Léon Lim

Denis Conan

An Eventual α Partition-Participant Detector for MANETs

Keywords: MANETs, models for dynamic partitionable systems, partitions, partition-participant detector, stability condition

With Mobile Ad hoc Networks (MANETs), communication between mobile users is possible without any infrastructure. MANETs are already a necessary part of wireless systems. Due to arbitrary node arrivals, departures, crashes and movements, network partitioning may arise resulting in a degradation of the service, but not necessarily in its interruption. In this paper, we propose a distributed system model for partitionable systems. We then specify and implement a partition-participant detector that captures the liveness of a partition even if the partition is not completely stable. Its role is to detect the minimal stability condition to guarantee that eventually all the stable processes in an α-Set elect the same leader.

I. INTRODUCTION

Mobile Ad hoc Networks (MANETs) are self-organizing networks without any fixed infrastructure. Due to node arrivals, departures, crashes and movements, MANETs are very dynamic networks. Dynamic networks are characterized by being subject to topology changes. The topology changes occur both rapidly and unexpectedly. The graph of nodes is not necessarily completely connected. Nodes can only broadcast messages to nodes that are within their transmission range. Hence, MANETs are often referred to as multihop wireless ad hoc networks: It may happen that a message sent by a node should be routed through a set of intermediate nodes. Furthermore, communication links between nodes are considered unidirectional. For instance, a node can receive a message from another node while having insufficient remaining energy to send a message back. Disconnections, failures and the mobility of nodes can isolate a node or a group of nodes from the other participants of the system. Thus, a distributed system built over MANETs may be split into partitions: Nodes that neither crash nor leave the system might not be mutually reachable. Therefore, distributed systems that are built over MANETs must be partition-tolerant so that network partitioning may result in a degradation of the service but not in its interruption.

In this paper, we focus on dynamic systems built over networks that may partition permanently [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF], [START_REF]On Quiescent Reliable Communication[END_REF] and in which several partitions may evolve concurrently and independently from each other [START_REF] Anceaume | On the Formal Specification of Group Membership Services[END_REF], [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF], [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF]. Partitions can merge into larger partitions when the communication links between them are re-established. Note that in contrast to partitionable systems, in primary-partition systems, such merge and split operations are not allowed -i.e., only a single partition can exist and all the non-faulty processes are required to agree on the composition of that partition [START_REF] Anceaume | On the Formal Specification of Group Membership Services[END_REF], [START_REF] Schiper | Brief announcement: dynamic group communication[END_REF]. Collaborative applications [START_REF] Birman | Middleware support for distributed multimedia and collaborative computing[END_REF], resource allocation management [START_REF] Anker | Fault tolerant video on demand services[END_REF], and distributed monitoring [START_REF] Murray | A Distributed State Monitoring Service for Adaptive Application Management[END_REF] are examples of applications that support partitioning. Partitions may experiment with some eventual stability so that the liveness of the computation can be guaranteed -i.e., a stability period lasts long enough in order to eventually allow all the participant nodes of the partition to communicate in a timely manner.

In our partitionable system model, processes may leave and join the system. We consider that there are infinitely many processes, but each run has a maximum concurrency level that is finite -i.e., the number of processes that have joined minus the number of processes that have left is finite. This corresponds to the infinite arrival model with bounded concurrency defined in [START_REF] Merritt | Computing with Infinitely Many Processes[END_REF] and investigated in [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF]. In this model, the set of correct processes is not known in advance and runs can have infinitely many processes as time elapses. This uncertainty leads to two different issues: [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF] discovering the finite set of processes that will be part of a partition and [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF] dealing with a possibly infinite set of processes that may wake up at any time. In such a context, it would be interesting to be able to detect the existence of stable partitions in which stable processes are able to communicate with each other in a timely manner. Partition-participant detectors are oracles associated with processes that give the set of stable processes that belong to a partition. Like failure detectors [START_REF] Chandra | Unreliable Failure Detectors for Reliable Distributed Systems[END_REF], a partition-participant detector can make mistakes, but it eventually computes the set of processes that belong to the partition [START_REF] Arantes | Partition Participant Detector with Dynamic Paths in MANETs[END_REF]. Note that, unlike a failure detector, the specification of a partition-participant detector must be based on the ability of processes to communicate with each other rather than detecting correct processes. The reason is that nodes may enter or leave a partition so that the set of processes is neither fixed nor known in advance.

Another motivation for our work concerns the problem of the specification of a partitionable group membership. Basically, a group membership service specifies the view a process has on the current partition it belongs to. Group membership is a basic building block for partition-aware applications that are able to make progress in multiple concurrent partitions without blocking [START_REF] Babaoglu | System support for partition-aware network applications[END_REF]. Two prominent dynamic partitionable systems that specify partitionable group membership are presented in [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF] and [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF]. In these articles, the authors argue that fault-tolerant applications on top of a partitionable system usually rely on such a service. They extend the definition of the eventually perfect failure detector to partitionable systems in order to provide a membership service. These detectors eventually detect all the mutually reachable processes. They differ about their liveness property: [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF] liveness must only hold in stable partitions [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF], and (2) liveness must be ensured in every partition [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF]. [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF] defines a completely stable partition as "a set of processes that are eventually alive and connected to each other, and the link from any process in this set to any process outside the set is down". Contrarily to our work, [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF] considers a static and fully connected distributed system. Futhermore, the specification of [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF] does not ensure the liveness of the system when processes are forever intermittently mutually reachable. This unstable case disappears in the specification of [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF] with the consideration of fair channels, and thus [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF] guarantees liveness not only in stable partitions. However, as stated in [START_REF] Pleish | On the Specification of Partitionable Group Membership[END_REF], these two specifications are not satisfactory. For instance, the specification in [START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF] can be satisfied by a "trivial but useless implementation"1 and the specification in [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF] cannot be implemented without strong synchrony assumptions 2 .

