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Abstract

Currently, the widely used notion of activity is increasingly present

in computer science. However, because this notion is used in speci�c

contexts, it becomes vague. Here, the notion of activity is scrutinized

in various contexts and, accordingly, put in perspective. It is discussed

through four scientic disciplines: computer science, biology, economics,

and epistemology. The de�nition of activity usually used in simulation

is extended to new qualitative and quantitative de�nitions. In computer

science, biology, and economics disciplines, the new simulation activity

de�nition is �rst applied critically. Then, activity is discussed generally.

In epistemology, activity is discussed, in a prospective way, as a possible

framework in models of human beliefs and knowledge.
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1 Introduction

In computer science, as pointed out in [1], the notion of activity is a very generic
term, which can be applied to a variety of di�erent topics. This notion of activ-
ity is di�erent from the classical notion used in simulation. The usual activity
notion can be found in Tocher [2], who also �rst described the three phases ap-
proach, as an optimization of an activity-based simulation. In [3], Balci presents
the concept of activity as a possible approach to drive the implementation of a
discrete event simulation kernel. An object-oriented variant of the three phases
approach was introduced by Pidd [4].

In many �elds, the notion of activity can be found. For example, it is a funda-
mental issue in computer graphics, from Z-bu�ers [5], to current work required
for fast rendering of di�erent level of details [6, 7] in complex scenes or mul-
tiresolution modeling in game engine [8]. In autonomic systems [9, 10], ensuring
the persistence of the self-∗ properties requires a feedback loop based on track-
ing certain variables that account for activity changes in the system, from the
level of the operating system (e.g., in Solaris 10) to the level of large cloud-
based systems. In everyware/ambiant/pervasive/ubiquitous systems [11], the
key issue is to track the activity/location of a user to adapt local devices to the
presence/absence and movement of the user's activity. Nowadays, any parallel
system copes with dynamic requirements for resources using load-balancing [12]
algorithms to track the activity taking place in each computing site to reallo-
cate and reschedule tasks according to changes in both the demands and the
availability of resources.

When modelling and simulating dynamic systems, the notion of activity is a
key notion, which, in some contexts, can lead to structure changes of the state
space as coined by [13], with the notion of dynamic systems embedding a dynamic
structure. An attempt to quantify and formalize a simulated system activity
has been proposed in [14] for model exploration.

Even if many computer science studies attempt to frame the notion of activ-
ity for modelling and simulating systems, this task remains interdisciplinary.
Therefore, to extend the de�nition of activity, looking in the mirror of other dis-
ciplines would be judicious. Although the concept of activity is found in many
disciplines, very few address activity explicitly. Activity concept is used id-
iosyncratically. Analyzing activity in every discipline, in the same study, should
allow federating this notion and building more abstracted elements. Finally, it
is expected that interactions between disciplines will be facilitated.

This study aims at using the activity notion through four scienti�c disciplines:
computer science, biology, economics, and epistemology. Our goal is to analyze
activity answering in every section/discipline the �ve fundamental questions:
(i) What is activity in this context?, (ii) Why use it?, (iii) How to de�ne it?,
(iv)Where to use it?, (v) When to use it?

It is believed that: activity can be used at many speci�cation levels, in a fed-
erative interdisciplinary approach, to achieve an activity-based architecture for
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modeling and simulating component systems.

If we come back to the de�nition of the word Activity, we can realize that it is
derived:

�From Latin: actives. Meaning `state of being active, briskness, liveliness'
recorded from 1520s. A speci�c deed, action, function, or sphere of action: so-
cial activities � A work, esp. in elementary grades at school, that involves direct
experience by the student rather than textbook study � An energetic activity; an-
imation; liveliness � A use of energy or force; an active movement or operation
� A normal mental or bodily power, function, or process � An organizational
unit or the function it performs� (American Heritage® Dictionary.)

This mille-feuille meaning can be re�ned progressively. To approach, draw, and
catch the fundamental entities of activity, a �rst attempt should be discursive.

First, a brief state-of-the-art of activity in Simulation and then a new de�nition
is proposed (cf. Section 2). In Computer Science, cellular interactions and their
ability to exhibit life by reproduction has been majestically modeled by John
Von Neumann and his Theory of Self-Reproducing Automata [15]. In Section 3,
activity de�nitions of Section 2 are applied in the context of Game of Life arti-
�cial metaphor. �Arti�cial interactions� are investigated. Then, �biological and
ecological interactions� are considered, modeled, and simulated through activ-
ity1 in Section 4. After the study of both arti�cial and biological interactions,
activity is considered in decision processes achieved by men living in society
from an economics point of view (cf. Section 5). Finally, the re�exivity of the
modeling process through the use of activity de�nitions is presented. By re�ex-
ivity we mean the modeling mechanisms achieved by the subject with respect
to knowledge and beliefs. The broad sense of modeling (including the deci-
sion process) is thus re-considered in epistemology (cf. Section 6) as a research
perspective.

2 Activity in Discrete-Event Systems

We re-introduce here the de�nitions of activity proposed in [16].

2.1 Previous De�nitions in Simulation

Balci described the four major frameworks that were in use to implement discrete-
event simulation kernels [3]. These conceptual frameworks (also named simula-
tion structures or simulation strategies or world views) guide scientists in the
design and the development of their simulation model. In this paper we con-
fer a particular attention to the activity scanning approach and to the activity

1Approaching the energetic aspects contained in activity, correlated to the notion of forces
and movements initiated by a source of energy.
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concept itself. Activity scanning is also called a two-phase approach, the �rst
phase being dedicated to simulation time management, the second phase to
the execution of conditional activities (e.g., during scanning, execution of sim-
ulation functions depend on the ful�llment of speci�c conditions). In arti�cial
intelligence this approach is known as rule-based programming (also known as
rule-based systems or expert systems) [17]. Buxton and Laski introduced this
approach in the simulation �eld with the Control and Simulation Language
(CSL) [18]. In CSL, when a rule is ��red� a corresponding action is taken and
the system state is updated. This approach is often considered to be dual with
the event scheduling method. The fourth conceptual framework is named the
three phase approach. It is an optimization of the activity scanning approach
proposed by Tocher a year after the introduction of CSL [2]. This optimization
is interesting for systems in which potential activities can be detected at each
time step. The �rst phase is the same as in the activity scanning approach.
The second phase is di�erent since it handles the execution of all unconditional
activities (avoiding rules scanning for rules known to always be �red). The third
phase is then similar to the second phase of regular activity scanning (an activ-
ity is considered and executed if the corresponding rule can be �red). Pidd [4]
provides more details on the latter approaches. Both activity scanning and three
phase approach, as described by the literature, rely on a �xed time increment.
The whole simulation is driven by clock time advance. This time management,
often called clock-based by simulation practitioners, is also named continuous
time by theoreticians [19, 20]. Zeigler considers the �xed timed management
as a discretization of a continuous time function. Because of data structure
management, this approach can be ine�cient when you get a lot of discrete-
event occurrences at the same time, without detecting activities. In addition, it
can also lead to inaccuracies when high precision simulations are considered. An
event-based time management where the time is advanced to the next scheduled
event avoids the two previously cited problems.

Let's review the previous de�nitions [mainly extracted from [3]] of the following
words : activity, event, and process, which are the underlying concepts in this
paper. An activity is an operation that transforms the state of a system over
time. It begins with an event and ends by producing another event (linked to
the termination of the activity). Some de�nitions in the simulation community
consider that an activity is thus a period of time with a known duration, constant
or random, computed or read in a �le if we have a trace based simulation. An
event is what causes a change in the state of the system (eventually composed
of many components). A process is a sequence of activities or events ordered
in time. A process is usually linked to the object, actor or agent oriented
approach in which the life cycle of an active entity is speci�ed. As it can be seen,
events (underlined in previous de�nitions) are central for usual world views. We
propose here a new �ne-grain de�nition of activity grounded on discrete-events.
Then, a full activity-based modeling and simulation life cycle is presented.

4



2.2 A New De�nition of Activity

In the previous de�nitions, activity emerges as a quality of objects. Tradition-
ally, activity, as a measure (a quantity), has been scarcely used at the imple-
mentation level [14], and not at all at the conceptual level (except some recent
exceptions we will see). Nonetheless, in all the previous de�nitions presented
in introduction, discrete-events (underlined) are central � as countable units.
We propose here a new integrative (qualitative and quantitative) de�nition of
activity. First, since events occur as a consequence of system activities, we can
consider that:

De�nition 1. Qualitative activity in a discrete-event system: A system is qual-
itatively inactive when no events occur and qualitatively active otherwise.

Second, at the beginning of the nineties, a C++ simulation library, named Mei-
jin++, proposed an interesting implementation of a discrete-event simulation
kernel. It proposed a dynamic processing of events with di�erent data structures
selecting at runtime the best data structure depending on the number of events,
or their frequency of occurrence and on the overhead needed to copy data from
one structure to the other. We consider here that:

De�nition 2. Quantitative activity in a discrete-event system: The sum of
both internal quantitative activity and external quantitative activity is equal to
quantitative activity, over a simulation time period. Discrete-events can be of
two types: internal or external to the atomic model (endogenous or exogenous).
Internal quantitative activity corresponds to the number of internal discrete-
events, over a simulation time period. Internal activity provides information
about the quantity of internal computations within atomic models. Quantitative
external activity corresponds to the number of external discrete-events, over
a simulation time period. External activity provides information about the
quantity of messages exchanged by atomic models.

