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Abstract:  
 
Underwater optical image simulation is a valuable tool for oceanic science, especially for the 
characterization of image processing techniques such as color restoration. In this context simulating 
images with a correct color rendering is crucial. This paper presents an extension of existing image 
simulation models to RGB imaging. The influence of the spectral discretization of the model 
parameters on the color rendering of the simulated images is studied. It is especially shown that, if 
only RGB data of the scene chosen for simulations are available, a spectral reconstruction step prior 
to the simulations improves the image color rendering. 
 
 
 
 
 
Since the pioneering works of the early 1970’s [1–4], optical imaging has known a growing interest in 
the field of oceanic science and engineering [5–7]. However the scattering and absorption properties 
of water are critical limitations for optical measurements making imaging and system design in sub-
sea environment challenging tasks. Consequently being able to foresee operating conditions is of 
great interest for a broad range of applications such as experimental planning, performance 
assessment in turbid environment and image processing characterization in underwater conditions. In 
this context, being able to simulate realistic underwater images taking into account the whole process 
of light underwater propagation and measurement appears very valuable. Various approaches have 
thus been previously developed to simulate underwater image formation [4, 8–10], with areas of 
applications ranging from performance assessment and system design [4, 10] to benchmarking of 
image restoration algorithms [7, 11–13]. 
Furthermore light propagation in water implies various phenomena that modify the spectral content of 
an image, such as attenuation or backscattering [14] (i.e. light that is directly 
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scattered by the water toward the camera without reaching the scene of interest). Studying

color degradation impact on the image quality and on the performance of image processing

techniques, such as color restoration algorithms [7, 15–19], is thus an important field of un-

derwater image processing. For this purpose, it is therefore crucial to simulate images with a

color rendering as realistic as possible. Nevertheless the generalization and characterization

of existing simulation methods for underwater color imaging has not been fully addressed

yet.

In order to tackle these points, this paper presents a model for simulating underwater

RGB images under artificial illumination, which relies on well-known existing approaches.

The main purpose of this study is to analyze the evolution of the color rendering of the

simulated images according to the discretization of the spectral data used in the formation

model. The goal is to highlight the potential difficulties due to RGB image simulation in the

context of image processing algorithm characterization, such as color restoration algorithms.

For that purpose, the first section introduces the model underlying the approach in the

case where the spectral reflectance of the simulated marine scene is perfectly known. In

section 2, the influence of the number of spectral channels used to simulate underwater color

images is then analyzed. Finally in section 3, this study is extended to the case where only

RGB data of the scene chosen for the simulations are available instead of multispectral data.

It highlights the interest of using a first reconstruction step in order to retrieve additional

spectral information about the scene.

1. The color image formation model

The approach discussed in this paper relies on Jaffe-McGlamery image formation model [4,

10]. For self-consistency this model is recalled in the following subsection.

1.A. The ”monochromatic” Jaffe-McGlamery approach

In this article, it is assumed that a given underwater scene is illuminated with an artificial

source and observed through an optical sensor (cf. Fig. 1), such as a CCD camera. According

to Jaffe-McGlamery approach, the irradiance Etot,λ (in W·m−2·nm−1) received by the camera

for a given wavelength λ and a given point located at (x, y) reads

Etot,λ(x, y) = Eu,λ(x, y) + Eb,λ(x, y) (1)

with Eb,λ being the contribution due to backscattered light (i.e. light that has been scattered

directly to the camera by the medium without reaching the scene). In Eq. (1), Eu,λ is the

total contribution of the scene on the image, defined by

Eu,λ(x, y) = e−cλRcE0,λ(x, y) + E0,λ(x, y) ∗ hλ(x, y, Zo) (2)
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where * is the convolution operator over (x, y), cλ is the beam total attenuation coefficient

of the water, hλ is the point spread function (PSF) that accounts for light scattering [4, 8],

Zo is the distance to the observed scene and Rc is the distance between the camera and the

observed point (x, y) as defined in Fig 1.(a). In Eq. (2), E0,λ is the irradiance measured by

the camera in the absence of water and reads [4]

E0,λ(x, y) =
πTλ

4N2
l

(
Zo − Fl

Zo

)2

Lλ(x, y) cos
4 θ (3)

where θ is defined in Fig. 1.(a) and where Fl, Nl and Tλ are respectively the focal length,

f-number and total transmission of the lens. In Eq. (3), Lλ is the scene radiance which, for

a lambertian scene of reflectance Rλ, reads Lλ(x, y) = Rλ(x, y)Es,λ(x, y, z = 0)/π, with Es,λ
being the received irradiance at location (x, y, z). It is given by

Es,λ(x, y, z) = e−cλRsEs,0,λ(x, y, z) + Es,0,λ(x, y, z) ∗ hλ(x, y, Zs − z) (4)

where Es,0,λ is the irradiance due to the source and received at the point of coordinates

(x, y, z) in the absence of water, Rs is the distance between the observed point (x, y, z) and

the source (cf. Fig. 1.(a)), and Zs is the distance between the source and the observed plan

as defined in Fig. 1.(a).