As a consequence, there is a critical need for the definition of a dynamic partitionable system model which is implementable and strong enough, and which guarantees the liveness property not only in completely stable partitions. In operational MANETs, the problem becomes even more complex since they can experience a wide amount of churn [START_REF] Srivastava | Characterizing Mobile Ad Hoc Networks -The MANIAC Challenge Experiment[END_REF]: Nodes join and leave the system at arbitrary times and arbitrarily fast. Therefore, partitions may never be completely stable -i.e., it is possible that groups of nodes are unable to progress and terminate useful distributed computations such as leader election or consensus. Nodes which stay in a partition during a long enough period of time are said to be stable, and unstable otherwise. Stable and unstable nodes can coexist in the context of a partition. Nevertheless, it is desirable to avoid that unstable nodes prevent the progress of stable ones. Thus, the stability condition should be weakened in order to allow distributed computations to terminate despite of the presence of unstable nodes in the partition. In other words, useful computations should be executed only by a set of α stable nodes as it is shown in [START_REF] Mostefaoui | From Static Distributed Systems to Dynamic Systems[END_REF]. This weak stability condition better fits to dynamic systems. However, the system model in [START_REF] Mostefaoui | From Static Distributed Systems to Dynamic Systems[END_REF] is defined for primary-partition systems in which it is not possible to have several stable partitions that run concurrently and independently.

Our Contributions. In this paper, we propose a model that characterizes the dynamic behavior of MANETs. We define a weak stability condition which guarantees the liveness of partitions even if they are not completely stable. We also propose an eventual α partition-participant detector, denoted ♦αPPD, whose role is to make trade-offs between agreement and progress by eventually detecting the stability condition. In addition, ♦αPPD eventually determines the leader among them.

The rest of the paper is organized as follows. We discuss some related works in Section II. In Section III, we model dynamic partitionable systems and define a weak stability condition. We specify and implement the eventual α partition-participant detector and also provide its correctness proof in Section IV. We conclude the paper in Section V.

II. RELATED WORK

Distributed models that consider dynamic systems with a stability condition (α processes) can be founded in [START_REF] Mostefaoui | From Static Distributed Systems to Dynamic Systems[END_REF], [START_REF] Greve | A failure detector for wireless networks with unknown membership[END_REF], [START_REF] Hermant | Fast Asynchronous Uniform Consensus in Real-Time Distributed Systems[END_REF]. In [START_REF] Hermant | Fast Asynchronous Uniform Consensus in Real-Time Distributed Systems[END_REF], the model involves unreliable failure detectors with α denoting the smallest number of stable processes in the system. A stable process is a process that is running and never suspected unless it fails. Every process that fails is eventually permanently suspected by every correct process. The model is designed for primarypartition systems. In [START_REF] Mostefaoui | From Static Distributed Systems to Dynamic Systems[END_REF], the value of α plays the role of the value (n -f) in static models, where n is the total number of processes in the system and f is the maximal number of crashed processes. Like in our work, the authors state that a dynamic distributed system must present some stability period in order to guarantee progress and termination of the computation. However, the distributed system is not partitionable. In [START_REF] Greve | A failure detector for wireless networks with unknown membership[END_REF], the authors extend the QUERY-RESPONSE communication mechanism of [START_REF] Mostefaoui | From Static Distributed Systems to Dynamic Systems[END_REF] by considering the mobility of nodes, and propose a failure detector ♦S M that eventually detects the set of known and stable processes: a process is known if it has joined the system and has been identified by a stable process; a process is stable if after having entered the system, it never departs. The local value of α of a process p is computed as the value of the neighborhood density of p minus the maximum number of faulty processes in p's neighborhood. Again, the model in [START_REF] Greve | A failure detector for wireless networks with unknown membership[END_REF] is designed for primary-partition systems.

[5] considers sparse MANETs where the node density is relatively low so that disconnections and network partitions are common. In such a context, the end-to-end connectivity between nodes is a temporary feature that emerges at arbitrary intervals of time. Among the set of processes S in the system, a small group G is formed for the purpose of reaching consensus. Among the n ≥ 3 nodes of G, at most f processes (with 0 < f < n/2) can crash over the lifetime of G. Nodes in S \ G act as routers and cooperate to discover and maintain the connectivity between nodes of G. Consensus can be solved if a majority of operative nodes exist for a long enough period of time. But, messages cannot be lost during these stable periods and partitioning cannot be permanent -i.e, the distributed system is a primary-partition system.

In [START_REF]Eventual Leader Election in Infinite Arrival Message-Passing System Model with Bounded Concurrency[END_REF], the authors aim to characterize dynamic distributed systems and consider the infinite arrival model with a maximum concurrency level b -i.e., this is called the infinite arrival model with b-bounded concurrency [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF]. They propose the specification of an oracle called HB * to implement the Ω failure detector that eventually identifies the unique leader in the system. HB * provides a list called alive whose length is the value of the bounded concurrency b containing processes deemed to be up in the system. HB * embeds a stability property stating that eventually the good processes take fixed positions inside the alive list. However, even if the problem of network partitioning is considered during perturbed periods, this work caters for the eventual connectivity overlay [START_REF] Tucci-Piergiovanni | Connectivity in Eventually Quiescent Dynamic Distributed Systems[END_REF] -i.e., eventually, there is no partition. The model in [START_REF]Eventual Leader Election in Infinite Arrival Message-Passing System Model with Bounded Concurrency[END_REF] abstracts processes deployed over WANs whereas our model abstracts processes deployed over MANETs. Furthermore, the network graph in [START_REF]Eventual Leader Election in Infinite Arrival Message-Passing System Model with Bounded Concurrency[END_REF] is fully connected, a property that is basically assumed when considering that the network does not partition permanently [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF], [START_REF]On Quiescent Reliable Communication[END_REF]. In contrast, we consider that the network of mobile nodes is not fully connected and that it can permanently partition -i.e., paths between mobile nodes are dynamically built over time.

The notion of heartbeat failure detector HB was generalized in [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF] for partitionable networks. The module HB outputs an array with one non-negative number for each process of the system. The heartbeat sequence numbers of the processes not in the same partition are bounded. Our partition-participant detector is inspired by this work. But, in [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF], the system is static, the number of nodes of the system is known, and nodes do neither move nor leave the system.

By analogy with the concept of partition-participant detector, the notion of participant detector was introduced in [START_REF] Cavin | Consensus with Unknown Participants or Fundamental Self-Organization[END_REF] for solving the problem of bootstrapping a MANET. Participant detectors capture the minimal information that a process must have about the other participant processes to reach a consensus with unknown participants (CUP) in a fault-free scenario. The participant detector module is used for detecting the initially unknown set of processes Π in a MANET. Like in our approach, both the identity and the number of processes are initially unknown. [START_REF] Greve | Knowledge connectivity vs. synchrony requirements for fault-tolerant agreement in unknown networks[END_REF] extended the work in [START_REF] Cavin | Consensus with Unknown Participants or Fundamental Self-Organization[END_REF] and identified the minimal synchrony assumption for solving fault-tolerant CUP (FT-CUP) and uniform FT-CUP. However, both in [START_REF] Cavin | Consensus with Unknown Participants or Fundamental Self-Organization[END_REF] and [START_REF] Greve | Knowledge connectivity vs. synchrony requirements for fault-tolerant agreement in unknown networks[END_REF], the authors do not consider permanent partitioning of the network. The model is designed for primary-partition systems where the total number of processes is fixed and the network is always connected. In our work, not only the system is dynamic and partitionable, but the set of processes in the system is unknown in advance and the network is not fully connected.

