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Abstract—This paper tackles the issue of still image object 

categorization. The objective is to infer the semantics of 2D 

objects present in natural images. The principle of the proposed 

approach consists of exploiting categorized 3D models in order to 

identify unknown 2D objects, based on 2D/3D matching 

techniques. Notably, we use 2D/3D shape indexing methods, 

where 3D models are described through a set of 2D views. 

Experimental results, carried out on both MPEG-7 and Princeton 

3D databases show recognition rates of up to 89.2%.  

Keywords-indexing and retrieval; object classification; 3D 

mesh; 2D/3D shape descriptors. 

I.  INTRODUCTION 

The last decade has been greatly influenced by the 
spectacular development of the digital technologies. 
Nowadays, the availability of low costs audio-visual (AV) 
acquisition and storage devices leads to very large collections 
of images and videos that can shared by multiple users. Such 
databases are used in domains like media, commerce, 
academia, security or for personal purposes. In this context, a 
fundamental issue that needs to be addressed concerns the 
efficient handling of digital content. Retrieving specific 
resources (i.e., elements of interest for the user) is not possible 
when a large database is involved. The use of keywords is also 
restricted by the linguistic variety and needs a prior annotation 
of the digital content (involving human contribution). Manually 
labeling the AV material is not a solution that can be taken into 
account because of human subjectivity as well as time 
constraints. 

The need for automatic object categorization methods 
appears as a crucial challenge. The objective is to determine 
automatically the semantic meaning of an object present in an 
image or video document. The great majority of the existing 
approaches is based on machine learning (ML) techniques [1], 
[2]. Such algorithms aim to automatically learn to recognize 
complex structures and involve two main steps: the learning 
and the classification stages. First, the system needs a set of 
examples (i.e. the training database). Second, based on the 
learned examples, the method has to be able to generalize in 
order to recognize new cases. 

The machine learning techniques include two main 
families: supervised and unsupervised techniques. In the case 
of supervised methods, the system disposes of several sets of 
labeled data and aims at finding the function which better 
discriminates between these sets. Once this function is defined, 

it can be used to classify new data. Some approaches based on 
supervised machine learning methods are proposed in [3], [4], 
[5]. Even if the supervised approaches may be very accurate 
[6], they can often suffer from overfitting [7]. Another 
limitation comes from the need of sufficiently large training 
sets with already classified objects. Results are strongly 
dependent on the considered training set.  

On the contrary, the unsupervised machine learning 
methods allow training from partially or completely unlabelled 
data. Some commonly used unsupervised machine learning 
methods are K-means, Mixture methods, K-Nearest 
Neighbor… For some examples, the reader is invited to refer 
[8], [9]. However, in terms of performances, the unsupervised 
methods are less accurate than the supervised machine learning 
methods.  

In a general manner, when dealing with large databases 
involving an important number of classes, machine learning 
approaches need to exploit more features. The corresponding 
computational complexity becomes in such cases 
intractable [10]. Another important aspect is that objects may 
have very different appearances in images because of variation 
in pose. Thus, the training set should include not merely 
different examples of objects from each class, but also different 
instances of objects, corresponding to different poses. 

In this paper we present a new method that avoids applying 
machine learning techniques when dealing with a large variety 
of objects. Instead of using ML, we propose to use categorized 
3D models from existing 3D repositories in the classification 
process. 

The paper is structured as follows. In Section 2 we present 
the 2D/3D shape-based indexing approach adopted. The object 
recognition framework is described in Section 3, while the 
experimental results are presented and analyzed in Section 4. 
Finally, Section 5 concludes the paper and opens perspectives 
of future work. 

II. SHAPE-BASED 2D/3D INDEXATION 

Let us first recall the general principle of 2D/3D indexing 
methods. 

A.  The Principle of 2D/3D Indexation 

The underlying principle of 2D/3D indexing approaches is 
based on the following observation: two similar 3D models 
should present similar views when projected in 2D images. 
Thus, instead of describing a 3D object in the original 3D 



space, the model is represented as a set of 2D views associated 
to different projection angles (and under the assumption of a 
given projection model).  

Such a strategy makes it possible to compare two different 
3D models, but also to compare a 3D model with a 2D object 
present in 2D images. 

