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We propose an original method based on generalized plane waves and approximated coefficients for the

numerical approximation of the Helmholtz equation with a smooth constant coefficient. This is justified

by a high order convergence estimate rate. Our motivation stems from the Maxwell’s equations with

Hermitian dielectric tensor ε which are used to model reflectometry in fusion plasma. Simplified models

split them into two different propagation modes. Some numerical results are presented in dimension one

and two.

Keywords: generalized plane wave; wave equations; high order.

1. Introduction

Our aim is to describe a new numerical method with generalized plane waves for the numerical approx-

imation of time harmonic wave equations with smooth non constant coefficients. Our model problem is

the Helmholtz problem with a smooth non constant coefficient
{

−∆u+αu = f , x ∈ Ω ,
(∂ν + iγ)u = Q(−∂ν + iγ)u+g, x ∈ Γ .

(1.1)

Here the smooth coefficient is real, α ∈ R, but everything could be adapted replacing the homogeneous

problem by the adjoint problem. The γ function can be a variable physical parameter satisfying 0 <
γm 6 γ 6 γM , but for the sake of simplicity we will consider it constant and positive. The sign of α may

change even if we restrict the presentation to real coefficients for simplicity. The method can be used for

complex valued coefficients as well. The unknown u(x) ∈ C is sought in the space of complex valued

functions.

1.1 Physical motivations

Our motivation comes from the need of efficient numerical methods for certain Maxwell’s harmonic

equations appearing in plasma physics. These equations read

curl(curlE)− ω2

c2
ε(x)E = 0, x = (x,y,z), (1.2)

where E denotes the electric field, ω is the pulsation, c the sound speed and ε the dielectric tensor. The

dielectric tensor represents the electromagnetic behavior of the media. The cold plasma theory Swanson
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(27) yields the already simplified dielectric tensor is

ε(x) =





1−a(x) iba(x) 0

−iba(x) 1−a(x) 0

0 0 1− ca(x)



 , i2 = −1,

where b < 1 and c = 1− b2. Typically the coefficient a satisfies a = x/x0 + ã, where the perturbation

is described by ã = ã0 exp

(

− (x−x f )
2

ω2
x

)

exp

(

− (y−y f )
2

ω2
y

)

cos(q(y− y f )), see Gusakov et al. (12). This

is completed with boundary conditions of metallic or absorbing type. We refer to Monk (23) for the

general theory of Maxwell’s equations and to Cessenat & Després (2); Hiptmair et al. (14); Huttunen et

al. (16) for the use of specific plane wave methods for the numerical approximation of the solutions of

such problems. Two models for different propagation modes are often considered. Both are obtained

from equation (1.2) under convenient assumptions on the direction and polarization of the electric field.

The two dimensional equation for what is called the O-mode reduces to

−∆Ez −
ω2

c2
εz(x,y)Ez = 0, ∆ = ∂xx +∂yy, (1.3)

on the domain Ω and can be completed by the following boundary condition

(∂ν + iγ)Ez = Q(−∂ν + iγ)Ez +g

on the boundary domain Γ . Here ∂ν denotes the normal derivative, γ > 0 is a smooth positive function

and g is for instance an L2-function on the boundary. Q is a smooth function allowing to fit the condition

: if Q = −1 it gives a Dirichlet condition, if Q = 1 a Neumann condition or if Q = 0 a Robin condition.

This O-mode (named for Ordinary mode) presents one cutoff : when εz is negative or positive the

nature of the equation (1.3) is either elliptic coercive or elliptic propagative. This coefficient εz ∈ R

is a real continuous function. It depends on the local density of electrons and on the exterior frozen

magnetic field. Since the electron density is continuous, it explains why the coefficient of the equation

is also a continuous function. A more general setting of the physical problem could be to introduce

some dissipation with a complex valued coefficient. This case is not considered hereafter. A further

simplified one dimensional model reads

− d2

dx2
Ez + xEz = 0. (1.4)

Equations (1.3) and (1.4) are particular cases of our model problem (1.1). The fundamental solutions

are the two Airy functions Ai and Bi. The first Airy function Ai displays important properties which are

fundamentally related to the physics of the problem. It will be used for validation in our numerical tests.

More generally a challenge is to adapt advanced numerical methods which are at the frontier of what

is used in classical engineering so as to obtain efficient algorithms which can be used in the context of

the numerical modeling of Fusion plasmas. We are in particular interested by reflectometry which is a

diagnostic method to measure density in fusion plasmas, based on the reflection of the probing wave

at a plasma cut-off. The local density at the cut-off layer can be deduced from the reflected signal.

Therefore the mathematical model of the cut-off is crucial for the application. Our motivation is that

the equation (1.3) models the cut-off as the zero of the coefficient εz, it is then natural to take into

account the smoothness feature of the coefficient in the design of the numerical method. In fact, classical

numerical methods described in paragraph 1.2 consider only piecewise coefficients which would damage

the description of the cut-off. We hope this work can be considered as a first step in this direction.
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1.2 Plane wave methods

The numerical method that we propose is an extension of plane waves methods, such as the ultra weak

variational formulation (UWVF) Després (4); Cessenat & Després (2, 3); Gittelson et al. (10); Huttunen

et al. (17), to problems with smooth non constant coefficients. Indeed the standard UWVF uses constant

coefficients per cell. This is optimal when the physical domain can be split into sub-domains in which

the coefficients are constant. But if the coefficients of the problem to solve are non constant and smooth,

such a procedure introduces a priori an important error. Our aim is to propose and analyze an extension

of UWVF which uses original basis functions based on the generalized plane waves Melenk (20).

We think that the approach proposed in this work is not restricted to UWVF, and can be generalized

to different plane wave methods that we describe here. PUFEM Melenk (19); Melenk & Babuska (21)

falls in the same class of method Perrey-Debain et al. (24); Pluymers et al. (25). It has also been shown

that UWVF can be interpreted as a special Discontinuous Galerkin procedure Gittelson et al. (10);

Hiptmair et al. (14); Farhat et al. (6, 8). The analysis of the classical ultra weak variational formulation

method described as a discontinuous Galerkin method is performed in Huttunen et al. (16), as well as the

corresponding h and p convergence theory. It has been proved that the analysis of h-convergence takes

great advantage of this fact in Buffa & Monk (1); Gittelson et al. (10). The analysis of p convergence

is treated in Hiptmair et al. (13). Comparisons between these methods is investigated in Gabard et al.

(9); Huttunen et al. (15); Strouboulis et al. (26); Wang et al. (28). Analysis with respect to the wave-

number k is performed in Melenk & Sauter (22). The new family of generalized plane waves described

in this work generates a high order method with respect to the basis functions and the coefficients of

the problem: in this direction we refer also to the Enrichment method Kalashnikova et al. (18); Farhat

et al. (7) which could provide an alternative to our method in order to enrich a more conventional

polynomial basis with our generalized plane wave basis. Ultimately there is no opposition between

all these approaches in the sense that it is possible at the level of principles to mix polynomial basis

functions and generalized plane waves to obtain a method with improved approximation properties.

However it is far beyond the scope of this paper and will not be considered.

The performance of the new method relies on a further investigation of the ultra weak variational

formulations method presented in Després (4). In fact, the ultra weak variational formulation uses basis

function adapted to the original problem, in the sense that they are exact solution to the problem. It

makes the approximation of the exact solution more relevant for a given number of elements in the mesh

and a given number of basis functions per element than the approximation obtained with classical finite

elements methods. Then considering smooth non constant instead of piecewise constant coefficients,

it’s coherent to look for more general basis functions since classical plane waves can no more be exact

solutions of the problem. So the idea is to construct, in the vicinity V0 of a point x0 ∈ Ω basis functions

• that are generalized plane waves, say ϕ = eP(x) for x ∈V0 and P ∈ C[X ],

• that are solution to a modified problem : −∆ϕ + α̃ϕ = 0, such that α̃ satisfies the approximation

property ‖α − α̃‖L∞(V0) 6 Chq, where h denotes the size of V0, C is a constant and q > 1 is a

given entire number.

The aim of this paper is first to design the new adapted basis functions, second to construct the adapted

tools to fit with the frame of non confirming finite element methods in order to follow the steps of

the second Strang lemma for the estimation of the convergence rate and third to illustrate with basic

numerical tests for the Airy equation.
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1.3 Plan

This work is organized as follows. We present a family of generalized plane waves in the section 2 :

these functions have been designed to be the standard plane waves in case the coefficients of the problem

are constant in space and non positive. In section 3 we present the general principle of UWVF and adapt

it to smooth coefficients. The next section 4 is devoted to the numerical analysis of the method. Our

main theoretical result is a proof of convergence in dimension one, using the second Strang’s lemma

and some uniform coercivity estimates. This is probably the most original theoretical result in our work.

To our knowledge it is the first time that it is introduced and analyzed in the context of generalized

plane wave methods. Numerical results are provided in section 5 to illustrate the theoretical results.

In particular we display experimental convergence estimates in dimension two. The numerical results

suggest that a different normalization of the generalized plane waves may increase the accuracy, which

is indeed what is observed. Additional technical material is provided in the appendix.

2. Generalized plane waves

Unlike the classical variational formulation used for instance by finite element methods, here the vari-

ational formulation requires meshing the domain as a preliminary task. This feature is shared by Ultra

Weak Variational Formulations, Discontinuous Galerkin Methods, Enriched methods and other plane

wave methods. The coupling strategy between the cells differs of course. But up to this fact the gener-

alized plane waves can be used in principle for all such algorithms. We begin with some notations. The

mesh of the domain Ω is denoted Th = {Ωk}k∈[[1,Nh]], such that :

Ω = ∪Ω k,Ωk ∩Ω j = /0,∀k 6= j,
Γk = Ω k ∩Γ

Σk j = Ωk ∩Ω j, oriented from Ωk to Ω j,
∂Ωk = (∪ jΣk j)∪Γk.

Ωk

Ω j

Σk j

Γj

FIG. 1: Example of a meshed square domain Ω , with elements Ωk, edges Σk j and Γj respectively oriented

toward Ω j and the exterior of the domain.
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2.1 A general method

Shape or basis functions ϕ are sought as solutions of the homogeneous equation

(−∆ +α)ϕ = 0. (2.1)

If the coefficient α is constant in the cell and negative, it is sufficient to use plane waves, that is in

dimension two x = (x1,x2)

ϕ(x,y) = e
√

α(d1x+d2y) with d = (d1,d2) and (d,d) = 1. (2.2)

If the vector d is real, it is simply the direction of the plane wave. This is the basic idea of all plane

wave methods. However if α is non constant in the cell, then we do not know of any simple and general

analytical formula for ϕ . For example if α = x is linear with respect to the first variable, it is possible

to construct ϕ from the Airy functions Ai and Bi. But the Airy functions are highly transcendental, they

are not that evident to manipulate.

