Set.

• P2: Eventual accuracy leadership: There is a time after

which all the stable processes in α-Set elect a stable

process in α-Set as the leader.

• P3: Eventual agreement leadership: There is a time

after which no two stable processes in α-Set elect a

different stable process as the leader.

B. Description of the Algorithm

Notations. Processes communicate by exchanging mes-

sages. There are two types of messages: HEARTBEAT and

ALPHASET. A HEARTBEAT message contains a path —i.e.,

it is basically a sequence of processes that have seen the mes-

sage. The symbol ◦ is used as the operator for concatenating

two paths. An ALPHASET message carries information such

as the identity of a potential leader and its α-Set. Messages

are denoted by 〈TYPE | attribute1, attribute2...〉.

Description. Algorithm 1 implements ♦αPPD for pro-

cess p. The algorithm is based on the periodic exchange

of HEARTBEAT messages to identify the current processes

that are mutually reachable. Each process uses its local

stability criterion to determine which processes are the most

stable ones —i.e., the ones that have exchanged the largest

number of heartbeats. ALPHASET messages are broadcast by

processes that believe themself to be leaders. But, eventually

only the “true” leader process with the highest value of α
keeps broadcasting ALPHASET messages.

The local variables of Algorithm 1 are initialized in phase

init (Lines 3–11):

– αp (Line 3) is the value of the application requirement

on the minimum number of stable processes.

– αSetp (Line 4) is the set of processes to be considered

as stable by p. It contains only p at the initialization

time.

– thresholdp (Line 5) is the threshold value of the

time-based stability criterion used by all the processes

as described in Section III-G. The proposed stability

criterion makes use of heartbeat counters.

– maxhbp (Line 6) is the maximal value that a heartbeat

counter can reach so that the heartbeat counter does

not increase indefinitely and the detection time of a

leave operation is not proportional to the duration of

the presence of the process in the partition. Processes

can have different values of maxhb and threshold.

– The timers parttimer (Line 7) and proctimerqp (Line 8)

delimit two kinds of time periods. parttimer is used

for checking the stability condition: At the end of

a period of duration parttimeout, process p checks

that all the processes in αSetp can still be considered

as stable and verifies the condition |αSetp| ≥ αp

(Line 21). During that period, proctimerqp with its

associated timeout duration proctimeoutqp is used to

count heartbeats and assess whether p and q are

mutually reachable (Lines 42–53).

– mreachablep (Line 9) is a set of tuples (q, αq) where

q is a process that p believes to be in its partition, that

is p⇌ q.

– previousp (Line 10) is the previous value of

mreachablep.

– tentativep (Line 11) is a set of tuples

(process, α, heartbeat nb) containing the most

stable processes according to p’s local stability

criterion.

Despite the fact that processes may initially have different

values of α and αSet, the objective of the algorithm is

threefold: (1) eventually all the processes in αSetp have

the same value αSetp, (2) the value of αSetp is eventually

αSetl with l being the leader among αSetp, and thus (3)

eventually all the processes in αSetp elect the same leader

l ∈ αSetp. αSetp is computed as the set of processes q in

tentativep for which αq ≤ αp. αSetp serves to compute

the output of the algorithm (Line 70). Note that, for all the

processes u and v, αu and αv do not have to be equal.

A process q takes part to the construction of αSetp if

|αSetp| > αq . The idea is that “potential” leader processes

try to convince other processes in their stable partition to

agree with their value of α-Set. But, only the stable process

with the highest value of α eventually succeeds.

We now describe the five main tasks that the algorithm

executes. In Task 1, process p repeatedly broadcasts a

HEARTBEAT message with a bootstrap path (p, αp) —i.e.,

〈HEARTBEAT | (p, αp)〉, to announce that it is alive and

present.

In Task 2, upon expiration of parttimer, p checks the set of

processes that p believes to be stable in its partition. If there

are one or more processes in αSetp which are no more stable

(αSetp 6⊆ tentativep, Line 21) or if the stability condition

is not satisfied (|αSetp| < αp), then p re-computes αSetp
(Line 22) as the set of processes having reached a given level

of stability (hbqp ≥ thresholdp). If the stability condition is

reached (|αSetp| ≥ αp, Line 23) and if p believes itself to

be the leader (Line 24), then p tries to convince the other

processes in its α-Set to agree on its value of αSetp by

broadcasting a message 〈ALPHASET | p, αSetp〉 (Line 25).