Measuring quantitative activity has been used with success for the simulation of
spatially distributed systems in [21]. Notice a crucial distinction, quantitative
activity is de�ned at the simulator level and is a metric of computational resource
usage, while qualitative activity is de�ned at the model level although it can be
used at the simulator level.

Having proposed a new de�nition of activity, we now want to know how activity
can be used in the usual model and simulator architecture of DEVS. First,
considering qualitative activity, atomic models can be de�ned as embedding
a binary state variable: qualitativeActivity={active,inactive}. This has been
widely used in DEVS [cf., e.g., [22, 23]], where cells can be active or inactive].
At each time step, knowing that some atomic models are active and others are
inactive, simulators can focus computations only on active atomic models [24].
This is the activity tracking mechanism. Hence, activity tracking is de�ned as
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the ability of simulators to automatically detect active atomic models, focusing
simulation resources only on these atomic models, during a simulation run.

Cellular automata are a good application case for activity tracking. When sim-
ulating cellular automata, the Hash-Life algorithm, recently re-introduced in
the Golly software (http://golly.sourceforge.net/), is a very good example of
activity tracking. Spatial patterns of qualitative activity are detected at vari-
ous sizes, from the well known elementary patterns to complex meta-cells. A
memorization optimization, more classically used in recursive algorithms, uses
a hash table, where discovered patterns are directly linked to their simulated
future thus avoiding unnecessary re-computation. This activity tracking strat-
egy enables to simulate huge cell spaces (above 1050 cells) on a regular personal
computer.

3 Determination of Activity Con�gurations in Cel-

lular Automata

Considering wave propagations in space, through cellular automata2, consti-
tutes a direct analogy with activity propagation paths. Activity is located in
space where the wave propagates. Inactivity is located in space where the wave
does not propagate. When building the corresponding simulator, computational
resources can be allocated dynamically to track activity. The allocation of sim-
ulator resources depends on �how sparse� is the activity. Categories of activity
propagations can be classi�ed between two extrema: (i) a large wave spreads, at
the same time, in every site of the space, computations need to be achieved in
every site, without accounting for activity tracking (which would be ine�cient.),
(ii) a single thin wave smoothly propagates in a huge space; activity tracking
exhibits very good performances.

During a propagation, activity in space can be determined quantitatively and
qualitatively. At the lowest level, basic activity corresponds to a simple binary
state of cells. At the highest level, activity con�gurations can be identi�ed to
build an activity map of activity propagation. Elements of the map correspond
to well de�ned reproductive and re-occurring con�gurations. The whole activity
level can be quantitatively determined as a percentage of active cells in space.
Quantifying and tracking activity con�gurations and simple active cell change
states is described hereafter.

2Standard cellular automata consist of an in�nite lattice of discrete identical sites, each
site taking on a �nite selection of, for instance, integer values. The values of the sites evolve
synchronously in discrete time steps according to deterministic rules that specify the value of
each site in terms of the values of neighboring sites. CA are models where space, time and
states are discrete.

6



3.1 Simulation in an Excitable Medium

The simulation of wave propagation can be implemented combining existing
e�cient algorithms and an activity-based description of the system.

3.1.1 Excitable Medium

The cellular automata considered in this paper are applied to an excitable
medium. An excitable medium is a nonlinear dynamic system that can propa-
gate a wave. Medium areas that have just propagated a wave lose their propa-
gation capacity for a given period, called refractory period.

Activity-based states can be used to build dynamically a set of active cells
in which computations occur, and, conversely, computations do not concern
inactive cells [25]. Here, the cellular automaton uses a 3D von Neumann neigh-
borhood with three major states:

1. activated state: a cell remains in this state for a prede�ned amount of
time.

2. refractory state: a cell evolves to this state after spending a prede�ned
period of time in the activated state. In this state, a cell cannot be excited
by an activated neighboring cell. A cell remains in this state for an amount
of prede�ned time.

3. inactive state: a cell remains in this state until a neighboring cell turns
into the activated state; in which case, the cell becomes activated.

For example, these three activity-based states can be used to roughly model the
electrical stimulation of heart cells. Depolarizing heart cells can be represented
as activated cells. Repolarizing heart cells can be represented as refractory
cells. Finally, other heart cells states can be represented as inactive cells. A
more precise model of the heart electric stimulation can be found in [26].

3.1.2 Background on Hashlife

Hash Life [27] is a simple, yet powerful, algorithmic technique, which allows
the simulation of very large cellular automata using memoization. Memoiza-
tion consists in avoiding the repetition of the same computations. Computation
results are progressively stored in memory. The algorithm stores for every con-
�guration of cells the result of the computation of the next iteration. However,
to be e�cient, this optimization requires the cells con�gurations already en-
countered to be accessed easily. Two mechanisms can be used to achieve this
goal: (i) An octree for 3D representation (quadtree for 2D representation), and
(ii) A hash table for the con�gurations of cells storage.
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An octree is a tree data structure [28] where each node is either a branch which
can have up to eight child nodes, or a leaf. In the case of Hashlife, a complete
octree is used: each branch has exactly eight children. Each node does not
store its children instances but only their memory addresses. It allows having
only one instance of each cells con�guration which is shared between many
nodes. In Figure 1, a branch has its eight children composed of the same cells
con�guration. Thus, this branch has only eight pointers to the address of the
same instance (@b). The comparison of cells con�gurations can be achieved
simply by comparing their eight children memory addresses.

Figure 1: Example of Multiple Aggregations of the Same Branch Instance.

In the hash table, the key corresponds to the eight children memory addresses
and the value corresponds to the instances of the corresponding cells con�gu-
rations. Knowing the eight children composing a con�guration, it is possible to
access the corresponding instance in the map. Because the result of the next
iteration is stored with the instance, if it has been already computed, it is also
accessed at the same time. Obviously, if it is the �rst time that the cells con�gu-
ration is encountered, it will not be present in the hash table; this con�guration
should be added to the hash table and its next iteration computed.

3.2 Limitations of the Activity De�nition at the Cells Level

To fully understand how this algorithm accounts for activity, it is important to
clearly determine what is the activity in this context. Thus, the next part will
try to apprehend this concept and formulate a de�nition of activity allowing a
better understanding of the algorithm performances.

3.2.1 A First Activity De�nition for Excitable Medium

A �rst level de�nition can be established:

Activity Hypothesis 1: Cells activity

If qualitative activity corresponds to a state change in a cell, then, in a memo-
ized cellular automaton, activity is de�ned at the cells level, and, intuitively the
more cells change state, the more quantitative activity increases and then the
more computation overhead increases.
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To verify this hypothesis, two simulations have been run in excitable medium
with various parameters. The simulation of wave propagation takes place in a
cube of 102433 cells.

In the �rst simulation, new waves appear randomly according to an exponential
law distribution of rate parameter λ = 0.1 (one stimulation every 10 time step
on average). These waves appear randomly on the entire cube. In the second
simulation, new waves appear according to an exponential law distribution of
rate parameter λ = 0.125 (one stimulation every 8 time step on average). Waves
appear on a corner.

Figure 2 represents the percentage of active cells on the entire cube. Logically,
the second simulation, which has more waves initiated, has rapidly more activity
on the entire cube than the �rst simulation. If Activity hypothesis 1 were correct,
the execution time of the second simulation should become larger at each time
step (cf. Figure 3), as soon as the activity of simulation 2 becomes greater than
the activity of simulation 1.

Figure 2: Percentage of Qualitative Activity on the Entire Cube at Each Time
Step.

Quantitative activity of cells has no direct impact on simulation performances.
Although there are seven times less activity at the same time in simulation 1,
slowest time step computations are about 15 times slower than in simulation 2.
In simulation 2, one computation is always computed in less than 0.03s whereas
in simulation 1 computations are completed up to 0.4s.

These results demonstrate that a large number of active cells does not involve
necessarily a large execution time. Indeed, this is due to a di�erence in the
quantity of con�gurations between simulation 1 and simulation 2. There are
less dissimilar con�gurations of cells generated in the second simulation. In the
�rst simulation, because waves are initiated in many points in the cube, a lot of
new con�gurations of cells occur.

As depicted in the example of Figure 4, even if simulation 1 has less cells
activated, there will be more di�erent con�gurations of cells than in the second
simulation where all the wave are very similar. Therefore, since Hashlife uses
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Figure 3: Execution Time of Each Time Step.

memoization, the execution time cannot be only related to cells activity, another
de�nition of activity needs to be explored.

Figure 4: Examples of Simulations Con�gurations.

Activity Hypothesis 1 is false:

If qualitative activity corresponds to a state change in a cell and activity is
de�ned at the cells level, then, in a memoized cellular automaton, an increasing
number of state changes in cells does not involve necessarily a computational
overhead.