Our main goal is to describe a method of approximation which can be used for any function α . By

comparison with (2.2) it is natural to to generalize the plane formula and to consider generalized plane

waves such as

ϕ(x,y) = eP(x,y) P a polynomial.

One gets that ϕ is solution of (2.1) if and only if

∂ 2

∂x2
P+

(

∂

∂x
P

)2

+
∂ 2

∂y2
P+

(

∂

∂y
P

)2

= α(x,y). (2.3)

However many tries showed that such a representation is not sufficient. The explanation is simple: as P

can be expanded as a finite series of monomial xnym, the result is a finite series of term

∂ 2

∂x2
xnym +

(

∂

∂x
xnym

)2

+
∂ 2

∂y2
xnym +

(

∂

∂y
xnym

)2

=
(

n(n−1)xn−2 +nx2n−2
)

ym + xn
(

m(m−1)ym−2 +m2y2m−2
)

. (2.4)

For example let us consider the case α(x,y) = x and let us look for a polynomial

P = ∑
n6K

∑
m6L

anmxnym, aKL 6= 0,

solution of (2.3). If K > 2 of L > 2, the maximal degree of (2.4) cannot decrease which is contradictory

with the fact that α = x is a polynomial of degree one. So K 6 1 and L 6 1. In this case the degree of

(2.4) with respect to x is 0, and the same for the degree with respect to y. In summary solutions of the

functional equation (2.3) cannot be polynomial in the general case.

Therefore a modification is needed. Instead of considering that α is given and looking for solution

of (2.3), we look for approximate solutions. That is we consider the approximate equation

(

−∆ +α l
k

)

ϕ l
k = 0 in Ωk

where α l
k is an approximation of α in Ωk.
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Definition 2.1. Generalized plane waves A generalized plane wave will be understood as any function

(with support in cell Ωk) of the form

ϕ l
k = ePl

k
(x,y)

where Pl
k is a polynomial solution of

∂ 2

∂x2
Pl

k +

(

∂

∂x
Pl

k

)2

+
∂ 2

∂y2
Pl

k +

(

∂

∂y
Pl

k

)2

= α l
k(x,y) (2.5)

and α l
k is an approximation of α .

2.2 Design of the basis functions in dimension one

The one dimensional case is a first step to construct the coefficients α l
k and the generalized plane wave

functions ϕ l
k. Therefore we will suppose in this section that Ω =]a,b[⊂R and that Ω =∪k∈[[1,Nh]][xk,xk+1],

with xk < xk+1. The middle of the open interval Ωh =]xk,xk+1[ is denoted by xk+1/2 =
xk+xk+1

2
. Apart

from providing the technical details of the construction of the basis functions, the central result of this

section is an explanation why it is necessary to use different approximations α l
k of the function α in the

same cell [xk,xk+1] in order to avoid a singularity in the construction.

2.2.1 Design principle. We want here to set our choice of basis functions : in order to generalize

plane wave methods, we will consider exponential of polynomials

ϕ(x) = eP(x).

Notice that we only need two basis functions per element of the mesh in dimension one: this is a

common property of plane wave methods in dimension one; the reason is the number of elementary

solutions of a second order differential equation which is two. Plugging the previous representation

formula into the homogeneous equation −ϕ ′′ +αϕ = 0 we find the functional equation

P′′(x)+P′(x)2 = α(x), x ∈ [xk,xk+1].

This equation is non linear and no simple solution is available for general right hand side α . However

if α is locally constant, that is

α(x) = α(xk+1/2) ∈ R, x ∈ [xk,xk+1],

then

P±
k (x) = ±

√

α(xk+1/2)x

are two natural solutions which correspond to the two local plane waves ϕ±
k (x) = eP±

k
(x) in the case

α(xk+1/2) < 0.

2.2.2 Local approximation. To ensure the local approximation of the α , one has to fit the polynomi-

als’ coefficients to approximate the Taylor expansion of the equation’s coefficient α , which is performed

with respect to the parameter h which represents the length of the mesh

h = max
k

(xk+1 − xk).
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A first idea is to approximate the Taylor expansion of α

α = α± +O(hq) (2.6)

and to look for polynomials solutions of

P′′
± +(P′

±)2 = α±, x ∈ [xk,xk+1].

Without restriction we assume that α admits a local infinite expansion

α =
∞

∑
i=0

diα

dxi
(xk+1/2)

(

x− x
k+ 1

2

)i

, x ∈ [xk,xk+1].

Using the finite expansion P± = ∑i6I β±
i yi where y = x− x

k+ 1
2
, one obtains

α± = P′′
± +(P′

±)2 =

(

∑
i6I

β±
i yi

)′′

+

((

∑
i6I

β±
i yi

)′)2

.

In order to satisfy (2.6) we have to chose I ∈ N and (βi)06i6I such that

(

∑
i6I

β±
i yi

)′′

+

((

∑
i6I

β±
i yi

)′)2

=
q−1

∑
i=0

diα

dxi
(xk+1/2) yi +O(hq). (2.7)

Identifying the coefficients in the polynomial part of the previous equation leads to a system of q equa-

tions with I unknowns. Then choosing I high enough ensures that the system is easy to solve. At the

same time it is reasonable to choose I as small as possible to minimize the amount of computations. The

main question is therefore to determine the optimal value of the degree of the polynomials, parameter I,

with respect to the order of approximation, parameter q. Some remarks and examples follow.

• Normalization : β0 = 0. It is always possible to take β0 = 0 since β0 does not show up in (2.7). It

implies that the amplitude of the corresponding basis function is normalized in the cell since

e
P±

(

x
k+ 1

2

)

= e0 = 1.

• Trivial case : q = I = 1. From (2.7) one obtains the equation β 2
1 = α

(

x
k+ 1

2

)

. One recovers from this

procedure β1 = ±
√

α
(

x
k+ 1

2

)

so

P±(x) = ±
√

α
(

x
k+ 1

2

)(

x− x
k+ 1

2

)

.

In the case where α
(

x
k+ 1

2

)

< 0, it yields two plane waves with opposite directions. This case

is the trivial one.
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• Counter-example : q = I = 2. The discrete equations are obtained from the first two terms in (2.7)







2β2 +β 2
1 = α

(

x
k+ 1

2

)

≡ a,

4β1β2 = α ′
(

x
k+ 1

2

)

≡ b.
(2.8)

Elimination of β2 yields

−2β 3
1 +2aβ1 = b. (2.9)

It is of course possible in principle to compute β1 as any root of this polynomial, β2 will then

be computed as a ratio, i.e. β2 = b
4β1

. So in principle this method has the ability to generate

at least two different polynomials P±. However there is a possibility for β1 to vanish for some

value of a and b. In such a case β2 would be singular. It must be noticed that we have used such

a method in our first numerical tests: indeed it revealed a singularity near α(x) ≈ 0. Another

problem is the generalization to high order : indeed this procedure requires to compute exactly

the roots of a high order polynomial which generalizes (2.9); this is not possible for orders > 5.

This is why we do not use this method to compute the coefficients β1 and β2.

• Example : q = 2 and I = 3. Since one needs at least one more degree of freedom in the system to be

solved we modify (2.8) and take into account β3. The system becomes

{

2β2 +β 2
1 = a,

6β3 +4β1β2 = b.
(2.10)

This system has 3 unknowns and 2 equations. So it has a priori an infinite number of solutions.

Very fortunately a natural normalization condition arises, by considering that the two basis

function should be linearly independent. To insure this we impose that d
dx

e
P+

(

x
k+ 1

2

)

= 0 ⇐⇒

P′
+

(

x
k+ 1

2

)

= 0 and d
dx

e
P+

(

x
k+ 1

2

)

= 1 ⇐⇒ P′
+

(

x
k+ 1

2

)

= 1. The first case corresponds to β1 = 0

and the second one to β1 = 1. With this second normalization it is evident that β2 and β3 can be

computed explicitly from (2.10) and that the resulting formulas are just polynomial expressions

with respect to all coefficients. One obtains two sets of coefficients which are β+
1 = 1, β+

2 =
1
2
(a− 1), β+

3 = 1
3
(b−2a+2) and β−

1 = 0, β−
2 = a

2
, β−

3 = 1
3
(b−2a). Notice that α+ 6= α−

since β+
1 6= β−

1 .

We use the method described in the last example at any order. The first thing is to chose a convenient

degree I for any order q. In order to obtain an invertible system, one has to consider the first q terms in

the left hand side of (2.7). As long as one considers the terms of degree less than or equal to I −2, the

index of the coefficient from P′′ is higher than the indexes of all the coefficients arising from (P′)2 terms.

So that - as long as I−2 6 q−1 - the computation of the I−1 coefficients {β j}26 j6I is straightforward,

given the coefficient β1. Moreover if I < q+1 the terms of degree higher than I−2 in (2.7) will give an

overdetermined system. For this reason the choice of Ps degree is set to be I = q+1.

In fact, in this case we solve the system of q equations with q+1 unknowns obtained identifying the

first q coefficients in both parts of the expansion (2.7) with the normalization

β+
1 = 0 which corresponds to P′

+

(

x
k+ 1

2

)

= 0
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and

β−
1 = 1 which corresponds to P′

−
(

x
k+ 1

2

)

= 1.

The coefficients β+
2 , β+

3 , β+
4 , . . . , and β−

2 , β−
3 , β−

4 , . . . , are calculated one after the other using the

formula deduced from the definition (2.7) for all n 6 q−1

(n+2)(n+1)β±
n+2 =

dn

dxn
α
(

x
k+ 1

2

)

−
j+ j′=n

∑
06 j, j′6I−1

( j +1)( j′ +1)β±
j+1β±

j′+1
.

By construction ϕ+ = eP+ and ϕ− = eP− are linearly independent functions. Once the polynomials P+

and P− have been constructed up to order q, we set

α+ = P′′
+ +(P′

+)2 and α− = P′′
− +(P′

−)2. (2.11)

By construction the first q coefficients of these polynomials coincide. But of course all other coefficients

have no reason to be equal, so

α+ 6= α− in the general case.

One can summarize as follows.

Lemma 2.1. The functions α± defined in (2.11) satisfy the following statements.