Otherwise, p increments its timer value parttimeout. Finally,

p prepares itself for the next execution of Task 2 (Line 28–

29).

In Task 3, upon the reception of the message

〈ALPHASET | q, αSetq〉, p verifies if (1) p and q are mutually

reachable, and (2) q is the leader of p (Line 34). If this is the

case, p adopts the value of αSetq for its local variable αSetp
(Line 35). As a consequence, p and q both believe that there

exist more than αq ≥ αp stable processes in p’s and q’s parti-

tion. p re-broadcasts the message 〈HEARTBEAT | q, αSetq〉
so that the wave can reach the other processes in the partition

(Line 36).

In Task 4, upon the reception of a message

〈HEARTBEAT | path〉, if path begins with the tuple

(p, αp), then p knows that one of its messages

〈HEARTBEAT | (p, αp)〉 has passed through a cycle

—i.e., each node q in the tuple that appears after (p, αp)
in path is mutually reachable from p (Lines 42). When

p sees q for the first time (Line 43), p creates proctimerqp
and its corresponding timeout value proctimeoutqp, and sets

proctimerqp to proctimeoutqp (Line 53). proctimerqp is reset to

proctimeoutqp every time a message 〈HEARTBEAT | path〉
has gone through a cycle from p. If q was previously

reachable from p (Line 48), and is not already taking part to

the construction of αSetp ((q, αq) /∈ tentativep, Line 49),

then p starts considering q as a potential stable process and

adds q to tentativep with a heartbeat counter assigned to 1
(Line 50). If q already takes part to the construction of

αSetp ((q, αq, hb
q
p) ∈ tentativep, Line 51), p increments

q’s heartbeat counter —i.e., q is getting “more” stable

according to the stability criterion (Line 52). If path does

not begin with (p, αp) and if p does not appear in path or

appears just once, p appends (p, αp) to path and broadcasts

a HEARTBEAT message with newpath = path ◦ (p, αp)
(Lines 55–56). Observe that, as described in [2], p must

forward the message even if it already appears once in path
since it might be the case that there exists a cycle between

q and r where p belongs both to the path from q to r and

to the path from r to q.

In Task 5, upon expiration of proctimerqp, p decrements q’s

heartbeat counter —i.e., q is getting “less stable” (Line 63).

When q’s heartbeat counter reaches zero, q is removed

from tentativep —i.e., q can no more be considered as

a stable process and should no more participate to the

construction of αSetp (Line 61). proctimerqp expires means

that the value of proctimeoutqp is not enough for a message

〈HEARTBEAT | path〉 to travel along a cycle (including q)

from p. Therefore, proctimeoutqp is incremented. Observe

that, in order to exclude from αSetp processes that are

too unstable, proctimeoutqp can equal to, but cannot exceed

parttimeout (Line 64).

Finally, by querying its local partition-participant detector

(Lines 68–71), a client application obtains the identifier of

the current leader l in the partition and the set of stable

processes, that is αSetp = αSetl.

C. Proof of Correctness of the Implementation

We now show that Algorithm 1 implements ♦αPPD.

Lemma 1. Let p1 be a stable process and pn be a pro-

cess in ♦PARTp1
such that there exists a SADDM path

SADDM(p1p2 . . . pn) from p1 to pn. Eventually one of the βn−1

messages 〈HEARTBEAT | (p1, αp1
)〉 broadcast by p1 reaches

pn in at most βn−1η + (n− 1)δ seconds.

Proof: Let p1 be a stable process and pn be a

process in ♦PARTp1
such that there exists a SADDM

path SADDM(p1p2 . . . pn) from p1 to pn. Let Σ =
SADDM(p1p2 . . . pn). To simplify the presentation of the proof,

a path will be regarded as a sequence of processes —i.e.,

we don’t consider the value of α associated to each process

that is present in the variable path of Algorithm 1. By

definition of SADDM path, each process pi, for i ∈ [1, n],
appears at most once in Σ. For j ∈ [1, n], let Pj =
SADDM(pi)i∈[1,j]. To prove the lemma, we show by induction