In a previous work [START_REF] Arantes | Partition Participant Detector with Dynamic Paths in MANETs[END_REF], we have proposed an eventual partition-participant detector using dynamic paths which eventually detects the participant nodes of stable partitions in MANETs. Liveness is only guaranteed in completely stable partitions. In this paper, we extend the concept of simple dynamic paths into SADDM paths which are more suitable for MANETs and provide liveness properties even if partitions are not completely stable. A SADDM path combines the lossy property of a fair link3 [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF] and the timeliness property of an eventually timely link4 [START_REF] Aguilera | On implementing omega with weak reliability and synchrony assumptions[END_REF]. The idea of the combination of the lossy property of a fair link and the timeliness property of an eventually timely link was inspired by [START_REF] Sastry | Eventually Perfect Failure Detectors Using ADD Channels[END_REF] through the notion of ADD (Average Delayed/Dropped) link. SADDM paths are dynamically built. With them, an infinite number of messages may be lost or arbitrarily delayed, but some subset of messages not too sparsely distributed in time is guaranteed to be received in a timely manner.

[30], [START_REF] Milic | Prediction of Partitioning in Location-Aware Mobile Ad Hoc Networks[END_REF] characterize group mobility and predict partitioning in location-aware MANETs. [START_REF] Wang | Group mobility and partition prediction in wireless ad-hoc networks[END_REF] proposes a velocity-based mobility model. The node velocities are assumed to be known to the server which runs a data clustering algorithm. As the authors argue, in real systems, another mechanism is required to efficiently collect the velocities from all the mobile nodes. This is a non trivial task since networks can partition. In addition, node mobility is not the only parameter that is responsible for network partitioning. Other parameters such as node failures and disconnections should also be considered. In [START_REF] Milic | Prediction of Partitioning in Location-Aware Mobile Ad Hoc Networks[END_REF], a node exchanges its location and its speed to all its one-hop neighbors and calculates the probability that a link will be broken based on distances between nodes. As in [START_REF] Wang | Group mobility and partition prediction in wireless ad-hoc networks[END_REF], only the mobility of nodes is considered. More generally, [START_REF] Wang | Group mobility and partition prediction in wireless ad-hoc networks[END_REF], [START_REF] Milic | Prediction of Partitioning in Location-Aware Mobile Ad Hoc Networks[END_REF] adopt a probabilistic partition prediction/prevention approach whereas our proposition is based on deterministic partition detection.

III. MODEL

In this section, we define processes that communicate with each other by passing messages through wireless communication links in Sections III-A and III-B. Then, we distinguish different kinds of links, and define their properties in Section III-C. We illustrate these properties in Section III-D. Afterwards, we introduce the notions of partition and partition-participant detector in Section III-E. Finally, we introduce the stable condition and the stability criterion that ensure progress in Sections III-F and III-G, and present an example of a distributed system configuration with stable partitions in Section III-H.

A. Processes

We consider a dynamic distributed system model made up of mobile uniquely-identified nodes. We consider one process per node executing programs by taking steps. Thus the system consists of an infinite countable set of processes Π = {. . . p i , p j , p k . . . }. Processes are also denoted p, q, r, etc.

We consider the infinite arrival model with bounded concurrency [START_REF] Merritt | Computing with Infinitely Many Processes[END_REF]: In any bounded period of time, only finitely many nodes take steps; the total number of nodes in a single run may grow to infinity as time passes; however, each run has a maximum concurrency level that is finite but unknown. Contrarily to static systems, in dynamic systems, processes do not know Π, i.e., the processes in Π do not necessarily know each other. A correct process never fails. A faulty process fails by crashing (and as a consequence leaves the system). Correct processes may leave and join the system.

In order to simplify the presentation without loss of generality, we assume the existence of a global clock which is not accessible by the processes. We take the range T of the clock's tick to be the set of natural numbers N.

B. Links

We assume the MANET communication model in which nodes do not send point-to-point messages but broadcast messages that will be received by those nodes that are in their transmission range. If a process q is within the transmission range of a process p, we say that there is a link between p and q, denoted p q. Links are unidirectional and the network is not necessarily completely connected. Messages are uniquely identified and there is no upper bound on message transmission delays. We also assume that q receives a message m from p at most once (no duplication) and only if p previously broadcast m (no creation).

C. Fairness, Reachability and Timeliness

We distinguish three kinds of links: (1) eventually down, (2) eventually up and (3) forever intermittently up. An eventually up link eventually transports messages without losing any of them. An eventually down link eventually stops transporting messages. Finally, a forever intermittently up link can lose messages it transports arbitrarily. In our model, forever intermittently links are the root of the instability of the system. They result in two processes being forever intermittently mutually reachable. In the worst case, no useful computations can be terminated if two processes p and q are not mutually reachable at those times at which they attempt to communicate with each other. To avoid this bad scenario, we assume the fairness property on communication links between processes that are at least forever intermittently reachable (including processes that are eventually forever reachable). Similarly to [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF], a fair link is defined as follows.

Definition 1. Fair link. A link p q is said to be fair if p broadcasts a message m to q an infinite number of times and q is correct, then q receives m from p an infinite number of times.

Observe that eventually up links and forever intermittently up links are both captured into fair links. Thus, in the sequel, we do not distinguish them.

We denote a sequence of processes (p 1 p 2 . . . p n), in which the links p 1 p 2 , . . . , p n-1 p n are fair, as a fair path from p 1 to p n , denoted FAIR(p 1 p 2 . . . p n).

By definition, a fair link can lose messages due to communication failures. The reachability relation captures these communication failures. With fair links, reachability is defined similarly to [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF] and as suggested in [START_REF] Pleish | On the Specification of Partitionable Group Membership[END_REF]. Definition 2. Reachability. Given two processes p and q, q is reachable from p if and only if there is a fair path from p to q. We denote this relation of reachability of q from p as p ⇁ q, that is p ⇁ q def ≡ FAIR(p . . . q). If process q is reachable from process p, and vice-versa, we write p ⇌ q. We also say that p and q are mutually reachable. Notice that the definition of fair link is time independent and that our definition of reachability, contrary to the definition of [START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF], is also time independent.