Various water PSF can be found in literature [20]. All the results shown in this study rely

however on the following function [4, 10,21]

hλ(x, y, Z) =
(
e−GλZ − e−cλZ

)
FT−1

{
e−BλZω

}
x,y

where Z is the distance to the considered plan, Gλ and Bλ are two empirical factors, FT−1

is the inverse Fourier transform and ω the angular frequency. In the following, Gλ and Bλ

have been chosen according to Ref. [21], i.e. Gλ = aλ and Bλ = bλ, with aλ and bλ being

respectively the beam absorption and scattering coefficients of water.

For the purpose of the backscattering contribution Eb,λ calculation, the water column is

divided into thin slabs, each of them made up of small elementary volumes that scatter the

light directly to the camera (cf. Fig 1.(b)). The contribution Ek,λ of each volume is calculated

using the water volume scattering function βλ, and reads [4]

Ek,λ(x, y, zk) = Ek,0,λ(x, y, zk)e−cλRk + Ek,0,λ(x, y, zk) ∗ hλ(x, y, Zk) (5)

with

Ek,0,λ(x, y, zk) =
Tλ

4N2
l

(
Zo − Fl

Zo

)2

× βλ(ϕk)Es,λ(x, y, zk)π cos3 θk∆z (6)

where ∆z is the discretization step of the water column, Es,λ(x, y, zk) the illumination that

reaches the volume (see Eq. (4)), Rk is the distance between the elementary volume and the
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CCD (cf. Fig. 1.(b)) and Zk = Zo − zk. Moreover these volumes are generally out of focus

and the measured irradiance for a given water slab has therefore to be modified using the

defocus point spread function Ddefocus. According to Ref. [22], Ddefocus can be modeled by a

Gaussian kernel of parameter σ = ηd where η is a constant of proportionality depending on

the characteristics of a given camera and d is given by

d(z) =
F 2
l z

N(Zo − z)(Zo − Fl)

In all the experiments reported in this study it has been chosen σ = d/2. Therefore the final

expression for the backscattering contribution is [4]

Eb,λ(x, y) =
Zo/∆z∑

k=1

[
Ek,λ ∗Ddefocus

]
(x, y, zk)

∣∣∣∣∣∣
zk=∆z×(k−1/2)

(7)

The discretization step ∆z should be chosen small enough to guarantee the convergence of

the sum of Eq. (7).

1.B. RGB color image simulation

Jaffe-McGlamery image formation model allows the calculation of the measured irradiance

for a given wavelength λ according to Eq. (1). However, to the best of our knowledge, a

detailed study on the simulation of RGB color images in underwater environment has not

been addressed yet.

In this section, an approach to simulate RGB images is proposed. It relies on the Jaffe-

McGlamery ”monochromatic” model when taking into account the spectral response of

the detector. For that purpose, let φc(λ) be the detector spectral response in channel

c ∈ {R,G,B}. In standard photometry theory, the general form of the signal measured

in channel c by a camera [23] can be written as

Sc(x, y) =

∫

λ

Qc(λ)φc(λ)Etot,λ(x, y)dλ

where Qc is a calibration factor depending on the imaging system characteristics. In this

study, for clarity purpose and without any loss of generality, Qc(λ) = 1 is chosen. In this

case the measured signal is thus homogeneous to an irradiance (in W·m−2) and is thus equal

to

Ec(x, y) =

∫

λ

φc(λ)Etot,λ(x, y)dλ

In the case of a spectrum discretized with N wavelengths {λ1, λ2, . . . , λN}, one obtains

Ec
N(x, y) ≈ ∆λ

N∑

n=1

φc(λn)Etot,λn(x, y) (8)
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where ∆λ is the discretization step, or similarly

Ec
N(x, y) = Ec

U,N(x, y) + Ec
B,N(x, y) (9)

with

Ec
U,N(x, y) = ∆λ

N∑

n=1

φc(λn)Eu,λn(x, y) (10)

Ec
B,N(x, y) = ∆λ

N∑

n=1

φc(λn)Eb,λn(x, y) (11)

From Eq. (8) it is thus possible to simulate realistic underwater RGB images. For that

purpose, it is required to take into account not only the water optical properties and the

spectral reflectivity of the scene but also the spectral response of the camera. This approach

is referred as the direct multispectral approach in the study.