3.2.2 Activity De�nition at the Cells Con�guration Level

Activity Hypothesis 2: Activity Con�gurations

If qualitative activity corresponds to a state change in a cell and inactivity
corresponds to no state change in a cell, then, in a memoized cellular automaton,
a con�guration consists of a set of active and inactive cells and an increasing
number of con�gurations involves necessarily a computational overhead.

For example, the three con�gurations of Figure 5, which have di�erent numbers
of active cells, will be computed in the same way by Hashlife. A con�guration
with less active cells (like the one with only inactive cells, in con�guration 1 )
does not require less computation time than other con�gurations 2 and 3, with
more active cells.
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Figure 5: Examples of Con�gurations of Cells.
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Figure 6: Number of New Con�gurations at Each Time Step.

3.2.3 Activity De�nition based on Model and Algorithm

The de�nition and tracking of activity con�gurations is required to implement
e�ciently Hashlife. Model activity consists of the number of new con�gurations
of cells. Here, the number of cells changing state is not the main factor of
activity:

� a simulation with a high cellular activity can have little global quantitative
activity if the same con�gurations of cells re-appear regularly;

� conversely, a simulation with less cell activity can exhibit a higher global
quantitative activity if the cells changing state evolve rapidly to various
con�gurations.

Figure 6 shows the number of new con�gurations of cells found at each com-
putation in both simulations. When compared to Figure 3, we �gure out that
the number of activity con�gurations is strongly related to the execution time
required by Hashlife. In simulation 1, even if the number of cells in which the
number of state changes is lower than for simulation 2 (see Figure 2), supple-
mentary new con�gurations occur thus requiring more computations.

Activity Hypothesis 2 is partially true:

If qualitative activity corresponds to a state change in a cell and inactivity
corresponds to no state change in a cell,

and If, in a memoized cellular automaton, a con�guration consists of a set of
active and inactive cells,

Then an increasing number of con�gurations can involve a computational over-
head, depending on the activity tracking algorithm.

3.3 To Sum Up

A �rst attempt of activity de�nition in cellular models has been provided. Topo-
logical patterns (con�gurations) of both active and inactive cells proved to com-
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plete a basic cells activity de�nition. Con�gurations de�nition opens new re-
search perspectives for abstracting multi-level con�gurations. For example, in
the fractal propagation (cf. Figure 7), a fractal con�guration can be detected
at many levels of details.

Two de�nitions have been experimented through memoized cellular automata
and can be generalized to cellular automata. Considering this extension as a
postulate, the two activity hypotheses are obtained:

Activity de�nition 1: Activity in Cells

In a cellular automaton, qualitative activity corresponds to a state change in a
cell and inactivity corresponds to no state change in a cell.

Activity de�nition 2: Activity Con�gurations

In a cellular automaton, a con�guration consists of a set of qualitatively active
and inactive cells.

Figure 7: Fractal Con�gurations.

A possible issue of this activity de�nition is the di�culty to estimate beforehand
the level of activity of a model. Nothing guarantees that fewer possible cell
states involve fewer di�erent con�gurations during the simulation. The only
simple way to be sure of a model activity is to simulate it, and to detect it using
ad hoc algorithms.

Concerning cellular automata implemented through Hashlife:

� What is activity in this context? An activity con�guration consists of a
con�guration of active and inactive cells.

� Why use it? Focusing on occurrence of new patterns allows reducing
the number of computations in models where new occurrences are not so
frequent.

� How to de�ne it? It is the frequency of occurrence of new con�gurations
of cells which have not been already computed.

� Where to use it? In the implementation of simulators of cellular automata
models.

� When to use it? When tracking pattern activity enables better perfor-
mances than classical methods (depends on the model simulated).
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4 Activity in Living Systems

Within the context of biology and ecology, the answer to the question of activity
leads � at �rst glance�to this simple and de�nitive response: �activity is any-
thing but death�. Thus, any biological object can be considered as active if it
is alive... But things are not so simple. Let us consider some sub-cellular parts
such as mitochondria, ribosome, cell nucleus, endoplasmic reticulum... Is a mi-
tochondria alive? No, a mitochondria is a cellular organelle; a structure which
can produce some energetic compounds (ATP) using sugar and oxygen (respi-
ration). It's a kind of machine dedicated to chemical energetic transformations.
Is it active? Yes.

The notion of function also has to be considered. A biological system is the locus
of a set of functions and, sometimes, the number of functions can be reduced,
altered, in case of malfunctioning (nutrient de�ciencies, pathologies. . . ). In ad-
dition, some functions are involved into homeostasis3 which aims at maintaining
other vital functions. Regarding functions, the �active� status could be linked
to the ability to maintain at least one expected function. But maintaining alive
is much more complicated.

Finally, the de�nition of activity in this context seems strongly connected to the
dialectical concept of life and death. However, it is not our goal to attempt to
give a de�nition of life (yet, scientists cannot agree on an absolute de�nition).
Modeling and simulation of biological systems can lead to one of these two
situations:

1. The system we are interested in is of sub-cellular type. In such conditions,
the system is supposed to be encapsulated into one -or more- living cells.
The structure �cell� is then considered alive as long as the system is active.

2. The system is composed of one or more cells. This system is active as long
as one cell at least is alive, which does not mean that the system itself is
still alive.

Hence, we can see that de�ning a biological system activity depends on the
aggregation level at which the model is de�ned (sub-cellular, cellular, tissue,
organ, organism, population...)

4.1 Activity De�nition

Let us now focus on the concept of activity. What is the essence of biological
activity? The chemical point of view can help: is declared active any biological
object which is the locus of both exchanges (gas, liquids, nutrients, molecules. . . )
and transformations (chemical transformations), which result in maintaining the

3Property of living systems, which regulate their internal environment and tend to maintain
a stable milieu interieur (sensu Claude Bernard).
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integrity of the object. At this point the problem of time granularity arises. If
one observes a biological object with a very small step of time, some (short)
inactivity phases can appear. Thus, the object can be considered as inactive if
and only if its inactivity is recorded on a large enough interval of time. From a
wider point of view, the inactivity of a biological object is stated on a statistical
basis.

Basically, biological objects are systems. In other words, their activity is corre-
lated with the exchanges and transformations (of matter and energy) between
the parts of the system and between the system and its environment. As a �rst
result of these few considerations, we can say that the activity of a biological sys-
tem consists in (i) tracking the internal/external exchanges and transformations
(ii) verifying the integrity of the system (iii) then to draw a statistic. Finally,
one can consider that the de�nition of biological activity we sketched above is
rather consistent with the de�nition of the quantitative activity in a discrete-
event system simulation: �the sum of both internal and external discrete-events
over a simulation time period is equal to the quantitative activity of the system.�

4.2 Measuring and Quantifying Activity

The activity measurement of a biological/ecological system is a real challenge.
We all know that measurement in�uences the system under study, and this is
particularly true for living systems. Among others, a standard method consists
in measuring the CO2/O2 gas exchanged between the system and the atmo-
sphere. This is in fact an indirect measurement of the respiration/photosynthesis-
activity ratio of the system. But this measurement is a global one which cannot
describe accurately the relative activities of the system components.

One particular characteristic of biological and ecological systems is redundancy.
Thanks to redundancy, some unpredictable (unknown) properties not directly
traceable to the system components can appear throughout its functioning. This
is generally called the �emergence property�. Redundancy is double: structural
redundancy (several identical structures execute the same function) and func-
tional redundancy (the same function is executed by several and di�erent struc-
tures). Here again we highlight the notion of function4, indeed, it immediately
appears that if a function is executed (i.e. the system is active), one or more
structures can be implicated. Thus, the measurement of a function by means
of its production over time (concentration of metabolic compounds, number of
descendants. . . ) cannot be a reliable estimation of the activity. In other words
it does not give information about what is active and what is inactive in the
system.

4In biology, at a �rst glance, a behavior is the resultant of the execution of multiple
functions.
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4.2.1 Useless Activity

This is a wider problem. In the context of modeling and simulation, the problem
addressed could embed a lot of active processes, which can potentially partici-
pate at various levels to the response. In this case, it is essential to test which
processes have signi�cantly contributed to the response. Some statistical and
e�cient methods are available to reach this goal.

4.2.2 Activity of the Whole

Is a system active or inactive? Is its activity quanti�able? These are some
crucial questions. Figure 8 depicts the variation of CO2 concentration (in ppm)
at Mauna Loa (French Polynesia). The positive trend indicates the increase
due to human activities. But we can see that there is an obvious seasonal
variation. The variation corresponds to the active period (i.e. from spring to
the end of summer) alternating with the inactive period of vegetation (autumn
and winter). In some sense, the curve gives a measure of the system activity.
The derivative (i.e. the slope) indicates the velocity at which the system evolves
(accelerations and slowing down phases). Minima and maxima point out some
short periods where the C02 �xation equals the respiration of ecosystems.

An analogy-based reasoning led us to consider the simple case of a cellular
automaton (a bounded grid) which aims at simulating the dynamics of several
populations competing for space. The rules that dictate the evolution of cells are
probabilistic. The probability of changing state depends on the neighbourhood
of the cell (be it a Von Neuman or a Moore or even a more exotic neighbourhood
pattern), i.e. the number of individuals of each species and their state (age,
reproduction potentiality and so on. . . ) that surrounds the cell. Each cell
can take one of a �nite -and known- number of states (uncolonized, species 1,
species 2, . . . , species n) and we attempt to evaluate the activity of the
system through time.

