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Abstract. The zero-sum distinguishers introduced by Aumasson and Meier are investigated. First, the
minimal size of a zero-sum is established. Then, we analyze the impacts of the linear and the nonlinear
layers in an iterated permutation on the construction of zero-sum partitions. Finally, these techniques
are applied to the Keccak-f permutation and to Hamsi-256. We exhibit several zero-sum partitions for
20 rounds (out of 24) of Keccak-f and some zero-sum partitions of size 219 and 210 for the finalization
permutation in Hamsi-256.
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1 Introduction

The existence of zero-sum structures is a new distinguishing property which has been recently investigated
by Aumasson and Meier [2], and by Knudsen and Rijmen [14]. For a given function F , a zero-sum is a set of
inputs which sum to zero, and whose images by F also sum to zero. Such zero-sum properties can be seen as
a generalization of multiset properties (a.k.a. integral properties) [10,15]. Classical integral attacks for block
ciphers include higher-order differential attacks and saturation attacks. Similarly, zero-sum structures may
exploit either the fact that the permutation or its inverse after a certain number of rounds has a low degree,
or some saturation properties due to a low diffusion. The keypoint is that the first type of weakness arises
from the nonlinear part of the function whereas the second type arises from its linear part. The first direction
has been investigated in [2] for three SHA-3 candidates, Luffa, Hamsi and Keccak. Here, we show that,
when the nonlinear part of the round transformation consists of several parallel applications of a smaller
Sbox, an improved bound on the degree of the iterated function can be deduced, leading to zero-sums with
a smaller size. Moreover, we investigate the impact of the linear part of the inner round permutation on the
construction of zero-sums. Then, combining both types of properties enables us to find zero-sum partitions for
the inner permutations of two SHA-3 Round-2 candidates, Keccak [4] and Hamsi-256 [16]. More precisely,
we exhibit several zero-sum partitions up to 20 (out of 24) rounds of the inner permutation in Keccak

and we improve the zero-sum partitions found in [1] for the finalization permutation of Hamsi-256. Even if
our results do not seem to affect the security of Keccak and Hamsi-256, they point out that the involved
inner permutation of Hamsi-256 and 20 rounds of the inner permutation of Keccak do not have an ideal
behavior.

The rest of the paper is organized as follows. Section 2 defines the notions of zero-sum and of zero-sum
partition, and it also establishes the minimal size for a zero-sum. Section 3 analyzes how a low degree of
the nonlinear part of the round transformation and of its inverse can be exploited for constructing zero-sum
partitions. It also applies a result from [8], and shows that the size of the previously obtained zero-sum
partitions can be improved when the nonlinear layer in the round transformation consists of several applica-
tions of a small Sbox. The role of the linear layer in the construction of zero-sum partitions is investigated in
Section 4. Finally some applications to the inner permutation of Keccak and to the finalization permutation
of Hamsi-256 are presented in Sections 5 and 6.

⋆ Partially supported by the French Agence Nationale de la Recherche through the SAPHIR2 project under Contract
ANR-08-VERS-014.



2 Zero-sum structures and distinguishing properties

In the whole paper, the addition in F
n
2 , i.e. the bitwise exclusive-or will be denoted by +, while ⊕ will be

used for denoting the direct sum of subspaces of Fn
2 .

Zero-sum distinguishers were firstly introduced by J.-P. Aumasson and W. Meier in [2].

Definition 1. Let F be a function from F
n
2 into F

m
2 . A zero-sum for F of size K is a subset {x1, . . . , xK} ⊂

F
n
2 of elements which sum to zero and for which the corresponding images by F also sum to zero, i.e.,

K
∑

i=1

xi =

K
∑

i=1

F (xi) = 0 .

2.1 Zero-sums and codewords in a linear code

We use standard notation of the algebraic coding theory (see [18]). A binary linear code of length n and
dimension k, denoted by [n, k], is a k-dimensional subspace of Fn

2 . It can then be defined by a k × n binary
matrix G, named generator matrix for C: C = {xG, x ∈ F

k
2}. Any [n, k]-linear code C is associated with its

dual [n, n− k]-code, denoted by C⊥ and defined by C⊥ = {x ∈ F
n
2 , x · c = 0 for all c ∈ C}.