In order to obtain a unique set of views, whatever the 
object's size, position or orientation, each model M is first 
centered in the origin of the Cartesian system and resized to fit 
the unit sphere. Furthermore, the model is projected and 
rendered in 2D from N different viewing angles, resulting in a 
set of N projections, denoted by Pi(M). In our case, we have 
exclusively used binary images corresponding to the projected 
silhouettes (Figure 1. Finally, each projection Pi(M) is 
described by a 2D shape descriptor di(M). The set of all 
descriptors {di(M)} yields the 2D.3D representation of the 
considered 3D object. 

 

Figure 1.  Projecting a model. a. Viewing directions ni; b. Model 

projection according to the n1 direction; c. the resulting silhouette images. 

In order to fully implement a 2D/3D indexing approach, 
several elements have to be specified. The first one is the set of 
viewing directions {ni} used to perform the projections. Also, 
the number of images per model has to be carefully considered, 
since a large number of silhouettes provide more complete 
descriptions but also increases the computational cost of the 
subsequent matching algorithms. Finally, the choice of 
appropriate 2D shape descriptors is fundamental for ensuring a 
discriminant description.  

In the next section we will present different strategies of 
projection and descriptors considered in our work. 

B. The proposed 2D/3D indexing methods 

1) The viewing angles selection: 
Several strategies for selecting a set of viewing angles can 

be considered. A first approach, also proposed by the MPEG-7 
standard [11], is based on the assumption that the most 
discriminant views are those corresponding to the principal 
planes (obtained with the Principal Component Analysis (PCA) 
[12]) (Figure 2. ).  

 

Figure 2.  PCA-based positioning of the camera 

Moreover, the three principal planes define eight octants. If 
we consider their bisectors, four additional views can be added 
to the first three images in order to obtain a more complete 
representation. From now on, we will refer to these PCA-based 
strategies as PCA3 and PCA7 (with 3 and respectively 7 
views).    

A second approach for the viewing angles selection aims at 
evenly distributing the cameras around the model. A first 
method, introduced in [13], consists of considering the vertices 
of a regular dodecahedron which results in 10 views. Two sub-
cases can be further considered. The first case corresponds to 
the situation where object's axes of inertia are aligned with the 
coordinate system (for example, by using PCA).  In the second 
case, the object has an arbitrary, random orientation (Figure 3. 
). As the dodecahedron-based positioning of the camera is used 
for the Light Field Descriptor (LFD) [13], we will use the 
acronyms LFDPCA respectively LFD for denoting these two 
projection strategies.   

 

Figure 3.  Dodecahedron-based positioning of the camera. 

Finally, we have also considered a third projection strategy 
which combines the previous two, using at the same time the 
views on the principal planes (given by PCA) and a uniform 
distribution of the cameras around the object. In this case, the 
vertices of an octahedron are used as support for the camera 
[14]. In order to obtain additional views, each face of the 
octahedron is successively subdivided. At the first level there 
are 3 viewing directions (which are the same of the PCA3 
strategy). At the second level 9 views are obtained while at the 
third level 33 (Figure 4. ). From now on, we will refer to these 
techniques as OCTA3, OCTA9 and OCTA33. 

 

Figure 4.  Octahedron-based camera positioning. 

2) The 2D shape description: 
The second part of the 2D/3D indexing process concerns 

the extraction of the 2D shape descriptors. As the views are 
binary images representing only the shape of the object 
(without inside contours, shadows…), the only features that can 
be exploited are the exterior contour and the corresponding 
region of support. In our work, we have considered two 



contour-based and two region-based descriptors, briefly 
recalled here below. 

Let us start with the Contour Scale Space (CSS or CS) 
descriptor [15]  proposed by the MPEG-7 standard [16], [17], 
[18]. The CSS is obtained by successively convoluting the 
curve representing the contour with a Gaussian kernel. Using a 
multi-scale analysis process, the curvature peaks are 
determined, with curvature value and corresponding position in 
curvilinear abscise. The associated similarity measure between 
two CSS representations is based on a matching procedure 
which takes into account the cost of fitted and unfitted 
curvatures peaks [18]. 

The second approach adopted is the MPEG-7 Region Shape 
(RS) descriptor, based on the 2D Angular Radial Transform 
(ART) [19]. In this case, the object's support function is 
represented as a weighted sum of 34 ART basis functions. The 
decomposition coefficients constitute the descriptor. The 
distance between two shapes is simply defined as the L1 
distance between the absolute values of the ART coefficients. 