Quantitative activity is de�ned as the recording of the number of each of the
states i, i ∈ [1...n], at each time step t of the simulation: ni(t). This allows
calculating, from collected data, the slopes (Vi), as an approximation of the

derivative:Vi(t) = ni(t+∆t)−ni(t)
∆t . The slope corresponds to the average rate of

quantitative activity of the whole system. Then, for each time step we have∑
i=1,..,n(Vi) = 0 and

∑
i=1,..,n(Vi)

2 > 0 . Thus, the average rate of evolution

(or speed) of the automaton is: V (t) = 1
n

√∑
i=1,..,n (Vi(t))

2
. However, even if

V (t) = 0, some modi�cations M can persist and compensate each other. Thus,
M (t) = 1

n

∑
j=1,..,E Pj(t), where Pj(t) is the entity (j) modi�ed at the instant t

and E the overall number of entities. M(t) is the average of qualitative activity
changes of entities N . M(t) = 0 in case of inactivity but is a constant (> 0)
in case of equilibrium. Since V (t)and M(t) are in same dimension, the activity
function A(t) of the system takes the form:
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Figure 8: Monthly Mean of CO2 Concentration (in ppm) at Mauna Loa (Hawaï).
The dashed line represents the monthly values. The solid line represents the sea-
sonally corrected data (moving average of 7 adjacent seasonal cycles centred on
the month to be corrected) showing a positive trend attributed to the increasing
human activities[29].
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A(t) = V (t) +M(t) =
1

n
(

√ ∑
i=1,..,n

(Vi(t))
2

+
∑

j=1,..,E

Pj(t))

Figure 9: Activity Function of a 3 States Cellular Automaton through Time[30].
�1�=M(t), �2�=V(t). (a) Using a high rate of reproduction of one of the 3
states, the system presents a cyclic activity (quasi stationary equilibrium) with
an alternation between intense activity periods and short inactivity periods. (b)
Using a low rate of reproduction (i.e., the highest probability to reproduce for
one of the 3 species into a free adjacent cell is below a threshold value), the
system converges to an equilibrium state in which V (t) is null but M(t) shows
that the system is still active.

However, this simple proposal su�ers from the lack of de�ning accurately what
a �change of state� is. Change of state could take many forms, discrete changes
or continuous as well (a variation of energy level for instance). May be the latter
statement constitutes a crucial point to go deeper in the re�ection about what
activity signi�es, and how the concept could help in saving computing resources
and get (i) a better description of the dynamics, (ii) a better appreciation of the
potentialities of the systems under study.

� What is activity in this context? Activity can have di�erent meanings
depending on the aggregation level at which the system is considered.

� Why use it? To determine which components of a system (cell, individual,
population, ecosystem...) participate in the achievement of a particular
task (or behaviour) and in some cases which components are essential to
maintain the integrity of the system. In some cases, the prediction of
the activity level over time of a biological system (organism, ecosystem...)
can help in optimizing some actions (therapies, ecological engineering and
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management...) The prediction of the activity variation over time of simu-
lated biological systems (set of functions, organism, ecosystem...) can help
in optimizing some actions (therapies: optimal frequency/dose of medica-
tion impulses; ecological engineering and management: best date (or state
of a system) to engage actions (modi�cations, treatments, introduction of
species, etc.)

� How to de�ne it? Today, no simple de�nition can be given in this context.
However, we make this proposal, as a basis for further studies: is declared
qualitatively active any biological object which is the locus of exchanges
(gas, liquids, nutrients, molecules...) and of transformations (chemical
transformations) which result in maintaining the integrity of the object
itself or the system to which it belongs.

� Where to use it? In experimental biology and ecology and within the
prediction tasks of the system behaviour (modeling and simulation).

� When to use it? In decision making (experiments and modeling) and to
improve the e�ects of some actions on systems. Crucial in the analysis of
system functioning. For instance, which genes involved in a network (so-
called pathway) are activated/inhibited as a response to a (�uctuating)
signal coming from the environment of the system under study?

5 Activity in Economics and Decisions

Activity is a central notion in Economics. Therefore, before re-de�ning or using
a concept of activity, we need �rst to review what is economical activity and
how economical activity is investigated in the framework of economic theories.
In a second part, computational activity is modeled through optimal control
theory. Optimal control is used in Economics to mathematically model and �nd
optimal decisions. Finally, a notion of activity, compatible with both Economics
and Computer Science, is proposed for activity evaluation.

5.1 Economical Activity

Following [31]: �Economics is the science which studies how scarce resources are
employed for the satisfaction of the needs of men living in society: on the one
hand, it is interested in the essential operations of production, distribution and
consumption of goods, and on the other hand, in the institutions and activities
whose object is to facilitate these operations�.

Economics is interested by the satisfaction of the needs of men living in society
in combination with scarce resources. Indeed, all studies in economics begin
by the observation of the fact that human needs are in�nite while resources
are limited. The confrontation of these two observations involves compatibility
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problems and so decision problems: there is a need for allocation's decision rules
at an individual level (allocation of budget for consumption or choice of input
quantities for production for example) or at a collective level (street lighting or
national defense for example).

According to this de�nition, economics is concerned by all human �activities�,
consumption or production problems, but also by all problems involving hu-
man activities like, for example, allocation of time to tooth-brushing. The
economic approach to human behaviour by [32] has even extended economics'
�elds to questions traditionally covered by the sociology of the family econ-
omy and marriage market economy policy, economics of education, economics
of altruism, suicide, religious attitudes... In fact, according to Becker and his
followers, economics should not be distinguished from the other disciplines, but
should be seen as a method that would be the only one able to provide a uni�ed
explanation of a wide range of human activities.

In this sense, an economic activity is a phenomenon impacting a scarce resource.
The impact of this activity can be measured individually by economic agents'
utilities.

Considering this de�nition (activity is what economic actors do, utility is usually
the result of an economic activity), the notion of economic activity has been
considered di�erently by economic �elds:

� In the mainstream neoclassical economics, the focus is not on actors ac-
tivities, but on their result (pro�t and utility).

� In behavioral economics, the focus is on activity selection (what actors do),
not on utility anymore. Some models, like Rule Rationality, tentatively
introduce maximization back into activity selection.

5.1.1 (Neo)classical Economics and the Concept of Rationality

Activity is a "core underlying" concept of every classical economic study: a core
concept because most human activities are studied by economic theories, using
several rationality models to determine how activities are selected. But also an
underlying concept because economists mostly consider equilibrium situations
computed with agents' utilities. They consider the activities consequences (the
utility of the resulting situation) not the path (the activities themselves).

The rationality of an agent determines how he decides what to do concerning
economic activities. [33] distinguished between two kinds of rationality that can
be bounded:

� The substantive rationality : �behavior is substantively rational when it is
appropriate to the achievement of given goals within the limits imposed
by given conditions and constraints� [33] . The orthodox economists, from
neoclassical economics, adopt the assumption that agents decision making
is based upon substantive rationality.
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� The procedural rationality : �behavior is procedurally rational when it is
the outcome of appropriate deliberation. Its procedural rationality de-
pends on the process that generated it� [33] . Behavioral rationality cor-
responds to the decision process itself, not to the data used by this process
(substantial rationality). Bounded behavioral rationality is not an opti-
mization process anymore. This kind of rationality can be viewed as an
alternative assumption to substantive rationality, but it has never sup-
planted it in the mainstream economists.

However, none of these rationality models consider activities themselves. Both
consider alternative �utility bags�, and eventually the process to select the best
bag (procedural rationality). Rule rationality is one way to bring activity back
into the economic agent decision process.

5.1.2 Behavioral Economics and Rule Rationality

Whereas neoclassical economics focuses on the economic activities results (the
utility), behaviroral economics priorities are the opposite: its main problem is
how actors choose their activities, how they choose what to do. One of the fore-
runners in behavoral economics, Robert Aumann, winner of the Nobel prize,
proposed a form of bounded behavioral rationality called rule rationality by op-
position to the traditional �Act rationality�. �Ordinary rationality means that
when making a decision, economic agents choose an act that yields maximum
utility among all acts available in that situation; to avoid confusion, we hence-
forth call this act-rationality. In contrast, under rule rationality people do not
maximize over acts. Rather, they adopt rules, or modes of behavior, that maxi-
mize some measure of total or average or expected utility, take over all decision
situations to which that rule applies; then, when making a decision, they choose
an act that accords with the rule they have adopted.� [34]. The economic ac-
tor progressively learns what the best rules for di�erent con�gurations are, and
when he has to make a decision, he does not choose the best action, but the
best rule in the current con�guration, and applies it.

Aumann gives many examples of this model, for example the Ultimatum game
without iteration. In the Ultimatum game, at each stage, player A decides
how to divide 100 Euros between himself and player B, for example 70/30.
If player B accepts, the repartition is made accordingly. If player B rejects
the proposition, no one gets anything. If agents are perfectly rational (in the
sense of substantive rationality), A knows that for the last nth game, B should
accept any repartition, because 1 Euro is better than nothing. And recursively
A deduces that for the (n-1)th game, the (n-2)th, . . . the reasoning will be the
same. And B should accept.