In this paper, two types of water have been considered and their inherent optical properties

aλ, bλ and cλ = aλ+bλ are given in Fig. 2.(a) and (b). Type 1 (resp. type 2) water corresponds

to clear (resp. turbid) water. For both water types, the volume scattering function (VSF) βλ

has been taken from Ref. [9] and is given by

βλ(ϕ) = p(ϕ) bλ

where p(ϕ) is shown in Fig. 2.(c). These data were adapted by the author of Ref. [9] from

the measurements of Ref. [2] which are VSF standard models [27–30]. The imaging system

characteristics used in the study have been chosen according to the set-up of Ref. [9]: The

sensor is assumed to be a CCD camera equipped with a lens of focal length Fl = 27.5mm,

f-number Nl = 2.8 and transmission Tλ = 1 over the whole spectrum. The observed scene

is illuminated by an isotropic punctual white source with unit power output. This source is

assumed to be always in the same plane as the camera (i.e. Zo = Zs) but translated by 1m in

the y direction (cf. Fig. 1). Moreover two RGB cameras have been simulated. Their spectral

responses {φR, φG, φB} are shown in Fig. 3.(a) for camera I and Fig. 3.(b) for camera II. They

have been respectively deduced from spectral responses given in Ref. [24] and Ref. [25], and

slightly modified in order to have simple shapes, their maxima at the same RGB wavelengths,

and the same energy in each channel (i.e.
∑

n φc(λn)∆λ = 1, c ∈ {R,G,B}).
Once specified both the water optical properties and the source/camera characteristics,

one can simulate RGB images corresponding to any scene with a known reflectance map

Rλ(x, y). In this study, the chosen scene is made up of 20 patches whose spectral reflectance

has been taken from an existing database [26]. The patches were chosen to have a broad

variety of reflectivities over the scene in order to avoid specific data-related behaviors as best
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as possible. Fig. 4 shows the two RGB color images that are obtained when this scene is

imaged with both camera types in the absence of water.

As illustration, Fig. 5 shows the results of the simulation for both types of camera and

water, in the case of a scene-camera distance Zo = 7m. All images were simulated using

Eq. (8) with N = 100 wavelengths over a spectral interval ranging from 402 nm to 798 nm

with a 4nm discretization step. It can be seen that, for both water types, the spectral

components of the images are strongly affected by the medium but in different ways. Images

in type 1 water have a strong blue hue whereas images in type 2 water have a more greenish

hue. This is due to an attenuation spectrum flatter in the 400-600nm interval for type 2

water, leading to a rather similar contribution of the green and blue channels on the final

image, whereas with type 1 water the minimum of attenuation is clearly in the blue part

of the spectrum leading to a strong blue rendering. Moreover the scattering coefficient is

almost one order of magnitude higher in type 2 water therefore increasing the contribution

of scattered light on the measurement. It results in the presence of a strong veiling light on

the image of Fig. 5.(b) and (d), and a severe loss of visibility. It is also obvious that the type

of camera impacts the spectral behavior of the image, especially for type 2 water: Image

of Fig. 5.(d) being more turquoise than image of Fig. 5.(b). It is therefore mandatory to

take into account the spectral response of the camera to simulate realistic underwater RGB

images.

2. Influence of the spectral discretization

The approach underlying Eq. (8) requires to know all the spectral characteristics of the model

(scene reflectance, water optical properties, detector spectral response, ...) for all the consid-

ered wavelengths. For example, the previous images of Fig. 5 have been simulated knowing

these characteristics for N = 100 wavelengths. Nevertheless one can wonder whether using

such a complete multispectral approach is necessary and if a simpler approach consisting

in using fewer wavelengths could not be good enough to obtain realistic images. To answer

this question, it is proposed in this section to study the impact of the coarseness of the

spectrum discretization on the visual rendering of the backscattering contribution Ec
B,N and

of the scene contribution Ec
U,N (defined respectively in Eq. (11) and Eq. (10)).