that ∀j ∈ [1, n − 1], at least one of the βj−1 messages

Algorithm 1 Implementation of ♦αPPD for process p

1 init():
2 Begin

3 αp ← n with n ≥ 1; {Minimum number of stable processes required by the application}
4 αSetp ← {(p, αp)}; {Stable processes with their value of α}
5 thresholdp ← c ; {Minimal value for being stable according to the stability criterion}
6 maxhbp ← hb with hb ≥ thresholdp; {Maximum value that a heartbeat counter can have}
7 parttimeout← t ≥ 1; set parttimer to parttimeout; {Timer used for checking the stability condition}
8 proctimeout ← {}; proctimer ← {}; {Sets of pairs (process, timeout) and (process, timer), respectively}
9 mreachablep ← {(p, αp)}; {Mutually reachable processes with their respective value of α}
10 previousp ← {(p, αp)}; {Previous value of mreachablep}
11 tentativep ← {(p, αp,maxhbp)}; {Set of tuples (process, α, heartbeat nb) for constituting αSetp}
12 End

13

14 Task T1: every η seconds {Broadcasting heartbeats}
15 Begin

16 broadcastnbg(〈HEARTBEAT | (p, αp)〉);
17 End

18

19 Task T2: upon expiration of parttimer {Checking the stability of an α-Set}
20 Begin

21 If (αSetp 6⊆ tentativep ∨ |αSetp| < αp) then
22 αSetp ← {(q, αq)|(q, αq , hb

q
p) ∈ tentativep ∧ hb

q
p ≥ thresholdp};

23 If |αSetp| ≥ αp then

24 If p = r : (r, αr) ∈ αSetp ∧ [∀(s, αs) ∈ αSetp, αr > αs ∨ (αr = αs ∧ r > s)] then
25 broadcastnbg(〈ALPHASET | p, αSetp〉);
26 Else

27 parttimeout← parttimeout+ 1; {There are not enough stable processes, thus increase the detection period}
28 previousp ← mreachablep;
29 set parttimer to parttimeout;
30 End

31

32 Task T3: upon reception of 〈ALPHASET | q, αSetq〉 {Verifying the leader’s α-Set}
33 Begin

34 If αSetp ⊆ αSetq then

35 αSetp ← αSetq ;
36 broadcastnbg(〈ALPHASET | q, αSetq〉);
37 End

38

39 Task T4: upon reception of 〈HEARTBEAT | path〉 {Detecting mutually reachable processes}
40 Begin

41 If first tuple in path is (p, ∗) then
42 For all (q, αq) : (q, αq) appears after the first tuple in path ∧ q 6= p do

43 If (q, ∗) 6∈ mreachablep then

44 mreachablep ← mreachablep \ {(q, ∗)} ∪ {(q, αq)};
45 proctimer ← proctimer ∪ {(q,proctimer

q
p);} {Dynamic creation of timer and timeout for new process q}

46 proctimeout
q
p ← 1; proctimeout← proctimeout ∪ {(q,proc timeout

q
p)};

47 Else

48 If (q, αq) ∈ previousp then

49 If (q, αq , hb
q
p) 6∈ tentativep then

50 tentativep ← tentativep ∪ {(q, αq , 1)};
51 Else

52 tentativep ← tentativep \ {(q, ∗, ∗)} ∪ {(q, αq ,max(hbqp+1,maxhbp)};
53 set proctimer

q
p to proctimeout

q
p; {Resetting timer when receiving HEARTBEAT}

54 Else

55 If (p, αp) appears at most once in path then {p may belong to SADDM(q . . . r) and SADDM(r . . . q)}
56 broadcastnbg(〈HEARTBEAT | path ◦ (p, αp)〉);
57 End

58

59 Task T5: upon expiration of proctimer
q
p {Computing heartbeats per period}

60 Begin

61 If hb
p
q = 1 : (q, ∗, hbpq) ∈ tentativep then tentativep ← tentativep \ {(q, ∗, ∗)};

62 Else

63 tentativep ← tentativep \ {(q, ∗, ∗)} ∪ {(q, ∗, hb
q
p−1)};

64 proctimeout
q
p ← min(proctimeout

q
p + 1,part timeout);

65 proctimeout← proctimeout \ {(q, ∗)} ∪ {(q,proc timeout
q
p)};

66 End

67

68 Procedure participants()
69 Begin

70 Return (l, αSetp) : (l, αl) ∈ αSetp ∧ [∀(r, αr) ∈ αSetp, αl > αr ∨ (αl = αr ∧ l > r)];
71 End

〈HEARTBEAT | Pj−1〉 originally broadcast by p1 reaches pj
in at most βj−1η + (j − 1)δ seconds.