Experiments show that when the Ultimatum game is played only once, with-
out any knowledge or any contact with the other player, player B will apply
a threshold around 20. Explanations based on pride or threat do not �t any-
more, since player B does not know, see, or have any contact with its opponent
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and plays only once. But Rule rationality gives an explanation: Player B has
learned that in a general case, it is not good to accept too bad o�ers, both for
reputational and threat reasons. And even if these rules do not apply here, they
usually apply. So because in real world it would be act-rational to do so, it is
here rule-rational to refuse a 90/10 o�er.

Another example concerns an experiment with bees and �owers. Bees behavior
is studied in a �eld of arti�cial �owers with two colors: blue and yellow. An
arti�cial mechanism allows choosing which �owers gives nectar. At the begin-
ning of the experiment, only blue �owers give nectar. Bees begin to explore
the �eld and quickly visit only blue �owers to get nectar. After some time, the
blue �owers stop giving nectar and yellow �owers start giving some. The bees
continue to go only to the blue �owers and �nally die from starvation. The
explanation of Aumann is that this kind of situation is not possible in nature.
Bees have learned by evolution that it is interesting to recognize the �owers
that give nectar and to stick to them because it is e�cient. When they are
put in the experimental environment they continue to apply this rule (stick to
the identi�ed color), they are rule-rational, even if this is not the best choice in
this situation. Evolutionary learning has the same role as experience for human
learning.

The interesting point about rule-rationality is that agents reason about activity
(the rules activation), not about facts. They choose their action, not their
consequences (the optimal situation). They are activity-aware, not situation-
aware anymore. Moreover, past activities determine current activities (via rule-
learning).

5.1.3 Economical Activity Evaluation

To summarize, activity is an underlying concept in mainstream economics, but
progressively emerges as a more central concept in behavioral economic studies
such as Rule rationality. However, even in behavioral economics, the concept of
activity itself is very rare and has to be deduced from the model. The focus is
on activity selection, not on activities themselves. For this reason, to measure
activity is still a challenge not considered by economists.

An evaluation of economic activity would have to be di�erent from the main
and well-studied indicator utility: if an agents eats three donuts, its utility
is decreasing for each donut (it can even be negative for the last one - this
is the decreasing marginal utility hypothesis), but the activity volume should
be roughly the same. Another problem is that a precise evaluation of such
economic activity would require describing it precisely, and we reach here the
limits of the economic �eld as a science: Economics considers actors (humans or
institutions) as �black boxes�, with inputs and outputs. Describing the activity
(and not only its selection process like in behavioral economics) would require
to enter the black boxes, which are management (for institutions) or psychology
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(for humans) application �elds. This �eld delimitation may be an explanation
for the current absence of activity as a core concept in economic theory.

The genericity of component-based simulation approach may indeed bring some
interesting and new results when applied to economic models. Quantitative
activity as the number of discrete events received by the system is well suited
to economic �eld since it does not require the description of the activity it-
self. It requires however discrete events, whereas classical economics considers
equilibrium and continuous functions (atomicity hypothesis). Translated into
the economic �eld and vocabulary, activity would be the number of events con-
cerning scarce ressources (consumption, production, transaction, ...). It can be
used to describe where �something� happens and when. Classical economics
describe the result. Behavioral economics explains why, activity analysis could
describe what happens (where and when). More importantly, it could describe
what happens, the spaciality and the dynamicity of the system, without entering
the black box. For example, let us consider a city-wide economic transaction
analysis. Classical economics would give the global welfare and its repartition
between the actors (people and �rms). Behavioral economics would explain why
people would buy such item and accept to pay such prices. An activity analysis
would give us the repartition of the events in the city and its evolution. An
observer could know where most of the production/consumption/transactions
occur and when. Di�erenciation between external and internal activities de-
pends on analyzed subject. If the focus is a city, any event occuring inside the
city increases internal activity, whereas events relating to other cities (such as
population or production transfer) are external activity.

5.2 Optimal Control Model of Activity

Here we consider the following problem: A modeler is designing a simulator
for solving some model. As in every modeling approach, his main goal is to
increase his knowledge about a particular system, simulating his model, and
thus increasing his information level. Here, activity measures the number of
calculations achievable by the machine. The modeler has to adapt the available
computational resources to the level of information he wants to obtain.

5.2.1 Mathematical Model

The modeler tries to obtain information of various types on a time interval [0;T ].
Let be Iit the information of type i = {1, , . . . ;n} available to the modeler in
t ∈ [0;T ]. We assume that model's value increases with the levels of various
types of information available: V (I1t, ..., Int). The value function is then

V (I1t, ..., Int) = Σni=1fi(Iit)

To choose a particular, and convenient form of function fi, we assume now
that the rate of value increase is decreasing with time. So the value function
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V (I1t, ..., Int) regarding the various levels of information is strictly concave. This
can be explained by the fact that for large amounts of information a further
re�nement of the information provides little value to the model. Moreover,
beyond a certain "saturation threshold" for a certain type of information, we
consider that it becomes di�cult to treat this additional information leading to
value decrease. Therefore, we obtain:

V (I1t, ..., Int) = Σni=1(βiIit −
αi
2
I2
it) (1)

With βi ∈ R∗,+ and αi ∈ R∗,+(the set of positive real numbers including 0).

We notice immediately that ∂V (�)
∂Iit

= βiIit − αiIit ≥ 0 ⇔ Îi ≡ βi

αi
. So, it is

obvious that the modeler never wants to obtain a level of informationi greater
than Îi. Parameters βi > 0 and αi > 0 re�ect the fact that, for a given level of
information, an increase of the level of a certain type of information does not
generally have the same e�ect as an increase of the same level of an another
type of information.

Activity measures the number of calculations achieved by the machine, over a
period of time, in order to increase Iit. Obtaining information of type i requires
the allocation of a certain amount of activity Pit. Allocating activity between
the augmentations of various types of information, the modeler will take into
account that 0 ≤ Σni=1Pit ≤ P , where P represents the maximal capacity of the
computer.

The level of information of type i increases withPit but at a decreasing rate. So,
the evolution equation of the information i is :

İi = fi(Pit) (2)

Where fi(Pit) is a strictly concave function ofPit. More speci�cally, we assume
that5:

İi = γiPit −
ρi
2
P 2
it (3)

Where, γi ∈ R∗,+ and ρi ∈ R∗,+ re�ect the di�erences between the various fact
functions fi(Pit).

Finally, the modeler's maximization program is:

maxPit;t∈[0;T ];i={1,...,n}

∫ T

0

Σni=1(βiIit −
αi
2
I2
it)dt (4)

5We conventionally designed by an upper dot the derivative of a variable regarding time.
Here İi = dI

dt
. Furthermore the resolution of Equation 4 ensures that the acceptable range of

the various activity values for the modeler is such that f ′i(Pit) ≥ 0.
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İi = γiPit − ρi
2 P

2
it; i = {1, ..., n}

Ii0 = 0; IiT free; i = {1, ..., n}
Pit ≥ 0; i = {1, ..., n}; ∀t ∈ [0;T ]

Σni=1Pit ≤ P ; ∀t ∈ [0;T ]

Îi − Iit ≥ 0; i = {1, ..., n}; ∀t ∈ [0;T ]

Let λit be the covariable of Iit, the Hamiltonian function of program 4 is:

H(I1t, ..., Int, P1t, ..., Pnt, λ1t, ..., λnt) = Σni=1(βiIit−
αi
2
I2
it)+Σni=1λi(γiPit−

ρi
2
P 2
it)

(5)

In order to take into account the threshold of the various type of information
and the constraints on the levels of activity we introduce the following the
Lagrangean function:

L(I1t, ..., Int, P1t, ..., Pnt, λ1t, ..., λnt, σt, µ1t, ..., µnt) = H(.)+σt(P−Σni=1Pit)+Σni=1µi(Îi−Iit)
(6)

Maximum principle leads to the following resolution conditions6:

� Static optimality conditions:

∂L(�)
∂Pit

= λi(γiPit−ρiPit)−σt ≤ 0; Pit ≥ 0 andPit =
∂H(�)
∂Pit

= 0; i = {1, ..., n}; ∀t ∈ [0;T ]

(7)

∂L(�)
∂σt

= P − Σni=1Pit ≥ 0; σt ≥ 0 andσt
∂L(�)
∂σt

= 0 (8)

∂L(�)
∂µit

= Îi − Iit ≥ 0; µit ≥ 0 andµit
∂L(�)
∂µit

= 0 (9)

� Evolution equations of the covariables7:

λ̇it = −∂L(�)
∂Iit

= αiIit − βi − µit (10)

� Evolution equations of the information stocks:

6These conditions are necessary and su�cient because of the strict concavity of the La-
grangean function regarding the activity levels and the information levels.