Another region descriptor is based on the 2D Hough 
Transform (HT) [20]. Each point p corresponding to the 
silhouette of the object is represented in the (s, θ) space. If we 
consider a line l passing through the point p, then θ is the angle 
between the line l and the Ox axe, and s represents the distance 
from the coordinate system origin to the line. Therefore, the 
image can be represented in the (s, θ) cumulative space. The 
associated similarity measure between two HT representations 
is the L1 distance computed for the (s, θ) coefficients. 

Finally, we propose a new descriptor, so-called Angle 
Histogram (AH). The shape contour is first sub-sampled in a 
number of successive 2D points. The angular histogram is 
created by computing the angles defined by each three 
consecutive samples. In our experiments we have used a 18 
bins histogram for an 180̊ interval. Different histograms are 
obtained, depending on the sampling steps. When the sampling 
step is small, the histogram will encode the details of the 
contour, while for big values the global features are extracted. 
The 2D AH results by concatenating five angular histograms 
obtained with different sampling steps. A simple L1 distance is 
used as similarity measure.  

Let us now describe the 2D shape recognition framework 
proposed.  

III. 2D SHAPE RECOGNITION FRAMEWORK 

Figure 5. presents an overview of the 2D shape recognition 
framework.  

 

Figure 5.  The 2D shape recognition framework. 

A 3D categorized database is supposed to be available. 
Each model in the database is described by the four descriptors 
presented in Section II.B.2) for all the 6 projection strategies 
retained (i.e. PCA3, PCA7, LFD, LFDPCA, OCTA9, 
OCTA33).  

As input to the system, we consider a binary image 
corresponding to an unknown object whose semantics needs to 
be determined. Such an object can be obtained with the help of 
some semi-automatic segmentation methods [21]. The 2D 
binary object is also indexed with all the 4 shape descriptors 
retained.  

The distance d(O,M) between the 2D object O and the 3D 
model M is given by the minimum distance between the 2D 
object and all the projections Pi(M) of the 3D model. 

  ,  = min  ,    .   
In order to retrieve the category of the input image, the 

system analyzes which are the most similar objects. Next, the 
categories that are the most represented among the first top 
retrieved 3D models are presented as potential classes of the 
2D object. 

In order to measure the performance of this 2D shape 
recognition system, we have established an experimental 
evaluation protocol, described in the next section. 

IV. EXPERIMENTAL EVALUATION 

The experiments have been carried out on two different 3D 
model databases. First, the MPEG-7 dataset [11], which is 
composed of 362 models divided into 23 semantic classes. 
Categories include humanoids, airplanes, helicopters, cars, race 
cars, trees (with and without leafs), rifles, missiles, pistols etc. 
These models present intra-class variability as well as inter-
class similarity. The second 3D database we have used is the 
Princeton Shape Benchmark (PSB) [22], which includes 1814 
models semantically categorized in 161 classes. Compared to 
the MPEG-7 database, this classification is more precise and 
presents a hierarchical tree structure which supports sub-
classes, For example, a distinction between commercial 
airplanes, (e.g., biplanes, fighter jet, glider airplane...) is done 
for the “airplane” category. The PSB database includes various 
models representing aircrafts, animals, furniture, plants, sea 
vessels, musical instruments, tools, vehicles … 

We have also created a 2D object database consisting of 
115 images randomly chosen from the web (corresponding to 5 
images for each MPEG-7 category). When using the PSB, only 
65 objects have been considered (corresponding to the 13 
categories that are common for the MPEG-7 and the PSB 
databases). For each image, the objects of interest have been 
manually segmented from the available images. 

The performance measure adopted is the recognition rate 
(RR), defined as the percentage of cases where the correct 
category is assigned to the input image. In order to associate a 
class C(O) to a 2D object O, the N most similar 3D models 
(M1… MN) from the database are considered. Each model 
belongs to a category. We can thus identify a number of NC 
most represented categories among the N top retrieved results 



(C1 … CNc). If one of these classes coincides with the category 
to which belongs the image, then we can state that the 
recognition has succeeded.  