1. They are bounded independently from the cell number k, as well as all there derivatives.

2. If α is constant in the cell, then α± = α , and the basis functions are classical plane waves.

3. By construction there exists a constant Cq such that

‖α±−α‖L∞(Ωk) 6 Cqhq

where h = |Ωk| and q is the order of the approximation.

4. This construction is valid even if the sign of α changes.

The last point is critical to be able to address the numerical approximation of the Airy equation.

Remark 2.1. It is also possible to choose another normalization such as β±
1 = ±√

xk+1/2. This choice

will be illustrated as a numerical example in section 5.

Remark 2.2. Property 3 of lemma (2.1) establishes a property of approximation with respect to h. One

of our numerical tests shows that a similar property of convergence holds with respect to the order

parameter q. In practice q-convergence is a highly desirable property since it allows to use big cells.

2.3 Design of the basis functions in dimension two

The fundamental equation that defines a generalized plane wave is (2.5). Description of all solutions

of this equation and of effective procedures for the computation of such solutions seems difficult. Nev-

ertheless one can rely on a simple linearization procedure in order to define a set of generalized plane

waves with an order of approximation q > 1.
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2.3.1 Linear coefficients+rotation. A first remark is that a simple procedure exists in the case of a

linear coefficient

α = a+bx+ cy.

Up to a local rotation it is always possible to assume that c = 0. Assuming the local form

P(x,y) = p(x)+λy

one ends up with the equation

p′′(x)+ p′(x)2 = α(x)−λ 2

for which the procedure described in the previous section is well adapted for the construction of a

discrete space of approximation. Some details about the choice of λ will be provided in the numerical

section 5.3. Our numerical tests (in the numerical section) show this procedure yields a high order

method at any order.

2.3.2 Linearization. For a smooth coefficient α which is not necessarily linear, it is always possible

to approximate it by a linear function, that is

α(x,y) = a+b(x− xG)+ c(y− yG)+O(h2)

where a = α(xG,yG), b = ∂xα(xG,yG), c = ∂yα(xG,yG) and |x− xG|+ |y− yG| = h. We can write

α(x,y) = αG(x,y)+O(h2), αG(x,y) = a+b(x− xG)+ c(y− yG).

The approximation of αG with the method described above yields a procedure a approximation of α by

generalized plane waves.

3. UWVF and generalized plane waves

We now described the introduction of generalized plane waves in the UWVF method.

3.1 Notation

The function space for the UWV formulation is denoted V as

V = ∏
k∈[[1,Nh]]

L2(∂Ωk),

equipped with the Hermitian product (x,y) = ∑k

∫

∂Ωk

1
γ xkyk. It defines a norm: ‖x‖ =

√

(x,x). In

particular for any operator A ∈ L (V ), the norm is

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ .

Remark 3.1. The space V depends on the mesh. Moreover: if Ω ⊂ R the dimension of V is finite; if

Ω ⊂ R
d with d > 2, the dimension of V is infinite.
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3.2 A standard ultra weak variational formulation

The ultra weak variational formulation is a convenient reformulation of the initial problem. We need to

define

Hk(α) =

{

vk ∈ H1(Ωk),

∣

∣

∣

∣

(−∆ +α)vk = 0,(Ωk),
((−∂ν + iγ)vk)|∂Ωk

∈ L2(∂Ωk)

}

(3.1)

and

H =
Nh

∏
k=1

Hk(α).

Theorem 3.1. Let u ∈ H1(Ω) be a solution of problem (1.1) such that ∂νk
u ∈ L2(∂Ωk) for any k. Let

γ > 0 be a given real number. Then x ∈V defined by x|∂Ωk
= xk with xk = ((−∂ν + iγ)u|Ωk

)|∂Ωk
satisfies

∑
k

(

∫

∂Ωk

1

γ
xk(−∂ν + iγ)ek − ∑

j, j 6=k

∫

Σk j

1

γ
x j(∂ν + iγ)ek

)

− ∑
k,Γk 6= /0

∫

Γk

Q

γ
xk(∂ν + iγ)ek = −2i∑

k

∫

∂Ωk

f e+∑
k

∫

Γk

1

γ
g(∂ν + iγ)ek,

(3.2)

for any e = (ek)k∈[[1,Nh]] ∈ H. Conversely, if x ∈V is solution of (3.2) then the function u defined locally

by






u|Ωk
= uk ∈ H1(Ωk),

(−∆ +α)uk = f|Ωk
,

(−∂νk
+ iγ)uk = xk,

(3.3)

is the unique solution of the problem (1.1).

This result is classical in the context of UWVF. We refer to Cessenat & Després (3); Buffa & Monk

(1); Hiptmair et al. (13); Huttunen et al. (16, 17); (author?) (Imbert-Gérard & Després). Our main task

is to adapt this formulation to the generalized plane waves developed previously. In order to give a more

compact formulation useful for further developments, some definitions are required.

Definition 3.1. For any f ∈ L2(Ω), let E f be the extension mapping defined by :

E f :

{

V → H,
z 7→ e = (ek)k∈[[1,Nh]],

where e is defined ∀k ∈ [[1,Nh]] by the unique solution of the following problem :

{

(−∆ +α)ek = f (Ωk),
(−∂νk

+ iγ)ek = zk (∂Ωk).

Also define E which is the homogeneous extension operator with vanishing right hand side, namely

E = E0.

Notice that E f is well defined thanks to theorem A.1.

Definition 3.2. Let F be the mapping defined by

F :

{

V → V,
z 7→

(

(∂ν + iγ)E(z)|∂Ωk

)

k∈[[1,Nh]]
.
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This operator relates the outgoing and ingoing traces on the boundaries ∂Ωk.

Definition 3.3. Let Π be the mapping defined by

Π :







V → V,
z|Σk j

7→ z|Σ jk
,

z|Γk
7→ Qz|Γk

.

Definition 3.4. If F∗ denotes the adjoint operator of the operator F, let A be the operator F∗Π .

With these notations the problem (3.2) is equivalent Cessenat & Després (3) to

{

Find x ∈V such that ∀y ∈V

(x,y)− (Πx,Fy) = (b,y),
(3.4)

where the right hand side b ∈V is given by the Riesz theorem

(b,y) = −2i

∫

Ω
f E(y)+

∫

Γ

1

γ
gF(y), ∀y ∈V.

More precisely

• If u is solution of the initial problem (1.1) such that
(

(−∂ν + iγ)u|∂Ωk

)

k∈[[1,Nh]]
∈ V , then x =

(

(−∂ν + iγ)u|∂Ωk

)

k∈[[1,Nh]]
is solution in V of (3.4).

• Conversely if x is solution of (3.4) then u = E f (x) is the unique solution of (3.2). The problem

(3.4) is equivalent to
{

For b ∈V, find x ∈V

(I −A)x = b.
(3.5)

We now give some properties of the operators defined previously. They will be useful for the theo-

retical study of the method.

Lemma 3.1. The operator Π obviously satisfies ‖Π‖6 1 for any complex function Q such that |Q|6 1.

Lemma 3.2. The operator F is an isometry.

Proof. For any y ∈V , let e ∈ H be E(y). Then

‖Fy‖2 = ∑
k∈[[1,Nh]]

∫

∂Ωk

1

γ
|(∂ν + iγ)ek|2 = ∑

k∈[[1,Nh]]

∫

∂Ωk

1

γ
|∂ν ek|2 + γ|ek|2 +2ℑ(∂ν ek · ek),

‖y‖2 = ∑
k∈[[1,Nh]]

∫

∂Ωk

1

γ
|(−∂ν + iγ)ek|2 = ∑

k∈[[1,Nh]]

∫

∂Ωk

1

γ
|∂ν ek|2 + γ|ek|2 −2ℑ(∂ν ek · ek).

Since
∫

∂Ωk
∂ν ek · ek =

∫

Ωk
|∇ek|2 +α|ek|2 ∈ R, one gets that ‖Fy‖2 = ‖y‖2. This implies the result. �

Proposition 3.1. The operator A satisfies ‖A‖ 6 1.

This operator also satisfies the following property.
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Proposition 3.2. The operator I −A is injective.

Proof. Let x ∈V such that (I −A)x = 0, which means x = F∗Πx. Define z ∈V such that z = Πx, then

F∗z = x so that ΠF∗z = z. Then define u ∈ H such that for all k ∈ [[1,Nh]]

{

−∆u+αu = 0, (Ωk),
(∂ν + iγ)u = z|∂Ωk

, (∂Ωk).
(3.6)

In order to identify F∗z, define y ∈ V such that ∀k ∈ [[1,Nh]], yk = (−∂ν + iγ)u|Ωk
. It is known that

∀v ∈V , there exists w ∈ H such that w = E(v), which means w satisfies

{

−∆w+αw = 0, (Ωk),
(−∂ν + iγ)w = v|∂Ωk

, (∂Ωk).
(3.7)

Then

(y,v) = ∑
k∈[[1,Nh]]

∫

∂Ωk

1

γ
(−∂ν + iγ)u|Ωk

· (−∂ν + iγ)w|∂Ωk
,

= ∑
k∈[[1,Nh]]

∫

∂Ωk

1

γ
∂ν u ·∂ν w+ γu ·w+ i∂ν u ·w− iu ·∂ν w,

(z,Fv) = ∑
k∈[[1,Nh]]

∫

∂Ωk

1

γ
(∂ν + iγ)u|Ωk

· (∂ν + iγ)w|∂Ωk
,

= ∑
k∈[[1,Nh]]

∫

∂Ωk

1

γ
∂ν u ·∂ν w+ γu ·w− i∂ν u ·w+ iu ·∂ν w.

On the other hand, from (3.6) and (3.7) for all k ∈ [[1,Nh]]

{ ∫

∂Ωk
∂ν u ·w =

∫

Ωk
∇u ·∇w+

∫

Ωk
αu ·w,

∫

∂Ωk
u ·∂ν w =

∫

Ωk
∇u ·∇w+

∫

Ωk
αu ·w,

so that
∫

∂Ωk
−∂ν u ·w+u ·∂ν w = 0. As a consequence

∀v ∈V,(y,v) = (z,Fv),

which exactly means that y = F∗z. Since ΠF∗z = z, it leads to Πy = z.

To conclude let’s read this last equation in terms of the function u defined in (3.6).

∀(k, j) ∈ [[1,Nh]]
2,

{

(−∂ν + iγ)u|Σ jk
= (∂ν + iγ)u|Σk j

,

Q(−∂ν + iγ)u|Γk
= (∂ν + iγ)u|Γk

,

so that both u and ∂ν u are continuous along every interface Σk j, and now

{

−∆u+αu = 0, (Ω),
(∂ν + iγ)u = Q(−∂ν + iγ)u, (∂Ω).