Let Ec
•,true be the ideal ”ground truth” one should obtain with the image simulator, with

c ∈ {R,G,B} and • ∈ {U,B}. To evaluate quantitatively the quality of the image simulation,

the error εc•(N) between the ground truth image Ec
•,true and the image simulated with N

wavelengths Ec
•,N is determined by averaging their absolute difference over the whole pixels

of the image:

εc•(N) =
1

P

∑

x,y

∣∣Ec
•,N(x, y)− Ec

•,true(x, y)
∣∣ (12)

6
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where • ∈ {U,B} and P is the number of pixels in the images. For this analysis, the spectral

characteristics of the simulation model parameters are chosen similarly to subsection 1.B

(i.e. over a 402-798nm spectral interval with a 4nm discretization step), leading to a ground

truth spectrum discretization with N = 100. Therefore Ec
•,true = Ec

•,N=100, with c ∈ {R,G,B}
and • ∈ {U,B} while the notation Ec

•,N implies that the image is simulated with N < 100

wavelengths chosen according to a regular sampling.

2.A. Calculation of the backscattering contribution Ec
B,N

Contrary to Ec
U,N , the backscattering contribution Ec

B,N is independent of the scene and the

two contributions do not necessarily have the same behavior. Therefore, as a first step, only

the contribution Ec
B,N is considered.

Fig. 6 shows the evolution of the error εcB, as a function of the number N of used wave-

lengths, obtained in each channel for camera I (black dashed curves) and camera II (gray

plain curves) in the case of type 1 water. The same configuration as in subsection 1.B is

considered with a scene-camera distance Zo = 15m. Very similar curves are obtained for

type 2 water and are thus not shown for clarity. From these curves, it is possible to highlight

a general tendency independently of the water type or the considered spectral channel. First

of all, errors are more important in the channels that suffer from high water attenuation

(mainly the red and green channels for type 1 water). Indeed the spectrum is strongly mod-

ified where the attenuation is high, therefore it requires a fine discretization to correctly

model the image spectrum degradation. Moreover the precision improves as the number N

of wavelengths used for the simulation increases and errors stabilize for a given number of

wavelengths, in the studied cases N ≥ 25 approximately, meaning that Ec
B,N can be simu-

lated with good precision from 25 wavelengths only (εcB ≤ 1% for the three channels). A key

point to emphasize is that Ec
B,N is independent of the knowledge of the scene characteris-

tics. Therefore, whatever the available scene spectral discretization is, it is always possible

to simulate Ec
B,N with a sufficiently fine spectral discretization, provided aλ, bλ and cλ are

known for such a discretization.

2.B. Calculation of the scene contribution Ec
U,N

Knowing the spectral reflectance of the scene is generally a key issue of image simulation,

since global models of marine scene reflectance are not available contrary to models of water

optical properties which can be found for various types of water [30]. The difficulty to obtain

realistic scene reflectance data (either by imaging a real scene with a multispectral sensor

or by simulating it as in section 1.B) increases with the number of required wavelengths.

Therefore it is now proposed to study the influence of the wavelength number on the quality

of the simulation of Ec
U,N . The goal is to determine the number that has typically to be

7
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considered for realistic underwater RGB image simulation.

For that purpose, the 20-patch scene of subsection 1.B (cf. Fig. 4) is considered. To study

the impact of the reflectance spectral discretization, a reflectance map RN
λ is created over N

wavelengths {λ(N)
1 , λ(N)

2 , · · · , λ(N)
N }. For that purpose, starting from the initial 100-wavelength

spectral reflectance R100
λi

with i ∈ [1, 100], RN
λ is directly deduced by averaging {R100

λi
}

according to the equation

RN

λ(N)
n

(x, y) =
1

Jn

∑

j∈Ω(N)
n

R100
λj

(x, y)

where Ω(N)
n are subsets containing Jn consecutive wavelengths of the full discretization so

that
∑N

n=1 Jn = 100.

Fig. 7 and Fig. 8 show the evolution of the error εcU as a function of N for the red

channel which corresponds to the channel with the highest relative error (in percentile of the

maximum value of the channel ER
U,true). Calculations were performed for both types of camera

(black dashed lines and gray plain lines) in type 1 water for Zo = 15m (Fig. 7) and in type 2

water for Zo = 7m (Fig. 8). From these curves it can be seen that errors in the red channel

are higher for camera II than camera I. This can be explained by the shapes of the sensor

spectral responses: For camera I the responses are wider than for camera II, the discretization

can thus be coarser whereas the use of camera II requires a finer sampling. Moreover, it is

possible to see that εcU follows the same tendency as εcB: The adequacy becomes better as

the number of wavelengths increases and stabilizes around N = 25. For both cameras, it is

thus still possible to find a limited number of wavelengths N for which the errors on the

simulation of the scene contribution Ec
U,N are smaller than a few percent.