A link that intermittently loses messages may satisfy the fairness property. However, it is worth pointing out that fair links may suffer from arbitrary delays and/or losses such that there exists no "finite stable period" in which processes can communicate "fast enough" in order to compute and terminate a useful computation during that period. Thus, we make the additional assumption that follows. We define the concept of SADDM (Simple Average Delayed/Dropped of a Message) links 5 and SADDM paths where communication delays between two processes are bounded during stable periods. A SADDM link allows messages to be lost or arbitrarily delayed, but guarantees that some subset of the messages sent on the link will be received in a timely manner. In addition, such messages are not too sparsely Definition 3. SADDM link. Let β and δ be two constants, and [t 1 , t 2] be a finite time interval during which p broadcasts a message m to q at least β times. A link p q is said to be a SADDM link if q receives m at least once by time t 1 + δ, with δ > t 2 -t 1 .

We now define a SADDM path as a sequence of SADDM links as follows.

Definition 4. SADDM path. A sequence of processes

(p 1 . . . p n) is a SADDM path if ∀i ∈ [1, n -1] the link p i p i+1 is SADDM and i = j =⇒ p i = p j .
This definition means that there exists a constant c such that, for each finite time interval φ = [τ 1 , τ 2] during which p 1 broadcasts a message m to p n at least β c times, p n receives at least one of these messages through SADDM(p 1 p 2 . . . p n) by time τ 1 + β c + cδ, with β c + cδ > τ 2 -τ 1 . The constants β and δ are the same as the ones used in the definition of a SADDM link. Since the concurrency is bounded, β c + cδ is bounded. A SADDM path from process p to process q is denoted by SADDM(p . . . q) φ with respect to an interval φ. The subscript interval φ on the path is omitted when it is unambigous.

D. Illustrative example of SADDM paths

The notions of SADDM links and SADDM paths are presented in Figure 1. Dashed circles are used to represent the transmission range of processes. Solid arrows correspond to SADDM links, otherwise arrows are dashed. Processes u and w can communicate with each other in a timely manner since there exist SADDM links from u to w and from w to u. This is the same for processes x and y. In addition, processes p, q, r, s and l can communicate with each other in a timely manner since there exists a SADDM path between any two of them. This is also the case for the set of processes {a, b, c}. Process u cannot communicate with any process in {p, q, r, s, l} since there is no SADDM path from a process in this set to u. This is also the case for processes o and v.

E. Partition and Partition-Participant Detectors

The network is partitionable. Several disjoint sub-sets of processes may co-exist such that the processes in each subset are mutually reachable and processes in two sub-sets are not mutually reachable. ⇌ is an equivalence relation and partitions are defined by equivalence classes of this relation. The partition of process p is denoted P ART p = {q ∈ Π|p ⇌ q}.

In order to ensure that a useful computation can progress and terminate, a partition has to satisfy some form of eventual stability. Processes in partitions that present some eventual stability are called stable processes. A process is stable in the context of some partition. A partition pattern is a function P : Π×T → 2 Π , where P(p, t) denotes the set of processes that p believes to be in its partition at time t. A process can join and leave a partition arbitrarily. Thus, the function P is not necessarily monotonic in time. Similarly to failure detectors [START_REF] Chandra | Unreliable Failure Detectors for Reliable Distributed Systems[END_REF], partition-participant detectors are distributed oracles associated with each process. The failure detector proposed in [START_REF] Chandra | Unreliable Failure Detectors for Reliable Distributed Systems[END_REF] is for primary-partition systems in which every pair of processes in the fixed and known set Π is connected by a reliable communication channel. The failure detector is used to state which processes are in Π, that is which processes are correct: A process is correct if it is not suspected to have crashed by any process in a failure pattern. Differently to failure detectors, in partitionable systems, due to processes entering and leaving a partition, and since Π is neither fixed nor known in advance, the specification of a partition-participant detector has to be based on the ability of processes in a partition to communicate with each other rather than individual processes being correct or crashed.

F. Stability Property and Stability Condition

In primary-partition systems made up of |Π| processes, if there exists a majority of processes that can communicate with each other during a long enough period of time, then the system is said to be stable for that period [START_REF] Boichat | Deconstructing paxos[END_REF]. By analogy, in partitionable systems, a partition becomes stable during a period when all the correct processes in that partition can communicate with each other during that period. So far, we have not defined such a period. To do so, as in [START_REF] Mostefaoui | From Static Distributed Systems to Dynamic Systems[END_REF], let us define a time interval ∆ = [t b , t e] as being a period. t b and t e are defined by the application processes: t b is the beginning time of the application whereas t e is its ending time. Practically speaking, the execution of the application may also be divided into phases, the phases then becoming the periods. In every stable period ∆, stable processes can communicate through SADDM paths. The stable partition associated with ∆ is denoted by ∆P ART p , and is defined as follows.

Definition 5. Stable Partition Per Period. The stable partition per period ∆ of process p is the set of all the correct processes q, denoted ∆P ART p , such that there exist at least a SADDM path from p to q and a SADDM path from q to p.

To simplify the presentation, we consider only one period in the rest of the paper. During a period, the stable property is a property that remains true once it holds -i.e., it holds after the stabilization time ST p which is unknown to the processes. A stable partition associated to some process p is then denoted by ♦P ART p which is defined as follows. Definition 6. Stable Partition. The stable partition of process p is the set of correct processes q, denoted ♦P ART p , such that there exists a time ST p after which SADDM(p . . . q) and SADDM(q . . . p) exist.

The validity period of the definition of a stable partition is the duration of an execution -i.e., in practice, a process is stable if the SADDM paths exist long enough for the algorithm to terminate. Then, we define the concept of a stable process in the context of a stable partition as follows.

Definition 7. Stable Process. For any two correct processes p and q, if there exists a time t after which process q ∈ ♦P ART p , then q is stable in ♦P ART p .

In the sequel of the paper, by a short abuse of language, q of the previous definition will be said to be a stable process, without mentioning the name of the partition, such that we will say that q is stable.