For the base case (j = 1), by Task T1, p1 perma-

nently broadcasts 〈HEARTBEAT | P1〉 every η seconds to

all its neighbours, and thus to p2. As the path (p1p2)
is a SADDM path, then at least one of the β messages

broadcast by p1 is received by p2 in at most βη + δ
seconds. This shows the base case. For the induction step,

let j ≤ n − 1 and assume that at least one of the βj−1

messages 〈HEARTBEAT | Pj−1〉 originally broadcast by p1
is received by pj in at most βj−1η + (j − 1)δ seconds.

Since the path (pjpj+1) is a SADDM path, pj+1 receives at

least one of the ββj−1 = βj messages 〈HEARTBEAT | P1〉
in at most βjη + jδ seconds. Moreover, pj+2 appears at

most once in Pj+1 and pj+2 is a neighbour of pj+1. So,

each time pj+1 receives 〈HEARTBEAT | Pj〉, it re-broadcasts

〈HEARTBEAT | Pj+1〉 to pj+2 by appending itself to Pj

(Line 56). Therefore, since (pj+1pj+2) is a SADDM path,

pj+2 receives at least one of the ββj = βj+1 messages

〈HEARTBEAT | Pj+1〉 originally broadcast by p1 in at most

βj+1η + (j + 1)δ seconds. This shows the induction step.

Therefore, we conclude that eventually at least one of the

βn−1 messages 〈HEARTBEAT | P1〉 broadcast by p1 reaches

pn in at most βn−1η + (n− 1)δ seconds.

Lemma 2. Let p be a stable process. There is a time after

which hbqp = maxhbp and hbpq = maxhbq remain true,

∀q ∈ ♦PARTp.

Proof: Let p be a stable process and q be a process

in ♦PARTp. Let Σ1 = SADDM(pi)i∈[1,k] be a SADDM path

from p to q, and Σ2 = SADDM(pi)i∈[k,n] be a SADDM path

from q to p. We consider now the path Σ = SADDM(pi)i∈[1,n]

which is the concatenation of Σ1 and Σ2 —i.e., Σ = Σ1 ◦
Σ2.

By definition of SADDM path, ∀i ∈ [1, k] and ∀i ∈ [k, n],
each process pi appears at most once in Σ1 and Σ2,

respectively, and at most twice in Σ. By construction, p1 =
pn = p, and pk = q. For j ∈ [1, n], let Pj = SADDM(pi)i∈[1,j].

To prove that hbqp = maxhbp, we can use the Lemma 1.

The proof of hbpq = maxhbq can be done in the same

way by considering the SADDM path Σ′ equals to Σ1′

concatenated with Σ2′, where Σ1′ = SADDM(pi)i∈[k,n] and

Σ2′ = SADDM(pi)i∈[1,k], from q to p. Since the two proofs

are quite similar, only one of them (hbqp = maxhbp) is

described here.

The proof of hbqp = maxhbp is as follows. From

Lemma 1, eventually at least one of the βn−1 messages

〈HEARTBEAT | Pn−1〉 originally broadcast by p1 reaches pn
in at most βn−1η + (n− 1)δ seconds. When pn receives a

message HEARTBEAT, ∀i ∈ [2, n−1], proctimerpi

pn
is reset to

proctimeoutpi

pn
(Line 53) such that proctimerpi

pn
does not ex-

pire. Otherwise, proctimeoutpi

pn
eventually gets incremented

over the value βn−1η+(n−1)δ. Hence, eventually p always

receives heartbeat messages 〈HEARTBEAT | Pn−1〉 with p

being the first element of the path Pn−1 before proctimerqp
expires. Since q appears after p in Pn−1, (q, ∗) ∈ previousp
(Line 48) and (q, ∗, ∗) ∈ tentativep (Lines 49–52), p
increments hbqpn

up to maxhbp.

Lemma 3. Let p be a stable process. There is a time after

which if q ∈ αSetp permanently, then q ∈ ♦PARTp.

Proof: Let p be a stable process. We show by contra-

position that for every process q 6∈ ♦PARTp there does

not exist a time after which q ∈ αSetp permanently. From

Lemma 2, for every process q 6∈ ♦PARTp, there does not

exist a time after which hbqp = maxhbp and hbpq = maxhbq
hold, so that Lines 61 and 63 of Algorithm 1 do not stop

being executed. Therefore, every process q 6∈ ♦PARTp that

is added to the set tentativep keeps being removed from it.