3. Image simulation from RGB data

The previous study has shown that it is not necessary to take into account N = 100 wave-

lengths to simulate realistic underwater images, provided at least N = 25 wavelengths are

used. Nevertheless, having access to this limited number of wavelengths may still be difficult.

Indeed one has usually only access to a simple RGB image of the scene, taken for example

in absence of water. Only the reflectivities for the 3 spectral channels RR, RG and RB are

then available to simulate what should have been observed in an underwater environment.

In this case, the simplest way to simulate RGB images is to calculate only the three spectral

components of the image at three wavelengths λR, λG and λB. As shown in the previous

section, it will necessarily decrease the accuracy of the RGB color rendering. Nevertheless,

another solution can be considered. It consists in performing a first step of reconstruction

in order to recover as best as possible the spectral reflectivity RN
λ of the scene from the

initial RGB data {RR,RG,RB}. In this section, these two approaches are detailed. They are
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respectively referred as the simple RGB and reconstruction approaches and their accuracies

are compared.

3.A. The simple RGB and reconstruction approaches

On the one hand, with the simple RGB approach, the three reflectivities {RR,RG,RB} are

directly used to simulate the underwater color image. In this case, following Eq. (8), the

underwater image obtained in channel c ∈ {R,G,B} is denoted Ec
rgb and reads

Ec
rgb(x, y) = Eu,λc(x, y) + Eb,λc(x, y) (13)

where λc ∈ {λR, λG, λB}. Similarly the corresponding backscattering contribution is equal

to Ec
U,rgb(x, y) = Eu,λc(x, y) and the scene contribution to Ec

B,rgb(x, y) = Eb,λc(x, y).

On the other hand, the reconstruction approach assumes that the images can be sim-

ulated from a spectral reflectance map with N spectral channels {R̂1, R̂2, · · · , R̂N} that

have been recovered from the RGB data RR, RG and RB. Retrieving these N chan-

nels consists in determining a matrix H so that, for a given pixel with coordinates

(x, y), r̂ = Hm where r̂ =
[
R̂1(x, y), · · · , R̂N(x, y)

]T
is the reconstructed spectrum,

m = [RR(x, y),RG(x, y),RB(x, y)]
T and T is the transpose operator. Although various ap-

proaches can be envisaged to recover the whole reflectivity spectrum [33, 34], theoretical

discussion about the best way to solve this under-determined inversion problem is out of

the scope of this paper. As mentioned in Ref. [33], the spectral behavior of the reflectivities

{R̂1, R̂2, · · · , R̂N} is generally smooth. Therefore the smoothing inverse approach detailed

in Ref. [33,34] has been chosen in the following since it is also known to provide good recon-

struction results when spectral responses with large bandwidth are used [34], as in the case

of camera I and II. This approach consists in choosing, among all the solutions r̂ satisfying

m = Θr̂, the solution with minimal Laplacian norm, where Θ = ∆λ[φR, φG, φB]T is the

spectral response matrix. This leads to [33,35]

r̂ = G−1ΘT
(
ΘG−1ΘT

)−1
m (14)

with G =
[
DTD+ εI

]
where I is the N × N identity matrix, D is the matrix so that Dr̂

corresponds to the second derivative of r̂,

D =





1 −2 1 0 . . . . . . . . . 0

0 1 −2 1 0
...

0 0 1 −2 1
. . .

...

0
. . . . . . . . . . . . 0

...
... 0 1 −2 1 0

0 . . . . . . . . . 0 1 −2 1




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and ε is small regularization constant (ε = 10−14 in the simulations) to prevent G from being

singular (see details in Ref. [34]).

According to Eq. (8), the underwater image in channel c ∈ {R,G,B} simulated using this

reconstruction approach is thus equal to

Êc
N(x, y) = ÊU,N(x, y) + EB,N(x, y)

where ÊU,N(x, y) corresponds to the scene contribution simulated from the previous estimated

reflectance map {R̂n(x, y)}. Moreover, since the backscattering contribution EB,N(x, y) is

independent of the scene, it is still calculated according to the same method as in section 2.

3.B. Comparison of the two approaches

In this subsection, it is proposed to study the precision of these two approaches. In order

to have a reference to compare the adequacy of the two methods, the theoretical scene of

subsection 1.B is once again considered and the images Ec
•,N=100 of section 2 are still taken as

the ground truth Ec
•,true. However it is now assumed that only the RGB maps shown in Fig. 4

are available for underwater image simulation, i.e. one has only access to {RR,RG,RB} with

Rc(x, y) =
N∑

n=1

φc(λn)Rλn(x, y)

with c ∈ {R,G,B}. Moreover, for the simple RGB approach, λR = 619nm, λG = 534nm,

λB = 459nm are chosen, which corresponds to the wavelengths of the camera response

maxima.