7Whenever ˙λit exists, that means until Îi is reached.
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İi =
∂L(�)
∂λit

= γiPit −
ρi
2
P 2
it (11)

� Transversality conditions:

λiT = 0; i = {1, ..., n} (12)

� Conditions at the junction points τ 8:

λiτ− − λiτ+ = π(τ)
∂(Îi − Iit)

∂Iit
= −π(τ); π(τ) ≥ 0 and π(τ)(Îi − Iit) = 0 (13)

Remembering that the costate variable of a stock measures the imputed value of
this stock at any instant along the optimal path9, conditions 12 can be explained
as follows: Since the modeler is free to choose the terminal value of a particular
information stock, this value has to be such that his marginal contribution to
model's value is zero at the end of the planning horizon.

Conditions 7-9 and 11 imply two possible cases regarding activity's allocation
at instant t ∈ [0;T ]:

� Let be j = {1; . . . ;m} ; with m ≤ n ; the information level for which

Iit ≤ Îi at t. Assume �rst that Σnj=1
γj
ρj
≤ P . In this case, conditions 7-9

permit to conclude that:

Pjt =
γj
ρj
≡ P̂j ; ∀j = {1, . . . ,m} (14)

Pkt = 0; ∀k = {m+ 1, . . . , n} (15)

σt = 0 (16)

� Instead if Σnj=1
γj
ρj

> P implies that Pjt ≤ P̂j ; ∀j = {1; . . . ;m}. Same

conditions as before lead to:

λjt(γj − ρjPjt) = σt; ∀j = {1, . . . ,m} (17)

Pkt = 0; ∀k = {m+ 1, . . . , n} (18)

8Cf. [35], Possible junction points are the ones for which a value Îi is reached and the
terminal time T . Indeed this junction points are characterized by jumps in costate variables.

9Cf. [35]. For this reason, costate variables are called shadow prices in Economics.
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Equation 17 leads to a repartion rule of total activity available between the
various Pjt. Indeed, for a particular j, this equation permits to obtain:

λjt(γj − ρjPjt) = λlt(γl − ρlPlt); ∀l = {1, . . . ,m}; l 6= j (19)

19 can be rewritten:

Plt =
γl
ρl

+
λjt(ρjPjt − γj)

ρlλlt
; ∀l = {1, . . . ,m}; l 6= j (20)

So, using 8 :

Plt =
PΣni=1ρlλlt − Σml=1(γlλlt + γlλlt)

Σni=1ρiλit
; ∀j = {1, . . . ,m}; l 6= j (21)

Although this model was deliberately simpli�ed, its resolution is made di�cult
because of cross-impact activity levels (cf. 21 ) and the possible presence of
junction points.

5.2.2 Model Resolution for a Single Information Type

The model is resolved here for a single information type. Notations are similar to
the general case, except for the omission of indexes i used to design the various
types of information. Since the objective function is an increasing function of It
and because I0 = 0 the scope of the modeler is to reach the maximum amount
of information It using Pt = P̂ up to the possible point of time τ ∈ [0;T ], where

Iτ = Î.

Two cases are possible regarding the relative values of P̂ and P :

1. P̂ ≤ P : In this case the modeler chooses the activity level P̂ until Î
is reached if it possible on[0;T ]. Time θ for which Î is reached can be
determine using 11 and the initial condition on It. Indeed, on t ∈ [0; θ] we

can rewrite : İ = γP̂ − ρ
2 P̂

2 ⇒ It = (γP̂ − ρ
2 P̂

2)t. So θ = 2Î

2γP̂−ρP̂ 2
. So,

on [0;T ], two situations are possible:

� If θ ≤ T ; the modeler chooses Pt =

{
P̂ ; ∀t ∈ [0; θ]
0; ∀t ∈]θ;T ]

and It ={
(γP̂ − ρ

2 P̂
2)t; ∀t ∈ [0; θ]

Î; ∀t ∈]θ;T ]
. The corresponding temporal path is a

line starting at point (0; P̂ ) and ending at (Î; P̂ ), in exactly θ periods.
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� If θ > T ; the modeler chooses Pt = P̂ ;∀t ∈ [0;T ] and It = (γP̂ −
ρ
2 P̂

2)t;∀t ∈ [0;T ]. So the terminal value of the stock is IT = (γP̂ −
ρ
2 P̂

2)T . The corresponding temporal path is a line starting at point

(0; P̂ ) and ending at (IT ; P̂ ), in exactly T periods.

2. P̂ ≥ P : In this case the modeler chooses the activity level P until Î is
reached if it is possible on [0;T ]. Using the same notation as before, two
situations are possible:

� If θ ≤ T ; the modeler chooses Pt =

{
P ; ∀t ∈ [0; θ]
0; ∀t ∈]θ;T ]

and It ={
(γP − ρ

2P
2
)t; ∀t ∈ [0; θ]

Î; ∀t ∈]θ;T ]
. The corresponding temporal path is a

line starting at point (0;P ) and ending at (Î;P ), in exactly θ periods.

� If θ > T ; the modeler chooses Pt = P ;∀t ∈ [0;T ] and It = (γP −
ρ
2P

2
)t;∀t ∈ [0;T ]. So the terminal value of the stock is IT = (γP −

ρ
2P

2
)T . The corresponding temporal path is a line starting at point

(0;P ) and ending at (IT ;P ), in exactly T periods.

5.3 Activity De�nition from an Economics Point of View

Activity has been investigated both in the general Economics framework and
using one major modeling approach used in Economics: Optimal control theory.
We can conclude the following de�nition of activity:

� What is activity in this context? Any phenomenon impacting a scarce
resource.

� Why use it? Because this is the link between core economic concepts:
Classical economics gives the activities result (measured with utilities and
global welfare). Behavioral economics explains why activities are selected.
Activity analysis could describe where and when events occur. It can
give a description of the spatiality and of the dynamicity of an economic
system.

� How to de�ne it? The number of events concerning scarce ressources.

� Where to use it? With any economic model where economic events occur
at di�erent time/locations.

� When to use it? When anyone wants to know what people do, where and
when they do it, not only why they do it and how happy they are.
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6 A Prospective Approach: Activity Framework

in Models of Human Beliefs and Knowledge

This last section mainly is prospective. Its function is to show that concepts
such as activity tracking and activity awareness are unifying ones and that they
are particularly promising when applied to the models of human beliefs and
knowledge.

6.1 A New Paradigm in Cognitive Sciences and in the

Psychology of Reasoning

In contemporary cognitive science and psychology of reasoning, the construction
of beliefs and knowledge is largely seen as relying on complex and heterogeneous
processes.

Nevertheless, although models of such processes often di�er to some large extent
in the literature, many researchers belonging to di�erent disciplines (psychology,
AI, epistemology), more and more agree on the fact that, when reasoning, human
minds do not follow the classical models of rationality, be they of a probabilistic
nature (such as the classical models of inference: see the critics in [36, 37] or of
a deductive and logical nature (such as the classical models of belief revision:
see the critics in [38][39])).

Following some seminal ideas of [40] and, �rst of all, grounding their argu-
ments on a signi�cant amount of new empirical evidences especially since the
1980's, they put at the forefront the hypothesis that human reasoning is a
resource-limited, context-sensitive, time-consuming, non-optimal and sometimes
non-terminating process [41, 37, 38, 17].

For the viewpoint of a general and conceptual framework based on activity
tracking and activity awareness, it is crucial to notice that this new paradigm
largely stems from a new sensibility of researchers to the property of cognition
and reasoning to be situated, only locally (in time and space) optimal and goal-
oriented activities, just as are many of our other activities.

6.2 Concepts Already Related to Activity in Cognitive

Sciences

Grounding our conceptual and prospective argument on such a consensual paradigm,
it is reasonable to assume that the best models of the construction of beliefs and
knowledge we can build today are 1) component-based ones in the sense given
in section 1 of this paper, 2) activity oriented in that the focus is no more on for-
mal and uninterpreted deductive symbols and on their syntactic links (such as
in the abstract logical models of reasoning dating back to the �rst symbolic AI
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of the 50's) but on the various, simultaneous and concurrent kinds of cognitive
and emotional activities operating in an overall process of reasoning.

It is important to discern that, at this general level of an activity oriented
conceptual framework, what we call a component-based approach does not nec-
essarily entail any strong, nor massive nor weak modular vision of cognition, in
the sense of Fodor [42] or even [43] or of Carruthers [44] for instance10. There
is a strong methodological advantage in our grounding the conceptual analysis
not on modules but on activities: It gives the possibility to consider such or
such thesis or competing argument or algorithm in a process of belief revision,
for instance, as a real competing component of the overall model. Hence, when
we speak of components, no ontological commitment to real cognitive modules
is necessary.

In the following paragraphs, we will present a sample of some more precise
concepts that speci�cally can be interpreted in terms of activity tracking and
activity awareness.

First, such an interpretation seems possible for the models of inference. Whereas
practical cognition intervenes in the process of decision making, epistemic cogni-
tion intervenes in the process of the justi�cation of beliefs [46, 38]. Ordinarily,
due chie�y to time limitations, human minds seem to operate in a way that
both minimizes and optimizes their activity in some given context and facing
some given concern, be it practical or epistemic. From these considerations, it
seems reasonable to assume that �concise and e�cient structures� [47] emerge
or exist in the mind - and/or in the brain: see [48] - and play a major role both
in practical and epistemic cognition.