Thanks to the preliminary result, u is the unique solution of the corresponding (1.1) problem : it is the 0

solution. Then z = 0, and so x = 0. The proof is ended. �
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3.3 An abstract discretization procedure

The next step consists in the discretization of equation (3.4). This could be treated thanks to a standard

Galerkin method which is presented below. That is we consider a subspace Vh ⊂V with finite dimension.

We seek the discrete solution xh ∈Vh such that

∀yh ∈Vh,(xh,yh)− (Πxh,Fyh) = (b,yh). (3.8)

The definition of the operator F , through the operator E, is linked to the functional space H ; this fact

means that solutions of the homogeneous equation are needed then. In other words this abstract Galerkin

procedure needs a companion constructive procedure to design the basis functions to generate Vh.

Before describing in the next section what is our proposition to make such a Galerkin method effec-

tive, we explain below why such a Galerkin approach (3.8) yields a well posed discrete problem. We

provide here an analysis of this well known fact which is slightly different from what can be found in

the literature Després (4); Cessenat & Després (3); Gittelson et al. (10); Buffa & Monk (1); Hiptmair et

al. (13, 14).

Definition 3.5. Let us define the norm |||v||| = ‖(I −A)v‖ for all v ∈ V , and the bilinear form of the

formulation (3.4): a(x,y) = (x,y)− (Πx,Fy).

Since I −A is injective, ||| · ||| is indeed a norm. In the rest of this paper, R(z) (resp. I(z))stands for

the real (imaginary) part of z ∈ C. A fundamental property is

Lemma 3.3. The bilinear form is coercive with respect to the norm ||| · |||

|||x|||2 6 2R (a(x,x)) ∀x ∈V,

and is bicontinuous in the sense

|a(x,y)| 6 |||x|||×‖y‖ ∀x,y ∈V.

Proof. One has by definition |||x|||2 = ‖x‖2 +‖Ax‖2 −2R(x,Ax). Since ‖A‖ 6 1 then

|||x|||2 6 2
(

‖x‖2 −R(x,Ax)V

)

= 2R ((I −A)x,x)V = 2Ra(x,x).

The coercivity is proved. The skewed bicontinuity is evident from Cauchy-Schwarz inequality applied

to a(x,y) = ((I −A)x,y). �

Proposition 3.3. Assume there exists x solution of the problem (3.5). Then any discrete solution xh

satisfies the inequality

|||x− xh||| 6 2 inf
zh∈Vh

‖x− zh‖. (3.9)

Proof. By construction a(x− xh,yh) = 0 ∀yh ∈Vh. So

a(x− xh,x− xh) = a(x− xh,x− zh) with zh = yy − xh.

It ends the proof with the coercivity and skewed bicontinuity of lemma 3.3. �

Lemma 3.4. For all b ∈V , the discrete solution xh exists and is unique.

Proof. If xh exists, it is solution of a linear system, the dimension of the system being the dimension

of the discrete subspace Vh. Therefore it is sufficient to check that if a(xh,yh) = 0 for all yh ∈ Vh, then

xh = 0. Apply the inequality (3.9) with the choice x = b = 0. It yields ‖xh‖ 6 2infzh∈Vh
‖zh‖ = 0. �
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3.4 The new method

We consider that the generalized plane waves ϕ l
k have been constructed with the procedure described

previously. The local discrete space is

Wk = Span
{

(−∂ν + iγ)ϕ l
k

}

16l6p(k)
⊂ L2(∂Ωk).

The global discrete space V q ⊂ V is defined by : V q = ∏16k6Nh
Wk. Regarding these definitions, one

sees that the basis functions are defined on the boundaries of the mesh, and that they have compact

support. That is the shape function defined from ϕ l
k has support in L2(∂Ωk) and vanishes in L2(∂Ωk′)

for k′ 6= k. It is therefore convenient to define the trace vl
k ∈V by

vl
k = (−∂ν + iγ)ϕ l

k on L2(∂Ωk), and vl
k = 0 on L2(∂Ωk′) k′ 6= k.

An equivalent way to define Wk and V q could be

Wk = Span(vl
k)16l6p(k) and V q = Span(vl

k)16k6p(k), 16p6Nh
.

Next define what are the generalizations of operators E and F in this context. Let Eq ∈ L (V q,H) be

the discrete mapping defined ∀k ∈ [[1,Nh]] and ∀l ∈ [[1, p(k)]] by

Eq(vl
k) = ϕ l

k on H1(Ωk), and vl
k = 0 on H1(Ωk′) k′ 6= k. (3.10)

Similarly define Fq ∈ L (V q,V ), ∀k ∈ [[1,Nh]] and ∀l ∈ [[1, p(k)]], by

Fq(vl
k) = (∂ν + iγ)(ϕ l

k) on L2(∂Ωk), and vl
k = 0 on L2(∂Ωk′) k′ 6= k.

With these notations and definitions, the abstract UWVF with generalized plane waves is defined as

follows.

Definition 3.6. (UWVF method with generalized plane waves) Find xh ∈V q such that

∀yh ∈V q,(xh,yh)V − (Πxh,F
qyh)V = (bq,yh)V (3.11)

with the right hand side given by

(bq,yh)V = −2i

∫

Ω
f Eq(yh)+

∫

Γ

1

γ
gFq(yh), ∀yh ∈V q. (3.12)

4. Numerical analysis of the method

In this section we desire to provide tools for the proof of the convergence of the discrete solution defined

by (3.11) to the exact solution. Since the discrete method (3.11) can be viewed as a convenient modi-

fication of the bilinear form (3.8), it is not surprising that that the convergence analysis strongly relies

on the second Strang’s lemma as it is the case for non conforming finite element methods Farhat et al.

(6). However the technicalities attached to ultra weak formulations are such that the convergence proof

will be completed only in dimension one. This is due to the fact that some uniform coercivity properties

which are part of the second Strang’s lemma are easy to prove in dimension one, see proposition 4.2,

but are open problems in higher dimension.
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4.1 Simplified notations in dimension one

Let the order of approximation q be a given number. Assume that one has two polynomials Pk,1 and Pk,2

for all k ∈ [[1,Nh]]. The corresponding basis functions and coefficients are denoted ϕk,1, αk,1 and ϕk,2,

αk,2. For the sake of simplicity, the basis functions space will be now denoted by {ϕ j} j∈[[1,2Nh]] and the

corresponding coefficients D = {α j} j∈[[1,2Nh]] ; {z j} j∈[[1,2Nh]] will denote the corresponding traces, i.e.

∀ j ∈ [[1,2Nh]],z j = {(−∂ν + iγ)ϕ j|∂Ωk
}k∈[[1,Nh]].

The family {z j} j∈[[1,2Nh]] is a basis of the functional space V q. A fundamental property is that

V q = V only in dimension one.

This will greatly reduce the technicalities of the proof. In fact, the lemmas 4.1 and 4.3 rely on the fact

that in dimension one dimV q = 2

4.2 Preliminary results

For the sake of completeness, here are classical results useful for the study of this new method. The

proofs are postponed to the appendix.

Theorem 4.1. Let O be a one-dimensional open interval with length h. Let w be the unique solution of

{

−∆w+αw = 0, (O),
(−∂ν + iγ)w = g, (∂O).

(4.1)

Then there exists two constants h0 and C which depend of ‖α‖L∞(O) and γ such that ∀h < h0

‖w ‖L2(O) 6 C
√

h‖g‖L2(∂O) , (4.2)

Remark that the existence and uniqueness of the solution is given by theorem A.1.

We will also need a result on the approximation error between the problem

{

−∆w+αw = f , (O),
(−∂ν + iγ)w = g, (∂O),

(4.3)

and the modified problem
{

−∆w+αhw = f , (O),
(−∂ν + iγ)w = g, (∂O),

(4.4)

where O represents any open set with length h included in Ω .

Theorem 4.2. Let O be a one-dimensional open interval with length h. If u is solution of the problem

(4.3) and uh is solution of the problem (4.4), then for small h there exists a constant C such that

‖u−uh‖L2(O) 6 C
(

h
3
2 ‖g‖L2(∂O) +h2‖ f‖L2(O)

)

‖α −αh‖L∞(O). (4.5)
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4.3 The discrete problem

This paragraph is devoted to showing that the operator Fq described in section 3.4 is an approximation

of the operator F up to the order q+1 in h. Consider the following problem

{

Find xh ∈Vq such that

(I −Aq)xh = b,
(4.6)

where Aq = (Fq)∗Π . Here h and q are given. This result relies on a preliminary lemma.

Lemma 4.1. Let q > 2. Suppose h is small enough and basis functions are constructed as described

in paragraph 2.2.2. For all k ∈ [[1,Nh]], there exists a constant C independent k such that ∀z ∈ V q and

∀k ∈ [[1,Nh]]

∑
j∈{1,2}

|x j|‖z j‖L2(∂Ωk)
6 C

∥

∥

∥

∥

∥

∑
j∈{1,2}

x jz j

∥

∥

∥

∥

∥

L2(∂Ωk)

.

Proof. Set k ∈ [[1,Nh]] and z = x1z1 + x2z2. First x j can be written as a function of z. This is a

priori possible using {w j} j∈{1,2} which is the dual basis of {z j} j∈{1,2}. For all ( j, l) ∈ {1,2}2, the dual

function w j is defined by

(w j,zl)V = δ jl , (4.7)

where δ denotes the Kronecker symbol. The proof proceeds in several steps.

First step. One has that x j = (z,w j)V , therefore

∑
j∈{1,2}

|x j|‖z j‖ 6

(

∑
j∈{1,2}

‖z j‖‖w j‖
)

‖z‖.

So the claim is proved provided the term between parentheses can be estimated.

Second step: estimation of ‖∑ j∈{1,2} ‖z j‖‖w j‖‖. From (4.7) it turns out that

w1 =
−‖z2‖2

|(z1,z2)|2 −‖z1‖2‖z2‖2
z1 +

(z1,z2)

|(z1,z2)|2 −‖z1‖2‖z2‖2
z2,

w2 =
(z1,z2)

|(z1,z2)|2 −‖z1‖2‖z2‖2
z1 −

‖z1‖2

|(z1,z2)|2 −‖z1‖2‖z2‖2
z2,

so that

∑
j∈{1,2}

‖z j‖‖w j‖ 6 2
‖z1‖2‖z2‖2

‖z1‖2‖z2‖2 −|(z1,z2)2
|
.