Fig. 9 shows examples of simulation using either the simple RGB approach or the recon-

struction approach for both types of water and both cameras. All simulations were performed

for Zo = 7m. As it can be seen, the two approaches give different visual rendering, espe-

cially for camera I. For a better analysis of these results, the irradiance in the red and blue

channels for the 20 patches have been plotted in Fig. 10 for camera I. These profiles have

been obtained using either the ground truth shown in Fig. 5 (plain curves), the simple RGB

approach (dots with dashed curves) or the reconstruction approach with N = 100 (crosses),

in the case of three types of medium (air, type 1 water and type 2 water).

As it can be seen, the three approaches are equivalent in the absence of water (cf. Fig. 10

row 1), but the simple RGB strategy may lead to image spectral components that strongly

differ from the ground truth in the presence of water. Indeed, in the red channel (Fig. 10.(a)),

the simple RGB approach tends to underestimate the contrast of the patches in type 1 water

(cf. Fig. 10.(a) row 2). In this case, the simple RGB strategy predicts a RGB color image in

which most of the details may be lost in the red channel in the presence of noise (i.e. the red

channel is assumed to contain no more information on the scene) whereas the different patches
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can still be distinguished on the ground truth red channel. Similarly in water of type 2, Fig. 10

(row 3) shows that the RGB approach miscalculates the backscattering contribution either

by underestimating it in the red channel (Fig. 10.(a) row 3) or by overestimating it in the

blue channel (Fig. 10.(b) row 3). These phenomena are due to the shape of the spectral

responses of camera I: indeed the secondary maxima of φR
λ , φG

λ and φB
λ can not be taken

into account by the simple RGB approach. This remark highlights the fact that modeling

the spectral response of the sensor is necessary to have an adequate color rendering. On

the contrary, even if the reconstruction of the spectral reflectivities R̂λ from {RR,RG,RB}
cannot be very accurate, the RGB image simulated with the reconstruction approach is close

to the ground truth (see crosses in Fig. 10 curves compared to ground truth plain lines).

These conclusions are confirmed by the calculation of the errors εcU and εcB performed

when using the simple RGB approach (cf. Fig. 6, Fig. 7 and Fig. 8, black and gray triangles

for errors in the red channel). As it can be seen the errors are higher with this approach

compared to the case where images are simulated with N ≥ 25. This is true for simulations

using both cameras as errors can be almost one order of magnitude higher compared to

simulations using the direct multispectral approach (detailed in section 2 and which assumes

that the spectral reflectance of the scene is perfectly known). On the other hand, when image

simulations are performed with the reconstruction approach (black and gray dots in Fig. 7

and Fig. 8), errors have a behavior very similar to the case where the scene reflectance is

assumed to be perfectly known and decrease as the number of reconstructed wavelengths

increases. Of course, contrary to the case of a perfectly known reflectance, errors do not

converge toward zero since the reconstruction method cannot retrieve exactly the initial

spectrum, but the errors still stabilize for N ≥ 25 and remain lower than errors due to the

simple RGB approach. Thus, even if only RGB data of the scene are available, retrieving

the spectral information of the scene seems to be generally beneficial for RGB underwater

image formation compared to the simpler RGB approach.

3.C. Example on real data

All the experiments presented in the study so far are based on a scene with perfectly known

characteristics. Fig 11.(a) now illustrates an ”homemade scene” of unknown spectral re-

flectance taken with a standard camera. Assuming a type II camera, underwater images

have been simulated for type 1 water and Zo = 7m with the same experimental conditions

as in the previous sections. Fig. 11.(c) and Fig. 11.(b) respectively show the results obtained

with the simple RGB approach and the reconstruction approach with N = 25 (i.e. 25 spec-

tral reflectance values have been reconstructed from the initial RGB channels of the scene).

In Fig. 11.(d)-(f) the red channels of the corresponding images are displayed.

Although both simulation methods give quite similar visual color rendering, more critical
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differences can be seen on the red channels. For example, with the simple RGB approach

(Fig. 11.(f)), the red component of non purely red objects seems to be more attenuated

compared to the image obtained with the reconstruction approach (Fig. 11.(e)). In particular,

this leads to a darker notebook cover and a weaker contrast between the red pen and the

background on the left of the image (see red frames). Indeed, in the case of the reconstruction

approach, all the wavelengths integrated in the red channel are not as attenuated as the

single red wavelength used in the simple RGB approach, leading to higher red intensity in

Fig. 11.(e). Therefore, assuming that one wants to restore the image colors for example, a

given technique may lead to different restorations depending on the simulation approach

used to generate the images.