At another level, in the speci�c domain of the philosophy of science, similar
ideas have arisen. E.g., [49, 50] claims that a scientist does not operate as a
single autonomous information processor and that his or her work cannot be
reduced to a purely logical construction. According to him, the scientist always
belongs to a social network. As a node of this network, he or she co-operates in
a huge distributed information processing. Hence, from this socio-psychological
viewpoint on science, the collective construction of knowledge has to solve some
problem of optimizing the activity (intensity of interaction) between actors.

Finally, in the domain of cognitive science, the question of the knowledge and/or
the simulation and anticipation of the contents of the minds of others, frequently
called the mind-reading question, has led many to build di�erent and concurrent
models of activity awareness in the mind.

Facing these new trends in psychology of reasoning, epistemology and cognitive
science, our claim is that single human minds or human minds in networks
can, to some extent, be compared to some systems of computation trying to
optimize either their activity or their awareness of the activity of others - or
of themselves - so as to decrease their execution time. Hence, the aim of this

10See [45] for a review on modularity in cognitive sciences.
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section on activity models of beliefs and knowledge is to illustrate to what extent
the concepts of activity, activity tracking, activity awareness, engineering phase,
modeling phase and decision phase could be well-adapted to the development
of the ideas and models in these four domains of epistemology: inference, belief
revision, scienti�c discovery and mind-reading.

6.3 Activity in Models of Inference: Reasoning the Frugal

Way

The model of inference presented by [36] consists of simple cognitive algorithms
which suggest cues and performs inference from memory. As such, �it uses lim-
ited knowledge as input� (ibid.). To compensate for this limitation, such models
assume that inductive inference has to take into account the natural environ-
ment of the cognitive agent. In this case, the environment is implemented in
his memory. Although the algorithm is not linear and does not use all avail-
able information (it violates the traditional standards of rationality), it leads
to remarkable results compared to other classical models. Such algorithm is
designed to enable quick decision making. In this work, the model is multicom-
ponent in that it is composed of probabilistic atomic mental models: but the
decomposition can be deepened or �attened.

As their success is remarkable, we propose that such algorithms be considered
less arbitrary than others. They can be taken as examples of more realistic
simpli�cations of a computational procedure thanks to an �activity tracking�
process applied to some other, less performing, hence more �ctive, classical
models of inference.

� What is activity in this context? The activity of the coupled model is the
sum of the numbers of internal and external events of atomic models, over
a simulation time period

� What is optimized activity in this context? It is a realistic and e�ective
psychological mechanism (such as the simple algorithms of [36]) which
would appear quite di�erent from the �ctive computational processes as
they are hypothesized in classical inference models purely based on deduc-
tion and logic. Optimized activity is the most e�cient (the quickest and
the most successful) algorithmic process that leads to a certain cognitive
goal: in this sense, it is the one that is the most e�cient relatively to the
goal and compared to other computational models, whereas these other
models lead to useless and time-consuming (inactive in this sense) compu-
tations. Accordingly, we can make the heuristic hypothesis that activity
is what really happens in the mind, hence, in the brain.

� Why use it? 1) To optimize the rapidity and the e�ciency of the models of
inference and decision-making (both in epistemic and practical cognition);
2) To build more realistic and more reusable models of the human inference
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(taking time but not too much, based on limited-resources, highly sensitive
to contexts,. . . )

� Where to use it? In AI in general, in decision-making, in the modeling of
practical cognition or common sense reasoning, to ameliorate the e�ciency
of that kind of complex systems mixing computer-aided decision-making
and/or augmented-reality (planes).

� When to use it? We use it when we are sure to possess a simplifying model
of inference for a precise kind of task.

6.4 Activity in Beliefs Revision: Active Cycles of Defea-

sible Reasoning

In his procedural epistemology, [38]suggests viewing the process of belief justi-
�cation as a dynamic, evolving, sometimes non-terminating, process. Its core
hypothesis is that, most of the time, the human mind has not enough resource
to compute all the implications some new candidate belief would have in the set
of the already accepted (because to some extent already justi�ed) beliefs to be
able to genuinely warrant or reject it. This is the reason why most of our jus-
ti�ed beliefs are not completely warrantable. They are said to be �defeasable�:
at any time, during our life, i.e. during our new interactions with others and
with the environment, most of our beliefs can be replaced by their contrary or
by other di�erent beliefs.

�In particular, beliefs can be defeated by further reasoning, and may later be
reinstated by defeating their defeaters. So beliefs may cycle in and out of the
set of justi�ed beliefs many times as reasoning progresses. A belief is only
warranted if the cycling eventually stops and the belief subsequently remains
justi�ed� ([38], 20-21 .)

We propose to design this cycling as analogous to activities performed by the
mind within its set of beliefs. A belief is warranted or rejected when its justi�-
cation status no longer changes.

From a component-based and activity oriented viewpoint, it can be suggested
viewing beliefs as atomic models having autonomous activity. A given belief
model is set to the state �warranted� if one condition of implication is received
and if no condition of rejection has been sent to it. Each belief model interacts
with others by sending to all others its epistemic implications, which serves to
warrant other beliefs, and its own condition of warranty so as to verify whether
it still is coherent or not with other already warranted beliefs. When two beliefs
appear to be incompatible, defeasibility has to occur, either for the one or for the
other. Thereafter, di�erent strategies of choice for defeasability can be tested:
hence optimal strategies of constructing systems of beliefs can be sought through
computational experiments.
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� What is activity in this context? Activity is the total number of internal
changes of beliefs, only, if the internal state of a given belief does not
change there is no activity in that the content of the model corresponding
to the cognitive content of the mind has not changed (even if this belief still
permanently interacts with other beliefs so as to test its compatibility).

� What is an optimized activity in this context? Activity is the core of the
reasoning process of the mind through which it permanently tries to estab-
lish its belief. A mind is all the more active, from this viewpoint, as it is
subject to doubts and revision of its beliefs. From this viewpoint, if activ-
ity of the mind is desired, an optimized model can mean a maximization
of activity, not a minimization.

� Why use it? Such vigilance has often been compared to one of the char-
acteristics of the consciousness: versatility, capability to deliberate and
choose. Activity tracking in the context of belief revision could be similar
to some intentional states tracking.

� How to de�ne it? Activity could be de�ned as the measure of the cogni-
tive reactivity or cognitive attention and vigilance of the mind in a given
context. Where to use it? In AI, in cognitive psychology, in the modeling
of reasoning, in the modeling of the dynamics of intentional states of the
mind.

� When to use it? When we aim at designing an e�cient and rapid model of
decision-making, or when we aim at understanding the process of practical
and epistemic cognition.

6.5 Activity in Netcentric Social Studies of Science

According to [49], �Socially and cognitively, science involves a tension between
cooperation and competition, and researchers are only beginning to understand
how social organization can contribute to the overall goal of increasing scienti�c
knowledge [. . . ] By combining a computational understanding of individual cog-
nition with an analysis of scienti�c communities in terms of distributed compu-
tation, we can start to see how sociological and psychological accounts of science
can be integrated.� More speci�cally, as recalled by Thagard [49, 50] or even by
[51], in this perspective of a computational philosophy of science, it is desirable
to design computational experiments to test the e�ciency of various strategies
in the process of the construction of scienti�c knowledge. As any other kinds of
distributed computation, a given social strategy and social dynamics for science
can be evaluated in terms of activ ity and activity tracking. The components or
nodes of such a coupled model can be the models of the actors that are cooper-
ating and competing: those actors are the scientists themselves or the academic
institutions they belong to.
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� What is activity in this context? The intensity or frequency of the infor-
mation exchanges between nodes or clusters of nodes, in a given region of
the social network.

� Why use it? It could be a good criterion for evaluating the fruitfulness of
a given strategy of interactions and exchanges between actors.

� How to de�ne it? It is the rate and intensity of the use of a given link
between certain nodes in the context of a given strategy.

� Where to use it? To design and evaluate social strategies of science (policy
of science, knowledge management), to help to understand some discover-
ies in some periods of history of science.

� When to use it? When we are sure to have enough data about the net-
work and about the social and individual strategies. This restriction can
be a bottleneck. Such optimized models of social networks occurring in
the construction of science can be used in historical studies but also in
prospective studies, especially in those concerning the policy and manage-
ment of scienti�c research.

6.6 Activity in the Models of Mind-reading

After having presented a model of mind-reading based on the concepts of control
theory where the �social interaction loop� is internally emulated in a cross-modal
emulator (i.e. a coupling between an egocentric emulator and an allocentric em-
ulator, the second one representing the situation, beliefs, intentions and actions
of others) [52] concedes that:

�It is clear that when modeling the higher levels of inter-subjectivity with the
aid of control theory, methodological issues become pressing. The number of
variables and the level of complexity will be so high that it will become di�cult
to evaluate a model.� (235)

Of course, choosing control theory to model mind-reading is consistent with the
Gärdenfors' geometrical and topological theory of conceptual spaces [53]. But
it is signi�cant that when we shift to an alternative theory which focuses on the
massive modularity of mind - such as Carruthers' - this kind of �self-monitoring
module� [44] becomes less convincing. Carruthers argues that:

�Naive subjects are bad at reasoning about reasoning � at identifying mistakes
in reasoning, at theorizing about standards of good reasoning, and at improving
their own and other's reasoning.� (ibid: 184).