Let us set for convenience A = |(z1,z2)|
‖z1‖‖z2‖ so that ∑ j∈{1,2} ‖z j‖‖w j‖ 6 2 1

1−A2 . It means that the

whole proof relies on an upper bound for A.

Third step: end of the proof. By definition (z j)|∂Ωk
=
(

(−∂ν + iγ)ePj
)

|∂Ωk
. By construction Pj(xk+1/2)=

0 for j = 1,2, P′
1(xk+1/2) = 0 and P′

2(xk+1/2) = 1. Since by construction all derivatives of P1 and

P2 are uniformly bounded, one has Pj(x) = O(h) for j = 1,2, P′
1(x) = O(h) and P′

2(x) = 1+O(h)
when h goes to 0 and for all x ∈ [xk,xk+1].
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So one can estimate

||z1||2 =
1

γ

∣

∣−P′
1(xk+1)+ iγP1(xk+1)

∣

∣

2 |exp(P1(xk+1))|2 +
1

γ

∣

∣P′
1(xk)+ iγP1(xk)

∣

∣

2 |exp(P1(xk))|2

=
1

γ

∣

∣

∣−P′
1(xk+ 1

2
)+ iγP1(xk+ 1

2
)
∣

∣

∣

2

+
1

γ

∣

∣

∣P
′
1(xk+ 1

2
)+ iγP1(xk+ 1

2
)
∣

∣

∣

2

+O(h),

that is ||z1||2 = 2γ +O(h). With the same method one obtains

||z2||2 = 2
1+ γ2

γ
+O(h) =

1+ γ2

γ2
2γ +O(h),

and

(z1,z2) =
1

γ
(−P′

1(xk+1/2)+ iγ)(−P′
2(xk+1/2)+ iγ)

+
1

γ
(P′

1(xk+1/2)+ iγ)(P′
2(xk+1/2)+ iγ)+O(h)

that is (z1,z2) = 2γ + O(h). Therefore A2 = γ2

1+γ2 + O(h). It proves the claim for h sufficiently

small.

Final comment. By construction the polynomials designed in dimension one in section 2.2.2 by the

approximation of the Taylor expansion (2.7) are such that all their coefficients are uniformly

bounded up to order q for all cells in the domain. This is why the error O(h) in the above

analysis is uniform with respect to the cell index k, which is therefore not indicated. This is not

true if one constructs the polynomials with the method constructed in the counter example (2.8).

�

Lemma 4.2. For small h and considering the basis functions constructed as described in paragraph

2.2.2, there exists a constant C

‖Fq −F‖ 6 Chq+1 (4.8)

Proof.

For all j ∈ [[1,2Nh]], the function ϕ j is by construction ϕ j = Eq(z j) such that

ϕ j ∈ {ϕl}l∈[[1,2Nh]] satisfies ∀k ∈ [[1,Nh]]

{

z j = (−∂ν + iγ)ϕ j, (∂Ωk),
(

− d2

dx2 +α j

)

ϕ j = 0, (Ωk).

We also define ψ j = E(z j) such that and the equation with the exact coefficient α

ψ j ∈ H satisfies ∀k ∈ [[1,Nh]]

{

z j = (−∂ν + iγ)ψ j, (∂Ωk),
(

− d2

dx2 +α
)

ψ j = 0, (Ωk).

Then
|(Fq −F)z j|2 = |(∂ν + iγ)(ϕ j −ψ j)|2,

= |(−∂ν + iγ)(ϕ j −ψ j)|2 +2ℜ(iγ(ϕ j −ψ j)∂ν(ϕ j −ψ j)),

= −2γℑ((ϕ j −ψ j)∂ν(ϕ j −ψ j)),
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since ϕ j and ψ j satisfy the same boundary condition: (−∂ν + iγ)(ϕ j −ψ j) = 0. Then on the only one

element where z j is non zero numbered k = k( j)

∫

∂Ωk

1

γ
|(Fq −F)z j|2 = −2ℑ

∫

∂Ωk

(ϕ j −ψ j)∂ν(ϕ j −ψ j),

= −2ℑ

∫

Ωk

(ϕ j −ψ j)
d2

dx2
(ϕ j −ψ j)−2ℑ

∫

Ωk

∣

∣

∣

∣

d

dx
(ϕ j −ψ j)

∣

∣

∣

∣

2

,

6 −2ℑ

∫

Ωk

(ϕ j −ψ j)(α jϕ j −αψ j),

since both ϕ j and ψ j satisfy homogeneous equations. Then

∫

∂Ωk

1

γ
|(Fq −F)z j|2 6 −ℑ

(

∫

Ωk

(α j +α)|ϕ j −ψ j|2 +
∫

Ωk

(α j −α)(ϕ j −ψ j)(ϕ j +ψ j)

)

,

6 ‖α j +α‖L∞(Ωk)‖ϕ j −ψ j‖2
L2(Ωk)

+‖α j −α‖L∞(Ωk)‖ϕ j −ψ j‖L2(Ωk)

(

‖ϕ j‖L2(Ωk)
+‖ψ j‖L2(Ωk)

)

,

thanks to Cauchy-Schwarz inequality. On the other hand, from (4.2) and (4.5) for small hs

‖ϕ j −ψ j‖L2(Ωk)
6 Ch

3
2 ‖z j‖L2(∂Ωk)

‖α −α j‖L∞(Ωk),

‖ϕ j‖L2(Ωk)
6 C

√
h‖z j‖L2(∂Ωk)

,

‖ψ j‖L2(Ωk)
6 C

√
h‖z j‖L2(∂Ωk)

,

and ‖α j +α‖L∞(Ωk) is bounded as noticed in remark 2.1. So for small h

‖(Fq −F)z j‖2
L2(∂Ωk)

6 C′h2‖α j −α‖2
L∞(Ωk)

‖z j‖2
L2(∂Ωk)

,

where still k denotes k( j). Now for all k ∈ [[1,Nh]] let L(k) be the set of indexes j ∈ [[1,2Nh]] such that

Ωk is the support of z j. Hence, for all z ∈V q then z|∂Ωk
= ∑l∈L(k) xlzl where both zls vanish on ∂Ω j for

all j 6= k, it yields

‖(Fq −F)z‖L2(∂Ωk)
6 ∑

l∈L(k)

|xl |‖(Fq −F)zl‖L2(∂Ωk)

6 Ch max
l∈L(k)

‖α l
k −α‖L∞(Ωk)

(

∑
l∈{1,2}

|xl |‖zl‖L2(∂Ωk)

)

.

Thanks to lemma 4.1 it means that

‖(Fq −F)z‖L2(∂Ωk)
6
√

C′h max
l∈L(k)

‖α l
k −α‖L∞(Ωk)‖z‖L2(∂Ωk)

.

Going back to the definition of the V norm for all z ∈V

‖(Fq −F)z‖ 6 Ch max
j∈[[1,2Nh]]

‖α j −α‖L∞(Ωk)‖z‖,

which exactly means ‖Fq−F‖6 Chmax j∈[[1,2Nh]] ‖α −α j‖L∞(Ωk). The result then comes from equation

(2.6) ensured by the construction of approximated coefficients α js. �
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4.4 Some norms

The whole point of this paragraph is to define a useful norm to adapt the second Strang lemma.

Lemma 4.3. There exists a constant C such that for all x ∈V : Ch3/2‖x‖ 6 ‖(I −A)x‖.

Remark that, in dimension one, the dimension of the space V is finite, so all the norms are equivalent;

but the constants in the continuity inequalities depend on h, and this lemma specifies the dependence in

this mesh parameter. Proof.

First step Take x ∈ V , and define b = (I −A)x. In order to interpret this equality in V , define u = E(x)
and w = E(b), so that (u,w) ∈ H ×H and

∀k ∈ [[1,Nh]]

{ (

− d2

dx2 +α
)

u = 0, (Ωk),

(−∂ν + iγ)u = xk, (∂Ωk),

∀k ∈ [[1,Nh]]

{ (

− d2

dx2 +α
)

w = 0, (Ωk),

(−∂ν + iγ)w = bk, (∂Ωk).

Since F is an isometry one has

Fx−Πx = Fb.

It means on every interface

∀k ∈ [[1,Nh]],

{

(−∂ν + iγ)u|Ωk
(xk)−1k 6=1(−∂ν + iγ)u|Ωk−1

(xk) = (−∂ν + iγ)w|Ωk
(xk),

(∂ν + iγ)u|Ωk
(xk+1)−1k 6=Nh

(∂ν + iγ)u|Ωk+1
(xk+1) = (∂ν + iγ)w|Ωk

(xk+1).

This leads to a system of jump conditions on the interfaces































(−∂ν + iγ)u|Ω1
(x1) = (−∂ν + iγ)w|Ω1

(x1),

∀k ∈ [[2,Nh]],

∣

∣

∣

∣

∣

∣

∣

(

d

dx
u|Ωk−1

− d

dx
u|Ωk

)

(xk) =
1

2

(

(−∂ν + iγ)w|Ωk
− (∂ν + iγ)w|Ωk−1

)

(xk),

(

u|Ωk
−u|Ωk−1

)

(xk) =
1

2iγ

(

(−∂ν + iγ)w|Ωk
− (∂ν + iγ)w|Ωk−1

)

(xk),

(∂ν + iγ)u|ΩNh
(xNh+1) = (∂ν + iγ)w|ΩNh

(xNh+1).

(4.9)

Considering U0 and U1 the two fundamental solutions of the homogeneous equation such that
(

− d2

dx2 +α
)

u = 0 on Ω , then u satisfies

∀k ∈ [[1,Nh]],u|Ωk
= δ k

0U0 +δ k
1U1, (4.10)

where (δ k
0 ,δ k

1 )k∈[[1,Nh]] completely determine u ∈ H. Plugging (4.10) in (4.9), and defining



























λ0 = (−∂ν + iγ)w|Ω1
(x1),

∀k ∈ [[2,Nh]],

∣

∣

∣

∣

∣

∣

∣

λk−1 =
1

2

(

(−∂ν + iγ)w|Ωk
− (∂ν + iγ)w|Ωk−1

)

(xk),

µk−1 =
1

2iγ

(

(−∂ν + iγ)w|Ωk
− (∂ν + iγ)w|Ωk−1

)

(xk),

µNh
= (∂ν + iγ)w|ΩNh

(xNh+1),
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then























(−∂ν + iγ)U0(x1)δ
1
0 +(−∂ν + iγ)U1(x1)δ

1
1 = λ0,

∀k ∈ [[2,Nh]],

∣

∣

∣

∣

∣

∣

d

dx
U0(xk)(δ

k−1
0 −δ k

0 )+
d

dx
U1(xk)(δ

k−1
1 −δ k

1 ) = λk−1,

U0(xk)(δ
k−1
0 −δ k

0 )+ U1(xk)(δ
k−1
1 −δ k

1 ) = µk−1,

(∂ν + iγ)U0(xNh+1)δ
Nh
0 +(∂ν + iγ)U1(xNh+1)δ

Nh
1 = µNh

.