αSetp is computed as the set of the processes in tentativep
(Line 22). Hence, there does not exist a time after which

q ∈ αSetp permanently.

Lemma 4. Let p be a stable process and q be a process in

♦PARTp. There is a time after which αSetp ⊆ tentativep
remains true.

Proof: From Lemma 3, q ∈ αSetp permanently means

that q ∈ ♦PARTp. Consider the time after which hbqp =
maxhbp. Thanks to Lemma 2, such a time exists after which

q is added to tentativep and not removed afterwards. Since

the set αSetp is computed from the set tentativep, αSetp ⊆
tentativep eventually remains true.

Lemma 5. Let p be a stable process such that αp > αq ∨
(αp = αq ∧ p > q), ∀q ∈ ♦PARTp. There is a time after

which p is the only process in αSetp that broadcasts some

messages ALPHASET.

Proof: Let p be a stable process such that αp > αq ∨
(αp = αq ∧ p > q), ∀q ∈ ♦PARTp. By definition of the

stability condition —i.e., |αSetp| ≥ α— and from Lemma 4,

the condition at Line 23 is always true. Hence, p periodically

broadcasts messages 〈ALPHASET | p, αSetp〉. We can show

by contradiction that none of the processes (q 6= p) ∈ αSetp
eventually keeps broadcasting ALPHASET messages. Let us

suppose that there exists a process q in αSetp such that

αp > αq ∨ (αp = αq ∧ p > q), and there does not exist a

time after which q stops broadcasting ALPHASET messages.

By Task T2, q broadcasts ALPHASET messages when the

conditions at Lines 21, 23 and 24 hold, that is αSetq 6⊆
tentativeq . Since p ∈ tentativeq and αp > αq ∨ (αp =
αq ∧ p > q), the condition αSetq 6⊆ tentativeq can be

true only if hbpq < thresholdq ≤ maxhbq , leading to a

contradiction with Lemma 2.

Lemma 6. Let p be a stable process such that αp > αq ∨
(αp = αq ∧ p > q), ∀q ∈ ♦PARTp. There is a time after

which αSetq = αSetp remains true.

Proof: Let p be a stable process such that αp > αq ∨

(αp = αq ∧ p > q), ∀q ∈ ♦PARTp. By Lemma 5, there

is a time after which p is the only process that periodically

broadcasts ALPHASET messages. By Task T3, every time q
receives the message 〈ALPHASET | p, αSetp〉, q adopts the

value of αSetp for its local variable αSetq since αSetq ⊆
αSetp (thanks to Lemma 2 and to αp > αq ∨ (αp = αq ∧
p > q), ∀q ∈ ♦PARTp). Moreover, thanks to Lemma 4,

αSetq ⊆ tentativeq is eventually always true. Therefore, q
eventually keeps its set αSetq unchanged. Hence, there is a

time after which αSetq = αSetp remains true.

Lemma 7. Let p be a stable process. There is a time after

which ♦αPPDq at node q always outputs (l, αSetl) such

that (l, αl) ∈ αSetp ∧ [∀(r, αr) ∈ αSetp, αl > αr ∨ (αl =
αr ∧ l > r)].

Proof: Let p be a stable process. By Lemma 6, there is

a time after which αSetq = αSetp remains true. Since the

leadership function is the same for all the processes, there

is a time after which ♦αPPDq at every process q ∈ αSetp
outputs (l, αSetl) such that (l, αl) ∈ αSetp ∧ [∀(r, αr) ∈
αSetp, αl > αr ∨ (αl = αr ∧ l > r)].

Theorem 1. ♦αPPD satisfies properties P1, P2, and P3.

Proof: Consider a stable process p such that αp >
αq ∨ (αp = αq ∧p > q), ∀q ∈ αSetp. From Lemma 6, there

is a time after which αSetq = αSetp remains true. Hence,

eventually all the processes in αSetp have the same set

αSet = αSetp. This satisfies P2. From Lemma 7, for each

stable process q in αSetp, the module ♦αPPDq outputs

p. So, p is the leader that is eventually elected by all the

stable processes in αSet. This satisfies P3. By properties P2

and P3, P1 is trivially satisfied.