Moreover comparing the red channels of the initial RGB image and of the simulated image

obtained with the simple RGB approach (respectively Fig. 11.(d) and Fig. 11.(f)), one can see

that both images are very close. In the case of the simple RGB approach, light propagation

in clear water (for Zo = 7m) results mainly in a simple attenuation of the red component.

Thus, in the case of color restoration, a simple algorithm, that could be considered to restore

Fig. 11.(f), consists in estimating a multiplicative coefficient for each channel in order to

compensate for the attenuation. However, for the image obtained with the reconstruction

approach which has been shown to lead to more realistic color rendering (cf. subsection

3.B), such a simple method cannot be sufficient since this simulated image displays a more

complex spectral behavior (cf. Fig. 11.(e)). Indeed, contrary to Fig. 11.(f) where the pen and

notebook cover have different intensities (as in Fig. 11.(d)), both objects have similar gray

levels in Fig. 11.(e); this behavior cannot be summed up to a simple attenuation factor.

All these observations highlight a key issue: Since a given situation may lead to differ-

ent diagnoses depending on the way the image is simulated, it may completely bias the

characterization of image processing algorithms.

4. Conclusion

In conclusion, we have presented an underwater color image simulator which extends stan-

dard models to RGB color image simulation, taking into account the spectral characteristics

of all the set-up parameters. It particularly illustrates that choices about detector spectral

responses can clearly impact the visual aspect of the images and may not be neglected for a

correct color rendering. Moreover it has been shown that, depending on the way the images

are simulated, the behaviors of the RGB channels can greatly differ. This is a key point since

it may strongly impact the diagnosis that can be made on the analysis of the main source

of image degradation, especially in the perspective of color restoration.

Furthermore the analysis shows that a complete knowledge of the spectral information of

the scene is advantageous but not mandatory. In the examples discussed in the paper, it was
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possible to find a limited number of wavelengths (typically N ≈ 25) to use in the simulations

so that the errors on the simulated images were small enough compared to the ground truth

model.

We have also shown that even if only RGB data are available to simulate an underwater

measurement, a preprocessing step allowing one to recover more spectral information about

the scene intrinsic reflectance is generally beneficial for the simulation.

One of the main perspectives of this work is to use a simulator to characterize different

color restoration algorithms. Moreover all the simulations presented in this study use the

same VSF model which relies on the data from Ref. [2]. These data are still used as reference

in literature [27–30] but are known to have limitations [31, 32]. Another perspective is thus

to study the impact of the various VSF models and measurements on the color degradation

of RGB underwater. Finally the reconstruction technique presented in the analysis uses a

standard smoothing inverse approach, but other methods could be used such as Wiener

filtering [33]. Studying the impact of the reconstruction method on the simulation precision

thus appears also as an interesting perspective.
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List of Figure Captions

Fig. 1. Geometry and coordinate system of the model used for this study. The scene is

assumed to be parallel to the detector plane. (a) For general calculation. (b) For the back-

scattering contribution calculation.

Fig. 2. (a) Inherent optical properties for type 1 water (clear water) used in the study:

Beam absorption coefficient aλ, scattering coefficient bλ and total attenuation coefficient cλ.

(b) Idem for type 2 water (turbid water). (c) Values of p(ϕ) used to calculated the volume

scattering function (data taken from Ref. [4]).

Fig. 3. [color on-line] Spectral responses of the cameras used for the study. They were adapted

(a) from Ref. [24] for camera I and (b) from Ref. [25] for camera II.

Fig. 4. [color on-line] RGB representation of the reference scene with a known spectral re-

flectance. The reflection coefficient for each patch is perfectly known and taken from Ref. [26].

The scene was imaged in air with camera I (a) and camera II (b). Image size is 46x37 pixels.

Fig. 5. [color on-line] Visual aspect of scene of Fig.4 in subsea environments for Zo = 7m.

Upper row: The scene was imaged using camera I. Bottom row: Idem with camera II. Left

column: Results of simulation for type 1 water. Right column: Idem for type 2 water.

Fig. 6. Error εcB on the simulation of the backscattering contribution in type 1 water as a

function of the number N of wavelengths for Zo = 15m. The results are plotted as a percentile

ratio of maxx,y Ec
B,true(x, y) for (a) the red channel, (b) the green channel and (c) the blue

channel.