(4.11)

Given the change of variable

∀k ∈ [[1,Nh −1]]

{

Dk
0 = δ k

0 −δ k+1
0 ,

Dk
1 = δ k

1 −δ k+1
1 ,

(4.12)

the system (4.11) gives a linear system with unknowns (Dk
0,D

k
1)k∈[[1,Nh−1]]. Defining the Wron-

skian W0 = U1
d
dx

U0 −U0
d
dx

U1 - which is non zero - the solution is

∀k ∈ [[1,Nh −1]]















Dk
0 =

1

W0

(

λkU1(xk+1)−µk

d

dx
U1(xk+1)

)

,

Dk
1 =

1

W0

(

µk

d

dx
U0(xk+1)−λkU0(xk+1)

)

.

Then the structure of the system (4.11) is















αδ 1
0 +βδ 1

1 = λ0,

δ k
0 −δ k+1

0 = Dk
0,∀k ∈ [[1,Nh −1]],

δ k
1 −δ k+1

1 = Dk
1,∀k ∈ [[1,Nh −1]],

γδ
Nh
0 +ηδ

Nh
1 = µNh

.

Eliminating (δ k
0 ,δ k

1 )k∈[[1,Nh−1]] it yields

{

δ 1
0 = ∑

Nh−1
k=1 Dk

0 +δ
Nh
0 ,

δ 1
1 = ∑

Nh−1
k=1 Dk

1 +δ
Nh
1 ,

and
{

αδ
Nh
0 +βδ

Nh
1 = L,

γδ
Nh
0 +ηδ

Nh
1 = µNh

,
(4.13)

with

L = λ0 − (−∂ν + iγ)U0(a)
Nh−1

∑
k=1

Dk
0 − (−∂ν + iγ)U1(a)

Nh−1

∑
k=1

Dk
1. (4.14)

The determinant of the system (4.13) is W1 =(−∂ν +iγ)U0(a)(∂ν +iγ)U1(b)−(∂ν +iγ)U0(b)(−∂ν +
iγ)U1(a). If it were zero, then its columns would be linearly dependent, say a0C1 + a1C2 = 0 ;

this would mean (∂ν + iγ)(a0U0 + a1U1)(x1) = 0 and (∂ν + iγ)(a0U0 + a1U1)(xNh
) = 0 so that

u = a0U0 +a1U0 would satisfy
{

−u′′ +αu = 0,
(∂ν + iγ)u = 0.
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Then u would be the unique solution (zero) of this last system, which is not possible since U0

and U1 are independent. Then W1 is non zero. One finally obtains that



















































δ
Nh
0 =

1

W1

(

L(∂ν + iγ)U1(b)−µNh
(−∂ν + iγ)U1(a)

)

,

δ
Nh
1 =

1

W1

(

µNh
(−∂ν + iγ)U0(a)−L(−∂ν + iγ)U1(a)

)

,

∀k ∈ [[1,Nh −1]]

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

δ k
0 = δ

Nh
0 +

Nh−1

∑
j=k

D
j
0,

δ k
1 = δ

Nh
1 +

Nh−1

∑
j=k

D
j
1.

(4.15)

Now u is completely known.

Second step The next step is the estimation of the coefficients (δ k
0 ,δ k

1 )k∈[[1,Nh]] using (4.15). Since F is

an isometry, and λk and µk are linear combinations of the components of Fb







∀k ∈ [[0,Nh −1]], |λk| 6
√

γ‖b‖,
∀k ∈ [[1,Nh]], |µk| 6

1√
γ
‖b‖. (4.16)

Thus from (4.12) and (4.16), with C depending on U0, U1, γ and W0,

∣

∣

∣

∣

∣

Nh−1

∑
k=1

Dk
0

∣

∣

∣

∣

∣

6 CNh‖b‖, ,
∣

∣

∣

∣

∣

Nh−1

∑
k=1

Dk
1

∣

∣

∣

∣

∣

6 CNh‖b‖.

From (4.14), |L| 6 CNh‖b‖, and since |µNh
| 6 C‖b‖ one has from (4.15)

∣

∣

∣
δ

Nh
i

∣

∣

∣6 CNh‖b‖,∀i ∈ {0,1},

and next for k ∈ [[1,Nh − 1]]:
∣

∣δ k
i

∣

∣ 6

∣

∣

∣
δ

Nh
i

∣

∣

∣+
Nh−1

∑
k=1

∣

∣

∣D
k
i

∣

∣

∣ 6 CNh‖b‖. Then all δ terms satisfy

∣

∣δ k
i

∣

∣6 CNh‖b‖ for i ∈ {0,1} and k ∈ [[1,Nh]].

End of the proof A last calculus leads to the following inequalities

‖x‖2 = ∑
k∈[[1,Nh]]

∥

∥

∥
δ k

0 (−∂ν + iγ)U0 +δ k
1 (−∂ν + iγ)U1

∥

∥

∥

2

L2(∂Ωk)

6 ∑
k∈[[1,Nh]]

(

2C(|δ k
0 |+ |δ k

1 |)
)2

6 C ∑
k∈[[1,Nh]]

N2
h‖b‖2

6 C‖b‖2N3
h ,

so that ‖x‖ 6 Ch−3/2‖b‖.

�

Definition 4.1. Let us define |||x|||q = ‖(I −Aq)x‖ for all x ∈V . This is a norm under the condition of

the next proposition.
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Proposition 4.1. Let q > 2 be given and let h be small enough. There exists a constant C > 0 such that

Ch3/2‖x‖ 6 |||x|||q,∀x ∈V. (4.17)

Proof. One has

∀x ∈V, ‖(I −A)x‖ 6 ‖(I −Aq)x‖+‖(Aq −A)x‖
6 ‖(I −Aq)x‖+Chq+1‖x‖.

So ‖(I −A)x‖V −Chq+1‖x‖ 6 ‖(I −Aq)x‖ ,∀x ∈V . Then lemma 4.3 concludes the proof since hq+1 <

h3/2 for h small enough. �

Proposition 4.2. There exists a constant h1 > 0 such that the bilinear form aq(x,y) = ((I −Aq)x,y) is

uniformly coercive, i.e. ∀h 6 h1

|||x|||2q 6 3R (aq(x,x)) ,∀x ∈V.

Proof.

One has |||x|||2q 6 ‖x‖2 −2R (Aqx,x)+‖Aqx‖2. Since

‖Aqx‖ 6 ‖Ax‖+‖(Aq −A)x‖ 6 (1+Chq+1)‖x‖ (4.18)

there exists another constant denoted as C′ > 0 such that ‖Aqx‖2 6 (1+C′hq+1)‖x‖2. Therefore

|||x|||2q 6 2‖x‖2 +C′hq+1‖x‖2 −2R (Aqx,x) ,

that is |||x|||2q −C′hq+1‖x‖2 6 2R (aq(x,x)). For small h since q > 3/2 and due to the proposition 4.1

one has

C′hq‖x‖2
6 C′h1/3(h3/2 −hq)‖x‖2

6 h1/3|||x|||2q,
then

2

3
|||x|||2q 6 |||x|||2q −C′hq‖x‖2.

Combined with the previous inequality it proves the claim. �

4.5 Convergence

The main convergence result is an adapted version of Strang second lemma with the ||| · |||q norm.

Theorem 4.3. Suppose that q > 2 and h 6 min(h0,h1). Denote x ∈V the solution of the exact problem

(3.5) in dimension one and xh ∈V the solution of the discrete problem (4.6). Then there exists a constant

C > 0 such that

|||x− xh|||q 6 Ch−3/2

(

inf
yh∈V

|||x− yh|||q + sup
wh∈V−{0}

|aq(x,wh)− fq(wh)|
‖wh‖

)

, (4.19)

where fq(y) = (bq,y)V .

The proof relies on the following intermediate result already proved in (4.18).

Lemma 4.4. The operator Aq satisfies ‖Aq‖ 6 1+Chq+1.
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Proof. Of theorem 4.3

• The first remark is the uniform coercivity with respect to |||.|||q needed in the second Strang lemma.

It is proved in proposition 4.2.

• The second step consists in characterizing the uniform continuity of aq. For all (x,y) ∈V 2

|aq(x,y)| = |((I −Aq)x,y)|,
6 |||x|||q ‖y‖.

Using (4.17) one has ‖wh‖ 6 Ch−3/2|||wh|||q for some constant C, so that for small h

∀(x,y) ∈V 2, |aq(x,y)| 6 Ch−3/2|||x|||q|||y|||q.

• The last step is the inequality itself. The triangular inequality yields

|||x− xh|||q 6 |||x− yh|||q + |||xh − yh|||q,∀yh ∈V.

On the other hand proposition 3.3 shows that

1

3
|||xh − yh|||2q 6

∣

∣aq(xh − yh,xh − yh)
∣

∣ ,

6
∣

∣aq(x− yh,xh − yh)
∣

∣+
∣

∣aq(x− xh,xh − yh)
∣

∣ ,

6 Ch−3/2|||x− yh|||q|||xh − yh|||q +
∣

∣aq(x,xh − yh)−bq(xh − yh)
∣

∣ .

As wh = xh − yh ∈V , then

1

3
|||xh − yh|||q 6 Ch−3/2|||x− yh|||q +

|aq(x,wh)−bq(wh)|
‖wh‖

‖wh‖
|||wh|||q

.

Using one more time ‖wh‖ 6 Ch−3/2|||wh|||q, it yields the desired result.

�

We now have to estimate the error defined by

Dh(x,wh) = |aq(x,wh)−bq(wh)|,∀wh ∈V.

In order to simplify the proof and to match to the physical meaning of the problem, we will assume that

the right hand side (3.12) is characterized by f = 0 and g ∈ L2(Γ ) ⊂V .

Lemma 4.5. There exists a constant C > 0 such that

∀wh ∈V −{0}, Dh(x,wh)

‖wh‖
6 Chq+1 (‖x‖+‖g‖) . (4.20)

Proof.