V. CONCLUSION

In this paper, we propose a model that characterizes

the dynamic behavior of stable partitions in MANETs. To

this means, we have defined a weak stability condition

based upon the application-dependent parameter α. α is

a threshold value used to capture the liveness property of

a partition. In each partition, at least α stable processes

execute distributed computations. In order to be part of

this set, nodes are selected by using the stability criterion

hbqp ≥ thresholdp: A node is removed from participating

if it disappears while tolerating sporadic disconnections.

In addition, we have presented an eventual α partition-

participant detector ♦αPDD whose role is to detect the

stability condition and to guarantee that eventually all the

processes in an α-Set elect the same leader.

Using ♦αPDD as a building block, we are specifying

and designing a group membership service for partionable

networks over MANETs. We plan to evaluate by simulation

♦αPDD using different mobility models. We also want to

study other stability criteria that may be elicited [16].

ACKNOWLEDGMENTS

We are grateful to Miguel Correia, the EDCC-2012 PC

Chair, for his accompaniment in the review process and to

anonymous reviewers for their comments which helped us

to improve this paper.

REFERENCES

[1] M. K. Aguilera, “A pleasant stroll through the land of
infinitely many creatures,” SIGACT News, vol. 35, no. 2, pp.
36–59, 2004.

[2] M. K. Aguilera, W. Chen, and S. Toueg, “Using the Heartbeat
Failure Detector for Quiescent Reliable Communication and
Consensus in Partitionable Networks,” Theoretical Computer
Science, vol. 220, no. 1, pp. 3–30, Jun. 1999.

[3] ——, “On Quiescent Reliable Communication,” SIAM Jour-
nal of Computing, vol. 29, no. 6, pp. 2040–2073, Apr. 2000.

[4] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg, “On implementing omega with weak reliability and
synchrony assumptions,” in Proceedings of the 22nd ACM
Symposium on Principles of Distributing Computing, Boston,
Massachusetts, USA, 2003, pp. 306–314.

[5] K. Alekeish and P. Ezhilchelvan, “Consensus in Sparse,
Mobile Ad Hoc Networks,” IEEE Transactions on Parallel
and Distributed Systems, vol. 23, no. 3, pp. 467–474, Jun.
2011.

[6] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg, “On
the Formal Specification of Group Membership Services,”
Department of Computer Science, Cornell University, Ithaca,
New-York (USA), Tech. Rep. TR 95-1534, Aug. 1995.

[7] T. Anker, D. Dolev, and I. Keidar, “Fault tolerant video on
demand services,” in Proceedings of 19th IEEE International
Conference on Distributed Computing Systems, Austin, TX ,
USA, 1999, pp. 244–252.

[8] L. Arantes, P. Sens, G. Thomas, D. Conan, and L. Lim, “Parti-
tion Participant Detector with Dynamic Paths in MANETs,”
in Proceedings of 9th IEEE International Symposium on
Network Computing and Applications, Cambridge, MA, USA,
Jul. 2010.

[9] O. Babaoǧlu, R. Davoli, and A. Montresor, “Group Com-
munication in Partitionable Systems: Specification and Algo-
rithms,” IEEE Transactions on Software Engineering, vol. 27,
no. 4, pp. 308–336, Apr. 2001.

[10] O. Babaoğlu, R. Davoli, A. Montresor, and R. Segala, “Sys-
tem support for partition-aware network applications,” ACM
SIGOPS Operating Systems Review, vol. 32, pp. 41–56,
January 1998.

[11] K. Birman, R. Friedman, M. Hayden, and I. Rhee, “Mid-
dleware support for distributed multimedia and collaborative
computing,” Software: Practice and Experience, vol. 29,
no. 14, pp. 1285–1312, 1999.

[12] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui, “Decon-
structing paxos,” ACM SIGACT News Distributed Computing
Column, vol. 34, no. 1, pp. 47–67, Mar. 2003.

[13] D. Cavin, Y. Sasson, and A. Schiper, “Consensus with Un-
known Participants or Fundamental Self-Organization,” in
Proceedings of the 3rd International Conference on AD-
HOC Networks & Wireless, ser. Lecture Notes in Computer
Science, no. 3158. Vancouver, British Columbia, Canada:
Springer-Verlag, Jul. 2004, pp. 135–148.

[14] T. Chandra and S. Toueg, “Unreliable Failure Detectors for
Reliable Distributed Systems,” Journal of the ACM, vol. 43,
no. 2, pp. 225–267, Mar. 1996.