Fig. 7. Error εRU on the simulation of the scene contribution in the red channel for type 1

water as a function of the number N of wavelengths. The result is plotted as a percentile

ratio of maxx,y ER
U,true(x, y) and for Zo = 15m.

Fig. 8. Same as Fig. 7, but for type 2 water with Zo = 7m.

Fig. 9. [color on-line] Visual aspect of scene of Fig.4 in subsea environments for Zo = 7m.

Upper row: The scene was imaged using camera I. Bottom row: Idem with camera II. Left

columns: Results of simulation with for type 1 water. Right columns: Idem for type 2 water.

(a), (c), (e), (g): Simulations were performed with the simple RGB approach. (b), (d), (f),

(h): Idem with the reconstruction approach.

Fig. 10. Irradiance profiles of the 20 patches corresponding to the images of Fig. 4.(a) simu-

lated for Zo = 7m with camera I. Row 1: Irradiance profiles in air. Row 2: Irradiance profiles

in type 1 water. Row 3: Irradiance profiles in type 2 water. Plain curves: Ground truth. Dots

and dashed line: Simple RGB approach. Crosses: Reconstruction approach. (a) Red channel.

(b) Blue channel.

Fig. 11. [color on-line] (a) Initial RGB image (256x160 pixels) taken with a standard camera.

(b) Simulated RGB image for type 1 water and a distance Zo = 7m with a reconstruction

step and the multispectral approach (N = 25). (c) Idem using the simple RGB approach.
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(d), (e), (f): Red channels correspond respectively to (a), (b) and (c).
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Fig. 1. Geometry and coordinate system of the model used for this study.

The scene is assumed to be parallel to the detector plane. (a) For general

calculation. (b) For the backscattering contribution calculation.
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Fig. 2. (a) Inherent optical properties for type 1 water (clear water) used in

the study: Beam absorption coefficient aλ, scattering coefficient bλ and total

attenuation coefficient cλ. (b) Idem for type 2 water (turbid water). (c) Values

of p(ϕ) used to calculated the volume scattering function (data taken from

Ref. [4]).
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Fig. 3. [color on-line] Spectral responses of the cameras used for the study.

They were adapted (a) from Ref. [24] for camera I and (b) from Ref. [25] for

camera II.
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Fig. 4. [color on-line] RGB representation of the reference scene with a known

spectral reflectance. The reflection coefficient for each patch is perfectly known

and taken from Ref. [26]. The scene was imaged in air with camera I (a) and

camera II (b). Image size is 46x37 pixels.
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Fig. 5. [color on-line] Visual aspect of scene of Fig.4 in subsea environments

for Zo = 7m. Upper row: The scene was imaged using camera I. Bottom row:

Idem with camera II. Left column: Results of simulation for type 1 water.

Right column: Idem for type 2 water.
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Fig. 6. Error εcB on the simulation of the backscattering contribution in type 1

water as a function of the number N of wavelengths for Zo = 15m. The results

are plotted as a percentile ratio of maxx,y Ec
B,true(x, y) for (a) the red channel,

(b) the green channel and (c) the blue channel.
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Fig. 7. Error εRU on the simulation of the scene contribution in the red channel

for type 1 water as a function of the number N of wavelengths. The result is

plotted as a percentile ratio of maxx,y ER
U,true(x, y) and for Zo = 15m.
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Fig. 8. Same as Fig. 7, but for type 2 water with Zo = 7m.
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Fig. 9. [color on-line] Visual aspect of scene of Fig.4 in subsea environments

for Zo = 7m. Upper row: The scene was imaged using camera I. Bottom row:

Idem with camera II. Left columns: Results of simulation with for type 1

water. Right columns: Idem for type 2 water. (a), (c), (e), (g): Simulations

were performed with the simple RGB approach. (b), (d), (f), (h): Idem with

the reconstruction approach.
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Fig. 10. Irradiance profiles of the 20 patches corresponding to the images of

Fig. 4.(a) simulated for Zo = 7m with camera I. Row 1: Irradiance profiles

in air. Row 2: Irradiance profiles in type 1 water. Row 3: Irradiance profiles

in type 2 water. Plain curves: Ground truth. Dots and dashed line: Simple

RGB approach. Crosses: Reconstruction approach. (a) Red channel. (b) Blue

channel.
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Fig. 11. [color on-line] (a) Initial RGB image (256x160 pixels) taken with a

standard camera. (b) Simulated RGB image for type 1 water and a distance

Zo = 7m with a reconstruction step and the multispectral approach (N = 25).

(c) Idem using the simple RGB approach. (d), (e), (f): Red channels correspond

respectively to (a), (b) and (c).
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