This is the reason why, according to him, even in the case of mind-reading, most
people use heuristic ways of reasoning similar to the ones experimented by [36].
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� What is activity in this context? Activity is the total number of events
occurring in the coupled model (the allocentric atomic model + the ego-
centric atomic model) over a simulation time period. If we adopt Gärden-
fors' view, activity awareness is optimal when the optimal control due to
a good choice of the parameters of the allocentric emulator is reached. If
we adopt Carruthers's view, in the context of the mind-reading question,
we are invited to adapt the heuristic models of activity tracking by [36] in
terms of activity awareness.

� Why use it? It could lead models of mind-reading to more direct con-
frontation with experimental data as in [54]. For instance, it could help
to choose between a massive modularity approach (Carruthers) or a topo-
logical one (Gärdenfors).

� How to de�ne it? Activity appears here in a context of activity awareness,
similarly to the role of this same concept in the context of collaborative
software. Activity awareness measures the degree of coincidence - or of
e�ciency - of a model of other's mind seen from the viewpoint of a given
mind.

� Where to use it? In cognitive sciences. Where it is desirable to enhance our
theory of the reasoning or of the reacting of others: in strategy problems,
for the modeling of collaborative work, for the modeling of endomorphic
agents [55].

� When to use it? In general, activity awareness is useful when a kind of
optimal or �frugal� awareness is assumed to operate in a given faculty of
the mind.

6.7 Activity in the Reasons of Beliefs and Activity Aware-

ness in Cognition

In his sociological theory of beliefs, [56] has shown that human minds often have
what he calls �good reasons� to believe what they believe. A �good reason� is
a reason that leads an agent to a conclusion which he cannot induce through
any other nor more reachable reason, but which is functionally (biologically,
psychologically and/or socially) advantageous for him, although he still can have
some doubts about the rational legitimacy of this �reason�.

Let's assume that a system can survive only if its resource expenditure allows
it to, i.e. only if it is functional in this broad sense. The survival of the system
is decided through a bene�t/cost ratio which has to be greater than 1. In every
context, it is possible to de�ne the �bene�t� of the system as the resources
acquired and its �cost� as the resources expended. Activity can be de�ned as
the number of transitions of the model of the system. Hence, activity can be a
measure of the resources expended.
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So, the activity awareness of the model of a cognitive system can be used in a
module of auto-evaluation operating at runtime: through that, the model of the
cognitive system can evaluate the achievement of its cognition while cognizing,
and make itself evolve the optimal way. In other words, this principle of activity
awareness could enhance many of the already existing techniques that are used
in auto-adaptive simulations of cognition.

Figure 10: Activity-Aware System Architecture.

From this focus on the self-optimization of a cognitive system through activity
awareness, it follows that, in each context, we will have to complete the list of
our questions and ask what is the kind of bene�t (the resource) that can be
acquired.

1. In the case of models of inference, the evolution will lead to frugal models
and the resources acquired will be of a biological (neurological) nature.

2. In the case of belief revision, the model of the system cannot waste too
many resources in reconciling inconsistent beliefs. So it will have to evolve
toward systems that do only enough belief revision to enable bene�t/cost
ratios >=1, i.e., this in an infrastructure, so just enough to enable the
consistency of beliefs to support frugal decision making. In this context,
the resources acquired is indirect through support of decision making.

3. In the context of social network, the bene�t can be considered at 2 dis-
tinct levels: at the network level, this system cannot strain communication
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resources beyond satis�cing bene�t/cost ratio; at individual level, this sys-
tem cannot strain communication resources beyond satis�cing bene�t/cost
ratio. But it is not always clear how these ratios are manifested. E.g.,
how large can a social network grow?

4. In the context of mind reading, this functionality requires high expenditure
of mental resources. Moreover, the kind of bene�t can change according
to the kind of mental capacity modeled. E.g. the kind of bene�t could
be to have acquired the ability not to be outwitted by adversary, but
not only (it could be the ability to be easily mind read or not by other
minds, etc.). Nevertheless, a challenge could be to search for a Universal
Cognitive Modeler that could optimize many di�erent mental capacities
at the same time.

Finally, it appears that the kinds of bene�t could change in each context but
not the principles which are at the basis of such an Optimal Activity Aware
System Architecture. Most of all, the modules of �Activity measurement� and
�Structure Change�, as it is seeable in Figure 10, will be central for a su�ciently
rich evaluation of the contributions of components taking place in the �Internal
feedback� module.

6.8 Life Cycle of Simulation in Activity-based Models of

Beliefs and Knowledge

As we can now understand, �rst of all, such models of beliefs and knowledge
traditionally tend to belong to the �Modeling phase� as it is presented in section
1: The goal of the psychologists of reasoning or of the epistemologists is to model
and to explain a given psychological task with some validated model.

But, in a second step, as it appears too in most of the works we have quoted, and
as it is explicitly shown in the work of [36], the psychologists or epistemologists
have to look for concurrent models that, to be realistic, have to minimize exe-
cution times and even maximize reusability. As such, their task is analogous to
that of the software engineers in their �Engineering phase�: they have to look
for some optimized models too. Subsequently, as they take into account the
limited resources of human mind, such optimized models can be seen as good
candidates for more realistic representations of what the human brain really
does.

Finally, at the end of the simulation cycle, these more realistic models of beliefs
and knowledge construction can be used for some real applications in arti�cial
intelligence. In this context and for this aim, psychologists will have to choose
the most adapted model among the already e�cient and realistic models: so,
they will enter a �Decision-Maker phase� too.

Indeed, we can notice that, in principle, it remains not necessary to use a realistic
model to perform some intelligent task. Even if it is a good methodological
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principle in AI, we do not have to assume that nature already has explored
and selected the most e�cient heuristics for the construction of reasonings and
beliefs. Analogously, modelers of reasoning can, to some extent, explore some
direct link between phase 2 and phase 3, without always having to ground their
models �rst on realism and on the explanation of some strategies of reasoning
already existing in nature (phase 1).

7 Conclusion

According to the conceptual tools used in each discipline, di�erent points of
view on activity emerged based on de�nitions provided in Section 2:

� In Section 3: Activity concept is used in a cellular automata structure,
activity consists of two levels:

� Activity in cells: Activity corresponds to a state change in a cell.

� Activity in con�gurations: An activity con�guration consists of active
and inactive cells.

� In Section 4: A biological characterization of activity concept, inspired
from chemistry, corresponds to a measure of exchanges (gas, liquids, nu-
trients, molecules. . . ) and of transformations (chemical transformations)
which result in maintaining the integrity of the object itself or the system
which it belongs.

� In Section 5: From an economical point of view , activity concept relates
to agent rationality when a�ecting scarce resources. It is a measure and
a modeling of sequences of rules activation.

� In Section 6: An epistemological consideration of activity considered, from
a human-centric perspective, the following possible multilevel usages:

� At the inference level : Activity concept is an abstraction of mind ac-
tivity. Activity concept corresponds to a ranking of the most e�cient
(active) algorithms emulating decisions.

� At the beliefs revision level : Activity concept is a measure of mind
activity, in doubts and revisions of beliefs.

� At the mind reading level : Activity concept is an evaluation of the
e�ciency of a model of other's mind by a given mind.

� At the net centric social level : Activity concept is the frequency
of information (ex)changes in/between nodes of a region in a social
network.

� At an awareness level : Activity concept is an auto-evaluation of cog-
nition achievement, through a ratio of resources expanded/acquired.
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A three level hierarchy can be built as an architecture for constructing component-
based systems:

1. Activity tracking: Tracking activity, at component or con�guration levels,
allows optimizing simulator resources. This �rst layer can be considered
as a �rst physical/biological (Sections 4 & 5), material, characterization
of simulation models. Automatic detection mechanisms reduce execution
times. Analyzing basic changes in activity can also enhance model under-
standing (cf. Section 4).

2. Activity evaluation: Using the built-in detection mechanisms of level 1,
activity can be measured as the fractional time that a component con-
tributes (Section 6). Correlating contribution with outcome, a credit can
be attributed to components. Therefore, a real measure of performance
of components, in a context, can be achieved. This allows for automatic
composition and re-use of components. In social sciences, a direct anal-
ogy exists between activity evaluation and the evaluation of rules, actions,
decisions. . . of agents (Sections 2 and 3).

3. Activity Awareness: Considering cognitive systems through the concepts
of activity and activity tracking presents the advantage to let us see these
systems from a dynamical point of view. A second advantage could be
to use this dynamical viewpoint and representation to let the system �nd
itself its optimal design regarding its resource expenditure (assuming that
some resource expenditure is always linked to the type of activity at stake.)
The activity awareness of the model of a cognitive system can be used in
a module of auto-evaluation operating at runtime (Section 6).

We believe that levels 1 to 3 constitute a cycle (activity awareness mechanisms
can be re-implemented partially or totally at level 1 � component level as built-
in mechanisms) .
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