A partition may never be completely stable -i.e., ♦P ART p may never exist. Such a behavior can prevent the progress of processes in a partition, and in the worst case, can block the system. The issue is then to weaken the stability property and allow useful computations to terminate with safety guarantees. Since stable and unstable nodes can coexist in the context of a partition, it is desirable to avoid unstable nodes from preventing the progress of stable ones. So, useful computations should be executed only by a set of α processes among the stable processes. The intuition is that α expresses the trade-off between agreement and progress. It is up to the application to provide an appropriate value of α through another service. α is a parameter of the partition-participant detector module. It is the responsibility of the application to choose a suitable value of α -i.e., the minimum number of participants. Thus, we define the stability condition associated to a process p as follows. Stable processes are forever mutually reachable after the minimal stabilization time ST p . Unfortunately, processes cannot know ST p . Then, since all the nodes have different battery power, bandwidth capability, mobility behavior, etc., only a sub-set of mutually reachable nodes is selected to take part to the computation. The participating members are selected among mutually reachable nodes by some stability criterion to form a partition that may possibly satisfy the stability condition. We define in the next section a stability criterion for selecting the nodes that are detected to be "enough stable".

G. Stability Criterion

A stability criterion is a parameter that is used to determine which nodes are the most stable ones, the ones that may be "marked" as stable. We call this kind of set of nodes a tentative set. Application designers may choose different stability criteria per application execution. Furthemore, the choice of the appropriate parameter will be influenced by the needs of the application.

In this paper, we choose the time-based stability criterion hb q p ≥ threshold p , with hb q p being a function that depends on the number of heartbeat messages received by p from q (hb q p increases if q is present in p's partition and decreases otherwise), and with threshold p ≥ 1. q is marked as stable by p if hb q p ≥ threshold p , and is removed from p's tentative set if hb q p = 0 -i.e., p does not receive any heartbeat from q anymore. With this stability criterion, we can eliminate a node from participating if it disappears while tolerating sporadic disconnections. In addition, heartbeat counters are also used to state whether processes are currently mutually reachable.

H. Illustrative example of stable partitions

In Figure 2, we complement Figure 1 to illustrate the definitions of stable process, stability condition, and stable partition. Black disks represent unstable nodes whereas white disks depict stable processes. Each stable partition is enclosed by a solid circle. There are eventually fives stable partitions ♦P ART o , ♦P ART p , ♦P ART w , ♦P ART a and ♦P ART x , with their value of α equals to 1, 4, 2, 3 and 2, respectively. Processes can move inside the stable partition.

Remark that stable partitions are not necessarily isolated from other nodes of the network: All the links from any process in a stable partition to any process outside the partition are not necessarily down. For instance, process in ♦P ART w can receive messages broadcast by processes in ♦P ART p in a timely manner through some SADDM paths, but processes in ♦P ART p cannot receive messages broadcast by u in a timely manner since there is no SADDM path from any process in ♦P ART w to q. Therefore, u is unstable in the context of ♦P ART p , but is stable in the context of ♦P ART w . In this section, we develop the specification and give an implementation of the eventual α partition-participant detector.

A. Specification

An eventual α partition-participant detector ♦αPPD is a distributed oracle that eventually detects the set of stable processes α-Set in a partition. The processes in α-Set are chosen according to the stability criterion hb q p ≥ threshold p . ♦αPPD also eventually elects a unique leader among α-Set. α-Set at p eventually stops changing and a unique leader is eventually elected but there is no knowledge of when this happens. Several processes may think they are leaders. However, when the stability condition |α-Set| ≥ α holds after some stabilization time (or for a long enough period of time), a unique leader may be elected. ♦αPPD satisfies the following properties:

• P1: Eventual α-Set stability: There is a time after which any two stable processes in α-Set have the same α-Set. • P2: Eventual accuracy leadership: There is a time after which all the stable processes in α-Set elect a stable process in α-Set as the leader. • P3: Eventual agreement leadership: There is a time after which no two stable processes in α-Set elect a different stable process as the leader.

B. Description of the Algorithm

Notations. Processes communicate by exchanging messages. There are two types of messages: HEARTBEAT and ALPHASET. A HEARTBEAT message contains a path -i.e., it is basically a sequence of processes that have seen the message. The symbol • is used as the operator for concatenating two paths. An ALPHASET message carries information such as the identity of a potential leader and its α-Set. Messages are denoted by TYPE | attribute 1 , attribute 2 Description. Algorithm 1 implements ♦αPPD for process p. The algorithm is based on the periodic exchange of HEARTBEAT messages to identify the current processes that are mutually reachable. Each process uses its local stability criterion to determine which processes are the most stable ones -i.e., the ones that have exchanged the largest number of heartbeats. ALPHASET messages are broadcast by processes that believe themself to be leaders. But, eventually only the "true" leader process with the highest value of α keeps broadcasting ALPHASET messages.

The local variables of Algorithm 1 are initialized in phase init (Lines 3-11):

α p (Line 3) is the value of the application requirement on the minimum number of stable processes. -αSet p (Line 4) is the set of processes to be considered as stable by p. It contains only p at the initialization time. -threshold p (Line 5) is the threshold value of the time-based stability criterion used by all the processes as described in Section III-G. The proposed stability criterion makes use of heartbeat counters. -maxhb p (Line 6) is the maximal value that a heartbeat counter can reach so that the heartbeat counter does not increase indefinitely and the detection time of a leave operation is not proportional to the duration of the presence of the process in the partition. Processes can have different values of maxhb and threshold. -The timers part timer (Line 7) and proc timer q p (Line 8) delimit two kinds of time periods. part timer is used for checking the stability condition: At the end of a period of duration part timeout, process p checks that all the processes in αSet p can still be considered as stable and verifies the condition |αSet p | ≥ α p (Line 21). During that period, proc timer q p with its associated timeout duration proc timeout q p is used to count heartbeats and assess whether p and q are mutually reachable (Lines 42-53).

mreachable p (Line 9) is a set of tuples (q, α q) where q is a process that p believes to be in its partition, that is p ⇌ q. -previous p (Line 10) is the previous value of mreachable p . -tentative p (Line 11) is a set of tuples (process, α, heartbeat nb) containing the most stable processes according to p's local stability criterion. Despite the fact that processes may initially have different values of α and αSet, the objective of the algorithm is threefold: [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF] eventually all the processes in αSet p have the same value αSet p , (2) the value of αSet p is eventually αSet l with l being the leader among αSet p , and thus [START_REF]On Quiescent Reliable Communication[END_REF] eventually all the processes in αSet p elect the same leader l ∈ αSet p . αSet p is computed as the set of processes q in tentative p for which α q ≤ α p . αSet p serves to compute the output of the algorithm (Line 70). Note that, for all the processes u and v, α u and α v do not have to be equal. A process q takes part to the construction of αSet p if |αSet p | > α q . The idea is that "potential" leader processes try to convince other processes in their stable partition to agree with their value of α-Set. But, only the stable process with the highest value of α eventually succeeds.