[15] G. Chockler, I. Keidar, and R. Vitenberg, “Group Com-
munication Specifications: A Comprehensive Study,” ACM
Computing Surveys, vol. 33, no. 4, pp. 427–469, Dec. 2001.

[16] J. C. Garcı́a, S. Beyer, and P. Galdámez, “A stability criteria
membership protocol for ad hoc networks,” in Proceedings
of the Confederated International Conferences, CoopIS, DOA,
IS, and ODBASE 2009 on On the Move to Meaningful Internet
Systems. Vilamoura, Portugal: Springer-Verlag, 2009, pp.
690–707.

[17] F. Greve, P. Sens, L. Arantes, and V. Simon, “A failure
detector for wireless networks with unknown membership,” in
Proceedings of the 17th international conference on Parallel
processing, Bordeaux, France, 2011, pp. 27–38.

[18] F. Greve and S. Tixeuil, “Knowledge connectivity vs. syn-
chrony requirements for fault-tolerant agreement in unknown
networks,” in Proceedings of the 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Net-
works, 2007, pp. 82–91.

[19] J.-F. Hermant and G. Le Lann, “Fast Asynchronous Uniform
Consensus in Real-Time Distributed Systems,” IEEE Trans-
actions on Computers, vol. 51, pp. 931–944, Aug. 2002.

[20] M. Merritt and G. Taubenfeld, “Computing with Infinitely
Many Processes,” in Proceedings of the 14th International
Conference on Distributed Computing, Toledo, Spain, Oct.
2000, pp. 164–178.

[21] B. Milic, N. Milanovic, and M. Malek, “Prediction of Par-
titioning in Location-Aware Mobile Ad Hoc Networks,” in
Proceedings of the 38th Annual Hawaii International Con-
ference on System Sciences, vol. 9, 2005, pp. 306–313.

[22] A. Mostefaoui, M. Raynal, C. Travers, S. Patterson,
D. Agrawal, and A. El Abbadi, “From Static Distributed
Systems to Dynamic Systems,” in Proceedings of the 24th
IEEE Symposium on Reliable Distributed Systems, Florian-
polis, Brazil, Oct. 2005, pp. 109–118.

[23] P. Murray, “A Distributed State Monitoring Service for Adap-
tive Application Management,” in Proceedings of IEEE Inter-
national Conference on Dependable Systems and Networks,
Yokohama, Japan, Jul. 2005, pp. 200–205.

[24] S. Pleish, O. Rtti, and A. Schiper, “On the Specification
of Partitionable Group Membership,” in Proceedings of the
7th European Dependable Computing Conference, Kaunas,
Lithuania, May 2008, pp. 37–45.

[25] S. Sastry and S. Pike, “Eventually Perfect Failure Detectors
Using ADD Channels,” in Proceedings of the 5th Interna-
tional Symposium on Parallel and Distributed Processing and
Applications, Nigara Falls, Canada, 2007, pp. 483–496.

[26] A. Schiper, “Brief announcement: dynamic group commu-
nication,” in Proceedings of the 22nd ACM Symposium on
Principles of Distributing Computing, Boston, Massachusetts,
USA, 2003, pp. 113–113.

[27] V. Srivastava, A. Hilal, M. S. Thompson, J. N. Chattha, A. B.
Mackenzie, and L. A. Dasilva, “Characterizing Mobile Ad
Hoc Networks — The MANIAC Challenge Experiment,” in
Proceedings of of 3rd ACM International Workshop on Wire-
less Network Testbeds, Experimental evaluation and CHarac-
terization (WiNTECH), Sep. 2008.

[28] S. Tucci-Piergiovanni and R. Baldoni, “Connectivity in Even-
tually Quiescent Dynamic Distributed Systems,” in Proceed-
ings of the 3rd Latin-American Symposium on Dependable
Computing, vol. 4746, Morelia, Mexico, 2007, pp. 38–56.

[29] ——, “Eventual Leader Election in Infinite Arrival Message-
Passing System Model with Bounded Concurrency,” in Pro-
ceedings of the 8th European Dependable Computing Con-
ference, Valencia, Spain, 2010, pp. 127–134.

[30] K. Wang and L. Baochun, “Group mobility and partition
prediction in wireless ad-hoc networks,” in Proceedings of
IEEE International Conference on Communications, 2002,
pp. 1017–1021.