The RR is then defined as a function of the number NC of 
possible categories accepted, as described by the following 
equation: 

 �� � =
 �  , � =0 . , (2) 

where 

 �  , � =  1;       �( ) ∈  �1 …  �  
0;      � .   (3) 

In our experiments, we have taken into account one, two or 
three most represented categories (Nc = 1,2,3). In the case of 
Princeton database, where the number of existing categories is 
more important (161 classes), we have also computed the score 
RR(NC=10). 

The parameter N which gives the length of the analysis 
window has been set to 20, which represents approximately the 
average size of the categories.  

Tables 1 and 2 respectively present the scores obtained 
using the MPEG-7 and Princeton Shape Benchmark databases. 

For both databases, we observe a global behavior regarding 
the viewing angle selection; in most cases LFD and OCTA33 
strategies led to the maximal performances in terms of 
recognition rate, whatever the considered descriptor. We 
achieved 60% recognition rate for the CS descriptor and 70.4% 
for AH when employing the MPEG-7 database. In the case of 
PSB database, the same global behaviors were observed. CS 
and AH are the descriptors providing the highest recognition 
rates, with RR(3) scores of 64.6% and respectively 60%. When 
considering the RR(10) scores, the recognition rates increase up 
to 76.9% for both CS and AH descriptors.  

We have also tested our system when the two descriptors 
with the best performance (i.e. CS and AH) were combined 
(tables I.e. and II.e.). The idea here is to attempt to exploit the 
possible complementarities between the two descriptors. 
Therefore, instead of computing the scores based on the most 
similar models given by the CS, we have also considered those 
provided when using AH descriptor. Thus, the RR(3) scores 
have increased up to 71.3% when using the MPEG-7 database 
and up to 67.7%  when PSB was used. Also, the recognition 
rate of the combined descriptor has improved to 84.6% when 
analyzing the RR(10). 

TABLE II.  RECOGNITION RATE FOR THE PSB 

a. 

CS PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 32.3 41.5 40.0 41.5 41.5 44.6 

R(2) 43.1 53.8 53.8 50.8 49.2 58.5 

R(3) 49.2 58.5 58.5 55.4 56.9 64.6 

R(10) 63.0 76.9 72.3 69.2 69.2 72.3 
 

b. 

RS PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 26.2 20.0 23.1 24.6 29.2 32.3 

R(2) 30.8 27.7 32.3 41.5 43.1 40.0 

R(3) 38.5 35.4 38.5 41.5 46.2 46.2 

R(10) 55.4 49.2 55.4 55.4 63.1 60.0 

 

c. 

AH PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 27.7 40.0 40.0 36.9 35.4 44.6 

R(2) 40.0 50.8 49.2 53.8 50.8 52.3 

R(3) 49.2 55.4 52.3 58.5 60.0 53.8 

R(10) 66.2 70.8 72.3 73.8 73.8 76.9 

 

d. 

H PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 10.8 12.3 21.5 18.5 26.2 26.2 

R(2) 12.3 15.4 32.3 23.1 32.3 33.8 

R(3) 15.4 20.0 36.9 24.6 35.4 40.0 

R(10) 30.8 35.4 41.5 29.2 49.2 52.3 

 

e. 

CS + AH PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 36.9 49.2 46.2 46.2 43.1 44.6 

R(2) 47.7 60.0 56.9 60.0 49.2 61.5 

R(3) 53.8 66.2 61.5 63.1 56.9 67.7 

R(10) 67.7 81.5 81.5 83.1 80.0 84.6 

 

f. 

CS + AH 

LFD 
PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 44.6 50.8 46.2 50.8 47.7 44.6 

R(2) 56.9 60.0 56.9 56.9 53.8 60.0 

R(3) 64.6 66.2 61.5 63.1 61.5 66.2 

R(10) 83.1 83.1 81.5 89.2 84.6 86.2 

  

TABLE I.  RECOGNITION RATE FOR THE MPEG-7 DATABASE 

a. 

CS PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 33.9 34.8 37.4 33.9 37.4 37.4 

R(2) 41.7 53.9 52.2 50.4 51.3 51.3 

R(3) 53.9 61.7 59.1 60.0 56.5 60.0 

 

b. 