We now describe the five main tasks that the algorithm executes. In Task 1, process p repeatedly broadcasts a HEARTBEAT message with a bootstrap path (p, α p) -i.e., HEARTBEAT | (p, α p) , to announce that it is alive and present.

In Task 2, upon expiration of part timer, p checks the set of processes that p believes to be stable in its partition. If there are one or more processes in αSet p which are no more stable (αSet p ⊆ tentative p , Line 21) or if the stability condition is not satisfied (|αSet p | < α p), then p re-computes αSet p (Line 22) as the set of processes having reached a given level of stability (hb q p ≥ threshold p). If the stability condition is reached (|αSet p | ≥ α p , Line 23) and if p believes itself to be the leader (Line 24), then p tries to convince the other processes in its α-Set to agree on its value of αSet p by broadcasting a message ALPHASET | p, αSet p (Line 25). Otherwise, p increments its timer value part timeout. Finally, p prepares itself for the next execution of Task 2 (Line 28-29).

In Task 3, upon the reception of the message ALPHASET | q, αSet q , p verifies if [START_REF] Aguilera | A pleasant stroll through the land of infinitely many creatures[END_REF] p and q are mutually reachable, and (2) q is the leader of p (Line 34). If this is the case, p adopts the value of αSet q for its local variable αSet p (Line 35). As a consequence, p and q both believe that there exist more than α q ≥ α p stable processes in p's and q's partition. p re-broadcasts the message HEARTBEAT | q, αSet q so that the wave can reach the other processes in the partition (Line 36).

In Task 4, upon the reception of a message HEARTBEAT | path , if path begins with the tuple (p, α p), then p knows that one of its messages HEARTBEAT | (p, α p) has passed through a cycle -i.e., each node q in the tuple that appears after (p, α p) in path is mutually reachable from p (Lines 42). When p sees q for the first time (Line 43), p creates proc timer q p and its corresponding timeout value proc timeout q p , and sets proc timer q p to proc timeout q p (Line 53). proc timer q p is reset to proc timeout q p every time a message HEARTBEAT | path has gone through a cycle from p. If q was previously reachable from p (Line 48), and is not already taking part to the construction of αSet p ((q, α q) / ∈ tentative p , Line 49), then p starts considering q as a potential stable process and adds q to tentative p with a heartbeat counter assigned to 1 (Line 50). If q already takes part to the construction of αSet p ((q, α q , hb q p) ∈ tentative p , Line 51), p increments q's heartbeat counter -i.e., q is getting "more" stable according to the stability criterion (Line 52). If path does not begin with (p, α p) and if p does not appear in path or appears just once, p appends (p, α p) to path and broadcasts a HEARTBEAT message with newpath = path • (p, α p) (Lines 55-56). Observe that, as described in [START_REF] Aguilera | Using the Heartbeat Failure Detector for Quiescent Reliable Communication and Consensus in Partitionable Networks[END_REF], p must forward the message even if it already appears once in path since it might be the case that there exists a cycle between q and r where p belongs both to the path from q to r and to the path from r to q.

In Task 5, upon expiration of proc timer q p , p decrements q's heartbeat counter -i.e., q is getting "less stable" (Line 63). When q's heartbeat counter reaches zero, q is removed from tentative p -i.e., q can no more be considered as a stable process and should no more participate to the construction of αSet p (Line 61). proc timer q p expires means that the value of proc timeout q p is not enough for a message HEARTBEAT | path to travel along a cycle (including q) from p. Therefore, proc timeout q p is incremented. Observe that, in order to exclude from αSet p processes that are too unstable, proc timeout q p can equal to, but cannot exceed part timeout (Line 64).

Finally, by querying its local partition-participant detector (Lines 68-71), a client application obtains the identifier of the current leader l in the partition and the set of stable processes, that is αSet p = αSet l .

C. Proof of Correctness of the Implementation

We now show that Algorithm 1 implements ♦αPPD. Lemma 1. Let p 1 be a stable process and p n be a process in ♦P ART p1 such that there exists a SADDM path SADDM(p 1 p 2 . . . p n) from p 1 to p n . Eventually one of the β n-1 messages HEARTBEAT | (p 1 , α p1) broadcast by p 1 reaches p n in at most β n-1 η + (n -1)δ seconds.

Proof: Let p 1 be a stable process and p n be a process in ♦P ART p1 such that there exists a SADDM path SADDM(p 1 p 2 . . . p n) from p 1 to p n . Let Σ = SADDM(p 1 p 2 . . . p n). To simplify the presentation of the proof, a path will be regarded as a sequence of processes -i.e., we don't consider the value of α associated to each process that is present in the variable path of Algorithm 1. By definition of SADDM path, each process p i , for i ∈ [1, n], appears at most once in Σ. For j ∈ [1, n], let P j = SADDM(p i) i∈ [1,j] . To prove the lemma, we show by induction that ∀j ∈ [1, n -1], at least one of the β j-

Begin

Lemma 5. Let p be a stable process such that α p > α q ∨ (α p = α q ∧ p > q), ∀q ∈ ♦P ART p . There is a time after which p is the only process in αSet p that broadcasts some messages ALPHASET.

Proof: Let p be a stable process such that α p > α q ∨ (α p = α q ∧ p > q), ∀q ∈ ♦P ART p . By definition of the stability condition -i.e., |αSet p | ≥ αand from Lemma 4, the condition at Line 23 is always true. Hence, p periodically broadcasts messages ALPHASET | p, αSet p . We can show by contradiction that none of the processes (q = p) ∈ αSet p eventually keeps broadcasting ALPHASET messages. Let us suppose that there exists a process q in αSet p such that α p > α q ∨ (α p = α q ∧ p > q), and there does not exist a time after which q stops broadcasting ALPHASET messages. By Task T2, q broadcasts ALPHASET messages when the conditions at Lines 21, 23 and 24 hold, that is αSet q ⊆ tentative q . Since p ∈ tentative q and α p > α q ∨ (α p = α q ∧ p > q), the condition αSet q ⊆ tentative q can be true only if hb p q < threshold q ≤ maxhb q , leading to a contradiction with Lemma 2. Lemma 6. Let p be a stable process such that α p > α q ∨ (α p = α q ∧ p > q), ∀q ∈ ♦P ART p . There is a time after which αSet q = αSet p remains true.