∀wh ∈V −{0}, Dh(x,wh) = |((I −Aq)x,wh)V − (b,wh)V | ,
6 |((A−Aq)x,wh)V |+ |((I −A)x,wh)V − (b,wh)V |+

∣

∣(b−bq,wh)
∣

∣ ,
6 Chq+1‖x‖ ‖wh‖+Chq+1‖g‖ ‖wh‖

since the second term vanishes (I−A)x = b. The third term is bounded using (3.12) like
∣

∣(b−bq,wh)
∣

∣6

C‖F −Fq‖ ‖g‖ ‖wh‖ 6 Chq+1‖g‖ ‖wh‖. This gives exactly (4.20). �

It is now easy to prove the theoretical convergence of the method in dimension one.
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Theorem 4.4. One has the estimation

|||x− xh|||q = O(hq−1/2). (4.21)

Proof. In dimension one the discrete space of approximation is equal to V whatever the method of

construction of basis functions is. This is why one can choose yh = x in (4.19). So infyh∈V |||x−yh|||q =
0. The remaining term is bounded with (4.20). �

It is useful to rewrite this inequality using a norm with the usual scaling

‖z‖ =

√

∑
k∈[[1,Nh]]

h|zk|2.

By construction ‖z‖ = h
1
2 ‖z‖. Using (4.17) one gets ‖z‖ 6 Ch−1|||z|||q. Therefore a corollary of the

theorem is the estimate of convergence

‖x− xh‖ = O(hq−3/2). (4.22)

5. Numerical examples

All the following examples are linked with Airy functions since it is the physical problem (1.3)-(1.4) we

are interested in. We only consider here coefficients β (x) = x and β (x,y) = x, so that in dimension one

as in dimension two that Airy functions are exact solutions of the equation. All the linear systems are

assembled and solved with Matlab.

The parameter γ is set to be constant equal to 1 everywhere.

5.1 One dimensional test case

The test problem considered here is the following : on an interval Ω =]a,b[⊂ R

{

−u′′(x)+ x u(x) = 0, (]a,b[),
(∂ν + iγ)u(x) = (∂ν + iγ)Ai(x), ({a,b}),

The points of the uniform mesh are denoted {xk}k∈[[1,Nh+1]], where Nh stands for the number of elements

defining the mesh. For a given value of q the basis functions are designed as in paragraph 2.2.2. The

solution computed corresponds to an element xh ∈V . A simple formula to expresses the traces of uh in

funcrion of xh
{

2iγuh = (I +Π)xh +g ({a,b}),
2iγuh = (I +Π)xh ({xk}k∈[[2,Nh]]).

In all simulations, the accuracy is reported using a discrete l2 norm so that the relative error is computed

as
√

∑k∈[[1,Nh+1]] |uex(xk)−uh(xk)|2
√

∑k∈[[1,Nh+1]] |uex(xk)|2
.

Considering the domain Ω =]− 5,5[, one gets the the typical result of figure 2 where we plot the

exact analytical Airy function and the numerical solution computed with our method. The rates of

convergence are described in figures 1 and 3. The numerical rates of convergence are better than the

theoretical estimates.
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FIG. 2: Plot of the analytical Airy function, and comparison with the numerical solution. Here we used

a large (≈ 200) number of cells and two high order generaalized plane waves per cell. One clearly

distinguishes between the propagative medium x < 0 and the non propagative medium x > 0.

TABLE 1. Errors and orders of convergence for different orders of approximation q depending

on the number of unknowns N.

q=2 q=3 q=4 q=5 q=6

l Error Rate Error Rate Error Rate Error Rate Error Rate

4 9.5e-01 - 9.9e-01 - 8.6e-01 - 8.6e-01 - NaN -
8 9.2e-01 -0.05 9.7e-01 -0.03 9.7e-01 0.18 9.9e-01 0.20 9.9e-01 NaN

16 7.8e-01 -0.23 9.5e-01 -0.03 9.2e-01 -0.09 9.6e-01 -0.04 9.4e-01 -0.04
32 6.0e-01 -0.39 3.3e-01 -1.51 2.5e-01 -1.89 1.5e-01 -2.65 1.1e-01 -3.14
64 2.0e-01 -1.59 3.2e-02 -3.4 2.0e-02 -3.61 3.2e-03 -5.6 2.0e-03 -5.75
128 5.4e-02 -1.89 2.1e-03 -3.91 1.3e-03 -3.93 5.2e-05 -5.94 3.2e-05 -5.96
256 1.4e-02 -1.97 1.3e-04 -3.98 8.4e-05 -3.98 8.2e-07 -5.99 5.0e-07 -5.99
512 3.4e-03 -1.99 8.3e-06 -4.00 5.3e-06 -4.00 1.3e-08 -6.00 7.9e-09 -6.00
1024 8.6e-04 -2.00 5.2e-07 -4.00 3.3e-07 -4.00 2.0e-10 -6.00 1.2e-10 -6.00
2048 2.2e-04 -2.00 3.3e-08 -4.00 2.1e-08 -4.00 3.1e-12 -5.99 1.9e-12 -6.00
4096 5.4e-05 -2.00 2.0e-09 -4.00 1.3e-09 -4.00 7.3e-14 -5.43 7.5e-14 -4.69
8192 1.3e-05 -2.00 1.3e-10 -4.00 8.1e-11 -4.00 1.6e-14 -2.21 5.8e-14 -0.37

16384 3.4e-06 -2.00 7.9e-12 -4.01 5.0e-12 -4.01 5.0e-14 1.67 5.0e-14 -0.20

One can also notice that we observe better convergence rates for odd values of q compared to even

values. We have no explanation for the moment.

One can see that on the finest meshes the solution is accurate to machine precision for the highest

values of parameter q.
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FIG. 3: Convergence of the method increasing the parameter q, relative discrete L2 error as a function

of the number of elements defining the mesh.

5.2 About q convergence

In figure 3, when the number of nodes is fixed, the error decreases when the parameter q > 2 increases.To

obtain better understanding of this phenomenon, we plot in figure 4 for different values of q and around

two points x0 the Airy function and its approximations thanks to the two basis functions ϕ constructed

in section 2.2.2.

We observe that the approximation is uniform in ]x0 − ε,x0 + ε[, with ε independent of q.

5.3 Two dimensional test case

A first test case in dimension two is presented here. Consider an open set Ω ⊂ R
2 and the following

simple problem
{

−∆u(x,y)+ x u(x,y) = 0, (Ω),
(∂ν + iγ)u(x,y) = (∂ν + iγ)Ai(x), (∂Ω),

so that the exact solution is again the Airy function Ai. The domain considered here is square and

meshed with regular triangles. A comparison between the exact solution and the numerical solution is

diplayed in figure 5.

As explained in section 2.3.1, the design of basis functions is easy in the case of a coefficient de-

pending on only one coordinate, performing a one dimension reduction. The basis function ϕ is defined

by ϕ(x,y) = eP(x,y) with P(x,y) = p(x)+λy where λ still has to be defined. Here we chose

λ ∈
{

isin

(

2πk

3

)

,k ∈ [[1,3]]

}

.



28 of 34 L.-M. IMBERT-GÉRARD AND B. DESPRÉS

FIG. 4: Approximation of Airy function by corresponding basis functions for different values of q, in

the vicinity of x0 = 0 and x0 = −4.

FIG. 5: Comparison between the exact Airy function on the right and the numerical solution computed

with 6 basis function per element on the left. The numerical solution is interpolated on a finer mesh.

Here the error is 0.0256%. The tables of errors 2 and 3 show high order convergence.
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(a) With Simpson quadrature formulas. (b) With Boole quadrature formulas.

FIG. 6: First test case in dimension two, with triangular mesh, on the square ]− 1,1[×]− 1,1[, with N

nodes on each edge of the square.

TABLE 2. Errors and orders of convergence depending on the number of unknowns N for the

two dimensional case with Simpson quadrature formulas.

q=2 q=3 q=4 q=5 q=6

l Error Rate Error Rate Error Rate Error Rate Error Rate

48 3.1e-01 - 2.1e-02 - 8.4e-02 - 2.2e-02 - 3.5e-02 -
192 8.6e-02 -1.84 5.6e-03 -1.92 5.9e-03 -3.83 1.6e-03 -3.85 8.9e-04 -5.3
768 2.2e-02 -1.98 8.9e-04 -2.67 4.1e-04 -3.85 5.0e-05 -4.97 1.8e-05 -5.62

3072 5.3e-03 -2.04 1.1e-04 -2.96 2.6e-05 -3.96 7.1e-07 -6.12 1.3e-06 -3.74
12288 1.3e-03 -2.04 1.4e-05 -3.01 1.6e-06 -4.00 1.1e-07 -2.67 1.7e-07 -3.03

For each λ the corresponding functions p+ and p− are constructed as in the one dimensional case since

ϕ being a solution of the homogeneous equation means that −
(

ep(x)
)′′

+(x−λ 2)ep(x) = 0.

The other difference with the one dimensional case is the numerical estimation of boundary integrals.

It requires numerical quadrature. The quadrature is performed with a given number of points with either

Simpson or Boole method. The corresponding results are given in figures 6, 2 and 3. One can observe a

clear improvement in the results obtained using Boole formulas compared to the results obtained using

Simpson formulas.