RS PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 24.3 22.6 28.7 27.0 26.1 30.4 

R(2) 36.5 37.4 40.9 37.4 42.6 46.1 

R(3) 40.9 45.2 46.1 45.2 50.4 54.8 

 

c. 

AH PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 30.4 35.7 44.3 42.6 32.2 38.3 

R(2) 47.8 55.7 60.9 56.5 48.7 60.0 

R(3) 56.5 61.7 67.0 62.6 60.0 70.4 

 

d. 

H PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 18.3 20.9 27.0 24.3 28.7 34.8 

R(2) 27.0 29.6 35.7 30.4 36.5 41.7 

R(3) 37.4 37.4 46.1 35.7 43.5 49.6 

 

e. 

CS + AH PCA3 PCA7 LFD LFDPCA OCTA9 OCTA33 

R(1) 37.4 40.0 41.7 41.7 38.3 39.1 

R(2) 47.0 53.0 60.0 55.7 53.9 60.0 

R(3) 58.3 62.6 71.3 67.8 61.7 70.4 

 

f. 

CS + AH 

LFD 
PCA3 PCA7 LFD 

LFD

PCA 

OCT

A9 

OCT

A33 

R(1) 41.7 40.9 41.7 41.7 40.9 39.1 

R(2) 55.7 54.8 60.0 56.5 58.3 57.4 

R(3) 66.1 68.7 71.3 68.7 65.2 68.7 

 



As the LFD strategy provides promising results, while 
using a small number of views per model, we have also tested 
the combination between the LFD and all the other projection 
strategies, reaching a recognition rate of 89.2% (tables I.f. and 
II.f.), when LFD is combined with LFDPCA. 

The results presented above show the interest of integrating 
some a priori knowledge in the recognition process, driven 
from existing 3D models and exploited with the help of 2D/3D 
indexing techniques. 

Despite the fact that the highest scores are obtained when 
several candidate categories are taken into consideration 
(NC≠1), we believe that such a multiple response is still very 
useful. Our framework can be used in order to reduce the 
number of candidate categories from 161 (in the case of PSB 
database) to NC. Therefore, if we integrate this approach within 
existing machine learning techniques, we can significantly 
speed-up the recognition process. Such a mixed system would 
also allow achieving superior recognition rates.  

Finally, when considering the issue of 2D/3D object 
retrieval it is useful to develop appropriate user-interfaces that 
can help to both evaluate the approaches and perform semi-
automatic data annotation. The proposed system is illustrated in 
Figures 6, 7 and 8. 

The user has the possibility to select different descriptors 
and projection strategies, to perform queries, compare/validate 
results and finally annotate images.  

Figures 6, 7 and 8 contain examples of queries representing 
a humanoid, an airplane and respectively a tree. It can be 
observed that the category of the given query image was 
retrieved within the first three returned positions.  

 

 

Figure 6.  2D/3D retrieval and categorization with the proposed system, 

with a query representing a humanoid. 

The 2D/3D retrieval and categorization system has been 
developed with the help of web technologies/services and thus 
can be remotely accessed by multiple users.  

 

 

Figure 7.  2D/3D retrieval and categorization with the proposed system, 
with a query representing an airplane. 

 

Figure 8.  2D/3D retrieval and categorization with the proposed system, 

with a query representing a barren tree. 

V. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented a novel recognition 
algorithm for semantic labeling of 2D objects extracted from 
still images. As the projection strategy and the 2D shape 
descriptors are key issues for the 2D/3D indexing methods, we 
have analyzed the performance of different such approaches. 
Thus, we observed that LFD and OCTA33 strategies provide 
better scores in most cases. When comparing the four 
descriptors that we have tested, we have observed that the two 
contour-based descriptors (i.e. CS and AH) provided highest 



recognition rates. Moreover, we have exploited their 
complementarity by combining them and thus improving the 
scores obtained with only one descriptor. We have also 
computed the recognition rates obtained when combining two 
indexing methods based on different projection strategies. As a 
result, the scores were further improved (up to 89.2%) when 
we considered two viewing angle selection approaches. 

In our future work we intend to extend the proposed 
approaches to 2D video objects. By using a tracking tool, the 
system will dispose of several views per query model. This 
additional information could greatly help the recognition 
process. 

Furthermore, we plan to integrate an approach exploiting 
the internal edges of the shape in order to obtain more 
discriminant descriptions.  
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