Proof: Let p be a stable process such that α p > α q ∨ (α p = α q ∧ p > q), ∀q ∈ ♦P ART p . By Lemma 5, there is a time after which p is the only process that periodically broadcasts ALPHASET messages. By Task T3, every time q receives the message ALPHASET | p, αSet p , q adopts the value of αSet p for its local variable αSet q since αSet q ⊆ αSet p (thanks to Lemma 2 and to α p > α q ∨ (α p = α q ∧ p > q), ∀q ∈ ♦P ART p). Moreover, thanks to Lemma 4, αSet q ⊆ tentative q is eventually always true. Therefore, q eventually keeps its set αSet q unchanged. Hence, there is a time after which αSet q = αSet p remains true. Lemma 7. Let p be a stable process. There is a time after which ♦αPPD q at node q always outputs (l, αSet l) such that (l, α l) ∈ αSet p ∧ [∀(r, α r) ∈ αSet p , α l > α r ∨ (α l = α r ∧ l > r)].

Proof: Let p be a stable process. By Lemma 6, there is a time after which αSet q = αSet p remains true. Since the leadership function is the same for all the processes, there is a time after which ♦αPPD q at every process q ∈ αSet p outputs (l, αSet l) such that (l, α l) ∈ αSet p ∧ [∀(r, α r) ∈ αSet p , α l > α r ∨ (α l = α r ∧ l > r)].

Theorem 1. ♦αPPD satisfies properties P1, P2, and P3.

Proof: Consider a stable process p such that α p > α q ∨ (α p = α q ∧ p > q), ∀q ∈ αSet p . From Lemma 6, there is a time after which αSet q = αSet p remains true. Hence, eventually all the processes in αSet p have the same set αSet = αSet p . This satisfies P2. From Lemma 7, for each stable process q in αSet p , the module ♦αPPD q outputs p. So, p is the leader that is eventually elected by all the stable processes in αSet. This satisfies P3. By properties P2 and P3, P1 is trivially satisfied.

V. CONCLUSION

In this paper, we propose a model that characterizes the dynamic behavior of stable partitions in MANETs. To this means, we have defined a weak stability condition based upon the application-dependent parameter α. α is a threshold value used to capture the liveness property of a partition. In each partition, at least α stable processes execute distributed computations. In order to be part of this set, nodes are selected by using the stability criterion hb q p ≥ threshold p : A node is removed from participating if it disappears while tolerating sporadic disconnections. In addition, we have presented an eventual α partitionparticipant detector ♦αPDD whose role is to detect the stability condition and to guarantee that eventually all the processes in an α-Set elect the same leader.

Using ♦αPDD as a building block, we are specifying and designing a group membership service for partionable networks over MANETs. We plan to evaluate by simulation ♦αPDD using different mobility models. We also want to study other stability criteria that may be elicited [START_REF] García | A stability criteria membership protocol for ad hoc networks[END_REF].

Figure 1 .

 1 Figure 1. SADDM links and SADDM paths

Definition 8 .

 8 Stability Condition. |♦P ART p | ≥ α p .

3 Figure 2 .

 32 Figure 2. Stable partitions and their stability condition

 1 messages Algorithm 1 Implementation of ♦αPPD for process p

	1	init():	
	2	Begin	
	3	αp ← n with n ≥ 1;	{Minimum number of stable processes required by the application}
	4	αSetp ← {(p, αp)};	{Stable processes with their value of α}
	5	thresholdp ← c ;	{Minimal value for being stable according to the stability criterion}
	6	maxhbp ← hb with hb ≥ thresholdp;	{Maximum value that a heartbeat counter can have}
	7	parttimeout ← t ≥ 1; set parttimer to parttimeout;	{Timer used for checking the stability condition}
	8	proctimeout ← {}; proctimer ← {};	{Sets of pairs (process, timeout) and (process, timer), respectively}
	9	mreachablep ← {(p, αp)};	{Mutually reachable processes with their respective value of α}
	10	previousp ← {(p, αp)};	{Previous value of mreachablep}
	11	tentativep ← {(p, αp, maxhbp)};	{Set of tuples (process, α, heartbeat nb) for constituting αSetp}
	12	End	
	13		
	14	Task T1: every η seconds	{Broadcasting heartbeats}
	15	Begin	
	16	broadcast nbg (HEARTBEAT | (p, αp));	
	17	End	
	18		
	19	Task T2: upon expiration of parttimer	{Checking the stability of an α-Set}
	37	End	
	38		
	39	Task T4: upon reception of HEARTBEAT | path	{Detecting mutually reachable processes}
	40		

20 Begin 21 If (αSetp ⊆ tentativep ∨ |αSetp| < αp) then 22

αSetp ← {(q, αq)|(q, αq, hb q p) ∈ tentativep ∧ hb q p ≥ thresholdp}; 23 If |αSetp| ≥ αp then 24 If p = r : (r, αr) ∈ αSetp ∧ [∀(s, αs) ∈ αSetp, αr > αs ∨ (αr = αs ∧ r > s)] then 25 broadcast nbg (ALPHASET | p, αSetp); 26 Else 27 parttimeout ← parttimeout + 1; {There are not enough stable processes, thus increase the detection period} 28 previousp ← mreachablep; 29 set parttimer to parttimeout; 30 End 31 32 Task T3: upon reception of ALPHASET | q, αSetq {Verifying the leader's α-Set} 33 Begin 34 If αSetp ⊆ αSetq then 35 αSetp ← αSetq; 36 broadcast nbg (ALPHASET | q, αSetq);

The terms "useless" and "trivial" are originally highlighted in[START_REF] Pleish | On the Specification of Partitionable Group Membership[END_REF]. They show that their trivial but useless implementation, while satisfying the safety and liveness properties of the specification of[START_REF] Chockler | Group Communication Specifications: A Comprehensive Study[END_REF], does not provide "strong" guarantees to applications. The implementation allows the following scenario: For each process p, each non singleton view is followed by a singleton view.

It was observed in[START_REF] Pleish | On the Specification of Partitionable Group Membership[END_REF] that[START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF] implements a specification that is based on a time dependent property (definition of reachability) in a system model that is based on time independent property (definition of fair channels). In[START_REF] Babaoǧlu | Group Communication in Partitionable Systems: Specification and Algorithms[END_REF], the reachability relation is defined as follows. If p sends message m to q at time t, then q receives m if and only if q is reachable form p at time t. However, as pointed out in[START_REF] Pleish | On the Specification of Partitionable Group Membership[END_REF], reachability is not time invariant: Process q can be reachable from process p at time t, and unreachable at time t ′ > t.