5.4 Other basis functions

Figures 7 and 4 present the numerical convergence results obtained with basis functions designed with

the normalization β1,± =±
√

α(xk+1/2). Comparing to figures 1 and 3, one can see that the convergence

rate is not modified by this new choice, however for a given number of mesh elements the error is smaller

when the method is constructed with these new basis functions than with the basis functions described

in section 2.2.2. In fact, for a given order q, the numerical results show that the constant underlying
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TABLE 3. Errors and orders of convergence depending on the number of unknowns N for the

two dimensional case with Simpson quadrature formulas.

q=2 q=3 q=4 q=5 q=6

l Error Rate Error Rate Error Rate Error Rate Error Rate

48 3.2e-01 - 2.3e-02 - 8.5e-02 - 2.5e-02 - 3.2e-02 -
192 8.7e-02 -1.86 6.2e-03 -1.92 5.9e-03 -3.86 1.6e-03 -3.94 8.0e-04 -5.32
768 2.2e-02 -1.98 9.5e-04 -2.69 4.0e-04 -3.86 5.9e-05 -4.78 1.4e-05 -5.85

3072 5.3e-03 -2.04 1.2e-04 -2.97 2.6e-05 -3.96 1.9e-06 -4.99 2.2e-07 -5.98
12288 1.3e-03 -2.04 1.5e-05 -3.01 1.6e-06 -4.00 5.7e-08 -5.02 3.4e-09 -6.00

TABLE 4. Errors and orders of convergence depending on the number of unknowns N for the

two dimensional case with Simpson quadrature formulas.

q=2 q=3 q=4 q=5 q=6

l Error Rate Error Rate Error Rate Error Rate Error Rate

16 1.9e-01 -1.92 3.9e-02 -3.69 4.7e-02 -5.65 5.4e-03 -7.07 2.0e-02 -5.19
32 6.2e-02 -1.64 2.9e-03 -3.75 4.2e-03 -3.48 1.4e-04 -5.28 4.2e-04 -5.54
64 1.6e-02 -1.93 1.9e-04 -3.95 2.8e-04 -3.92 2.4e-06 -5.86 6.9e-06 -5.93
128 4.2e-03 -1.98 1.2e-05 -3.99 1.8e-05 -3.98 3.8e-08 -5.97 1.1e-07 -5.98
256 1.0e-03 -1.99 7.4e-07 -4.00 1.1e-06 -3.99 6.0e-10 -5.99 1.7e-09 -6.00
512 2.6e-04 -2.00 4.6e-08 -4.00 7.0e-08 -4.00 9.4e-12 -6.00 2.7e-11 -6.00

1024 6.5e-05 -2.00 2.9e-09 -4.00 4.4e-09 -4.00 1.6e-13 -5.92 4.3e-13 -5.98
2048 1.6e-05 -2.00 1.8e-10 -4.00 2.7e-10 -4.00 9.8e-15 -3.99 1.4e-14 -4.95
4096 4.1e-06 -2.00 1.1e-11 -4.00 1.7e-11 -4.00 2.4e-14 1.28 1.9e-14 0.42
8192 1.0e-06 -2.00 7.5e-13 -3.90 1.0e-12 -4.06 1.3e-13 2.43 1.4e-13 2.88
16384 2.6e-07 -2.00 2.1e-13 -1.84 2.0e-13 -2.32 2.1e-13 0.73 2.1e-13 0.61

in estimation (4.22) is much better : for a given number of mesh elements the numerical error can be

improved by a factor ≈ 102. Once again the only difference between these two different choices of basis

functions relies on the fact that the leading coefficient in P± does depend or not on the coefficient α . The

theoretical tools that developed previously can be adapted without difficulty to this new family of basis

functions but the vertical shift visible in figures 3 to 7 will require more research to be fully understood.

As in dimension one, one can see that with Simpson method on the finest meshes the errors increase

for q = 5 and 6. It is also supposedly linked with machine precision.

6. Perspectives

The method proposed in this work has been designed in any dimension : its goal is to increase the

accuracy of any plane wave methods in the case the coefficients of the equation are smooth. Preliminary

tests in dimensions one and two for h-convergence assess effective gain in accuracy. The evolution of

this method may be pursued in at least two directions, numerical and theoretical.

Our first interest is to validate the method on challenging test problems inspired by the physics of

reflectometry : in particular we have in mind to use non uniform meshes to reduce the computational

burden for problems such that |Ω |1/d >> λ where |Ω | is the size of the domain and λ the characteristic
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FIG. 7: Relative discrete L2 error as a function of the number of elements defining the mesh, using the

normalization β1,± = ±
√

α(xk+1/2). Different curves correspond to increasing order parameter q.

wave length of the wave. The design of new families of generalized plane waves with increased or even

better optimal accuracy is of course of major interest for practical applications.

The numerical analysis of the method is also rich of new theoretical questions in dimension higher

than two. We distinguish two particular problems. A first problem is to determine the best choice for
∂P
∂x

(G j) and ∂P
∂y

(G j) where G j is the center of mass of the cell and ϕ = eP is a basis function; this problem

corresponds to the choice of β1 described in section 2.2.2. A second problem, more fundamental from

a theoretical perspective, is the generalization in two dimension of the inverse inequalities like those of

lemma 4.3 and proposition 4.1. The main difficulty stems from the fact that V is finite dimensional in

dimension one and has infinite dimension in higher dimension : as a consequence V q 6= V in dimension

two and more. Up to this difference we think nevertheless that the functional setting that we have

developed, which is based on the second Strang’s lemma, is still convenient in dimension higher than

two. In this context it could be worthwhile to make the connection with the Discontinuous Galerkin

formalism developed for example in Huttunen et al. (16).

A. Appendix

For the sake of completeness of this work, we review some very classical results needed for the proof

of the convergence of our algorithm.
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A.1 On the initial problem

It concerns the solution of the system in bounded domains

{

−∆u+αu = f , x ∈ Ω ,
(∂ν + iγ)u = Q(−∂ν + iγ)u+g, x ∈ Γ .

It is necessary to assume that the regularity of the boundary of Ω is sufficient so that a unique continu-

ation principle holds. We do not want to discuss it because it is not in the scope of this work. We refer

the reader to Monk (23) p.92. Moreover, for classical results on polygonal domains we refer to Grisvard

(11). To simplify here Q is constant. A proof can be found in (author?) (Imbert-Gérard & Després).

Theorem A.1. Let Ω be a bounded domain in R
2 with a Lipschitz and piecewise C 2 boundary Γ . Let

f ∈ L2(Ω), g ∈ L2(Γ ) and ζ ∈ C such that ℜ(ζ ) 6= 0. Then there exists a unique solution u ∈ H1(Ω)
to the variational formulation

∫

Ω
∇u ·∇v+

∫

Ω
αuv+ iζ

∫

Γ
uv =

∫

Ω
f v+

∫

Γ
gv, ∀v ∈ H1(Ω).

Using the notations of (A.1) with |Q| < 1, then ℜ( 1−Q
1+Q

) 6= 0 so there exists a unique solution u ∈ H1 to

(1.1), i.e. such that

∫

Ω
∇u ·∇v+

∫

Ω
αuv+ i

1−Q

1+Q
γ

∫

Γ
uv =

∫

Ω
f v+

1

1+Q

∫

Γ
gv, ∀v ∈ H1(Ω).

Remark A.1. This result can be generalized to the case where |Q| 6 1 almost everywhere on Γ and

|Q| < 1 on a smooth part of Γ which length is non zero.

A.2 Proof of inequality (4.2)

We need a very classical Poincaré inequality in one dimension.

Proposition A.1. There exists a constant C such that for all h > 0, all open interval O ⊂ R, for all

u ∈ L(O)

‖u‖L2(O) 6 C
(√

h‖u‖L2(∂O) +h‖u′‖L2(O)

)

(A.1)

Proof. There exists a∈R such that O =]a,a+h[. From u(x)= u(a)+
∫ x

a u′(t)dt it yields
∫ a+h

a |u(x)|2dx 6

2h|u(a)|2 +2
∫ a+h

a (
∫ x

a |u′(t)|dt)2
dx, so that ‖u‖L2(O) 6

√
2h‖u‖L2(∂O) +

√
2h‖u′‖L2(O). It gives the re-

sult for C =
√

2. �

Proof. We will show a more general inequality than (4.2) . We use u as test function in the variational

formulation (A.1) corresponding to the following problem

{

−u′′ +βu = f , (O)
(−∂ν + iγ)u = g, (∂O).

(A.2)

One gets
∫

O

|u′|2 + iγ

∫

∂O

|u|2 =
∫

O

f u−
∫

O

β |u|2 +
∫

∂O

gu.



A GENERALIZED PLANE WAVE NUMERICAL METHOD FOR SMOOTH NON CONSTANT COEFFICIENTS 33 of 34

We obtain







‖u‖2
L2(∂O) 6

1

γ
‖ f‖L2(O)‖u‖L2(O) +

1

γ
‖g‖L2(∂O)‖u‖L2(∂O),

‖u′‖2
L2(O) 6 ‖g‖L2(∂O)‖u‖L2(∂O) +‖β‖L∞(O)‖u‖2

L2(O) +‖ f‖L2(O)‖u‖L2(O).

The first inequality yields

‖u‖2
L2(∂O) 6

2

γ
‖ f‖L2(O)‖u‖L2(O) +

1

γ2
‖g‖2

L2(∂O).

A standard inequality yields

‖g‖L2(∂O)‖u‖L2(∂O) 6
1

2γ
‖g‖2

L2(∂O) +
γ

2
‖u‖2

L2(∂O)

6
1

2γ
‖g‖2

L2(∂O) +‖ f‖L2(O)‖u‖L2(O) +
1

2γ
‖g‖2

L2(∂O).

Inserting in the second inequality we obtain

‖u′‖2
L2(O) 6

1

γ
‖g‖2

L2(∂O) +2‖ f‖L2(O)‖u‖L2(O) +‖β‖L∞(O)‖u‖2
L2(O).

Then from (A.1)

‖u‖2
L2(O) 6 C

(

h

(

2

γ
‖ f‖L2(O)‖u‖L2(O) +

1

γ2
‖g‖2

L2(∂O)

)

+h2

(

1

2γ
‖g‖2

L2(∂O) +2‖ f‖L2(O)‖u‖L2(O) +‖β‖L∞(O)‖u‖2
L2(O)

))

.

For h small enough we obtain

‖u‖2
L2(O) 6 C

(

h

γ2
‖g‖2

L2(∂O) +
h2

γ2
‖ f‖2

L2(O)

)

. (A.3)

One can notice that the scaling of this estimate is optimal. Indeed considering that γ is the dimension

of the inverse of a length which is evident from the boundary condition, all quantities have the same

dimension at inspection of (A.2). Inequality (4.2) is obtained by taking f = 0 in the previous inequality.

�

A.3 Proof of theorem 4.2

Proof. Suppose that u and uh are the solutions of the two following problems

{

−u′′ +βu = f , (O)
(−∂ν + iγ)u = g, (∂O).

and
{

−u′′h +βhuh = f , (O)
(−∂ν + iγ)uh = g, (∂O).
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Then eh := u−uh satisfies
{

−e′′h +βheh = (βh −β )u, (O)
(−∂ν + iγ)eh = 0, (∂O).

Inequality (A.3) yields

‖eh‖L2(O) 6 C
h

γ
‖(βh −β )u‖L2(O) 6 C

h

γ
‖βh −β‖L∞(O)‖u‖L2(O).

Using one more time (A.3) to estimate u and regarding γ which is a positive number, we get

‖eh‖L2(O) 6 C
(

h
3
2 ‖g‖L2(∂O) +h2‖ f‖L2(O)

)

‖βh −β‖L∞(O).

�
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