If a message is sent from p to q an infinite number of times, and p and q are not permanently unreachable from each other, then q receives m an infinite number of times.

There is a time after which all the messages that are sent are received timely.

This concept of SADDM link is inspired by[START_REF] Sastry | Eventually Perfect Failure Detectors Using ADD Channels[END_REF] through the notion of ADD link (named channel in that paper).

ACKNOWLEDGMENTS

We are grateful to Miguel Correia, the EDCC-2012 PC Chair, for his accompaniment in the review process and to anonymous reviewers for their comments which helped us to improve this paper.

If first tuple in path is (p, *) then 42 For all (q, αq) : (q, αq) appears after the first tuple in path ∧ q = p do 43 If (q, *) ∈ mreachablep then 44 mreachablep ← mreachablep \ {(q, *)} ∪ {(q, αq)}; 45 proctimer ← proctimer ∪ {(q,proctimer q p);} {Dynamic creation of timer and timeout for new process q} 46 proctimeout q p ← 1; proctimeout ← proctimeout ∪ {(q,proc timeout q p)};

If (q, αq) ∈ previousp then 49 If (q, αq, hb q p) ∈ tentativep then If hb p q = 1 : (q, * , hb p q) ∈ tentativep then tentativep ← tentativep \ {(q, * , *)};

62 Else 63 tentativep ← tentativep \ {(q, * , *)} ∪ {(q, * , hb q p -1)}; 64 proctimeout q p ← min(proctimeout q p + 1,part timeout); 65 proctimeout ← proctimeout \ {(q, *)} ∪ {(q,proc timeout q p)}; HEARTBEAT | P j-1 originally broadcast by p 1 reaches p j in at most β j-1 η + (j -1)δ seconds.

For the base case (j = 1), by Task T1, p 1 permanently broadcasts HEARTBEAT | P 1 every η seconds to all its neighbours, and thus to p 2 . As the path (p 1 p 2) is a SADDM path, then at least one of the β messages broadcast by p 1 is received by p 2 in at most βη + δ seconds. This shows the base case. For the induction step, let j ≤ n -1 and assume that at least one of the β j-1 messages HEARTBEAT | P j-1 originally broadcast by p 1 is received by p j in at most β j-1 η + (j -1)δ seconds. Since the path (p j p j+1) is a SADDM path, p j+1 receives at least one of the ββ j-1 = β j messages HEARTBEAT | P 1 in at most β j η + jδ seconds. Moreover, p j+2 appears at most once in P j+1 and p j+2 is a neighbour of p j+1 . So, each time p j+1 receives HEARTBEAT | P j , it re-broadcasts HEARTBEAT | P j+1 to p j+2 by appending itself to P j (Line 56). Therefore, since (p j+1 p j+2) is a SADDM path, p j+2 receives at least one of the ββ j = β j+1 messages HEARTBEAT | P j+1 originally broadcast by p 1 in at most β j+1 η + (j + 1)δ seconds. This shows the induction step. Therefore, we conclude that eventually at least one of the β n-1 messages HEARTBEAT | P 1 broadcast by p 1 reaches p n in at most β n-1 η + (n -1)δ seconds.

Lemma 2. Let p be a stable process. There is a time after which hb q p = maxhb p and hb p q = maxhb q remain true, ∀q ∈ ♦P ART p . Proof: Let p be a stable process and q be a process in ♦P ART p . Let Σ1 = SADDM(p i) i∈ [1,k] be a SADDM path from p to q, and Σ2 = SADDM(p i) i∈[k,n] be a SADDM path from q to p. We consider now the path Σ = SADDM(p i) i∈ [1,n] which is the concatenation of Σ1 and Σ2 -i.e., Σ = Σ1 • Σ2.

By definition of SADDM path, ∀i ∈ [1, k] and ∀i ∈ [k, n], each process p i appears at most once in Σ1 and Σ2, respectively, and at most twice in Σ. By construction, p 1 = p n = p, and p k = q. For j ∈ [1, n], let P j = SADDM(p i) i∈ [1,j] . To prove that hb q p = maxhb p , we can use the Lemma 1. The proof of hb p q = maxhb q can be done in the same way by considering the SADDM path Σ ′ equals to Σ1 ′ concatenated with Σ2 ′ , where [1,k] , from q to p. Since the two proofs are quite similar, only one of them (hb q p = maxhb p) is described here.

The proof of hb q p = maxhb p is as follows. From Lemma 1, eventually at least one of the β n-1 messages HEARTBEAT | P n-1 originally broadcast by p 1 reaches p n in at most β n-1 η + (n -1)δ seconds. When p n receives a message HEARTBEAT, ∀i ∈ [2, n-1], proc timer pi pn is reset to proc timeout pi pn (Line 53) such that proc timer pi pn does not expire. Otherwise, proc timeout pi pn eventually gets incremented over the value β n-1 η +(n-1)δ. Hence, eventually p always receives heartbeat messages HEARTBEAT | P n-1 with p being the first element of the path P n-1 before proc timer q p expires. Since q appears after p in P n-1 , (q, *) ∈ previous p (Line 48) and (q, * , *) ∈ tentative p (Lines 49-52), p increments hb q pn up to maxhb p . Lemma 3. Let p be a stable process. There is a time after which if q ∈ αSet p permanently, then q ∈ ♦P ART p .

Proof: Let p be a stable process. We show by contraposition that for every process q ∈ ♦P ART p there does not exist a time after which q ∈ αSet p permanently. From Lemma 2, for every process q ∈ ♦P ART p , there does not exist a time after which hb q p = maxhb p and hb p q = maxhb q hold, so that Lines 61 and 63 of Algorithm 1 do not stop being executed. Therefore, every process q ∈ ♦P ART p that is added to the set tentative p keeps being removed from it. αSet p is computed as the set of the processes in tentative p (Line 22). Hence, there does not exist a time after which q ∈ αSet p permanently. Lemma 4. Let p be a stable process and q be a process in ♦P ART p . There is a time after which αSet p ⊆ tentative p remains true.

Proof: From Lemma 3, q ∈ αSet p permanently means that q ∈ ♦P ART p . Consider the time after which hb q p = maxhb p . Thanks to Lemma 2, such a time exists after which q is added to tentative p and not removed afterwards. Since the set αSet p is computed from the set tentative p , αSet p ⊆ tentative p eventually remains true.