Let (xi, 0 ≤ i < 2n) denote the set of all elements in F
n
2 . To any function F : Fn

2 → F
m
2 , we associate the

linear code CF of length 2n and dimension n+m defined by the generator matrix

GF =

(

x0 x1 x2 x3 . . . x2n−1

F (x0) F (x1) F (x2) F (x3) . . . F (x2n−1)

)

,

where each entry is viewed as a binary column vector. Then, we get the following result.

Proposition 1. Let F be a function from F
n
2 into F

m
2 .

The set of inputs {xi1 , . . . , xiK } ⊂ F
n
2 is a zero-sum for F if and only if the codeword of Hamming weight K

with support {i1, . . . , iK} belongs to the dual code C⊥
F . Most notably, when m = n, we deduce that

– there exists at least one zero-sum of size 5 for F ;
– F has no zero-sum of size less than or equal to 4 if and only if F is an almost perfect nonlinear permu-

tation, i.e., if maxa,b6=0 #{x ∈ F
n
2 , F (x+ a) + F (x) = b} = 2.

Proof. Clearly, a binary vector (c0, . . . , c2n−1) belongs to C⊥
F if and only if

2n−1
∑

i=0

cixi = 0 and

2n−1
∑

i=0

ciF (xi) = 0 .

This equivalently means that the support of c, i.e., {i, ci = 1}, defines a zero-sum for F . Moreover, the
size of the zero-sum corresponds to the Hamming weight of the codeword. For m = n, C⊥

F is a linear code
of length 2n and dimension 2n − 2n. It is known that the minimum distance for such a linear code with
these parameters cannot exceed 5 [6,11], implying that F has some zero-sums of size 5. The correspondence
between the APN property and the fact that C⊥

F has minimum distance 5 has been established in [9]. Since
the smallest possible size for a non-trivial zero-sum is 3, F has some zero-sums of size 3 or 4 if and only if
F is not APN. ⊓⊔

When F is a randomly chosen function from F
n
2 into F

n
2 , it is clear that any subset of size K is a zero-sum

with probability 2−2n. Therefore, random functions have many zero-sums of size K ≥ 5 and there exist
efficient generic algorithms for finding zero-sums. For instance, the generalized birthday algorithm [19] finds
a zero-sum of size 2κ with complexity

O
(

2
2n
κ+1

+κ
)

,
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which corresponds to the 2
2n

κ+1
+κ evaluations of F required for building the 2κ initial lists of size 2

2n
κ+1 .

When the size of the zero-sum, K, is larger than 2n, the previous generic algorithm can be improved by the
XHASH attack [3], as pointed out in [5,1]: the complexity of this improved algorithm essentially corresponds

to K evaluations of F , while the generalized birthday algorithm behaves similarly only for K ≥ 2
√
2n. It is

worth noticing that the information set decoding algorithm (and its variants [7]) can also be used for solving
this problem and improve the previous algorithm when the size of the zero-sum is very small [12], but all
these methods take as input a generator matrix for the code and then require a complete evaluation of F .

There is a trivial case where zero-sums can be easily found: any affine subspace of dimension deg(F ) + 1
is a zero-sum for F , leading to a distinguishing property when deg(F ) ≤ n−1 (resp. deg(F ) ≤ n−2 if F is a
permutation)3. These zero-sums exactly correspond to the minimum-weight codewords of R(n, n−deg(F )−
1) ⊂ C⊥

F , where R(n, r) denotes the Reed-Muller code of length 2n and order r, i.e., the set of all Boolean
functions of n variables and degree at most r. This is because CF ⊂ R(n, deg(F )) and the dual of R(n, r) is
R(n, n− r − 1).

2.2 Zero-sum partitions

However, in the case where F is a permutation over Fn
2 , the minimum-weight codewords ofR(n, n−deg(F )−1)

correspond to zero-sums with an additional property: any coset of such a zero-sum is still a zero-sum. This
leads to a much stronger property, named zero-sum partition.

Definition 2. Let P be a permutation from F
n
2 into F

n
2 . A zero-sum partition for P of size K = 2k is a

collection of 2n−k disjoint zero-sums Xi = {xi,1, . . . , xi,2k} ⊂ F
n
2 , i.e.,

2n−k

⋃

i=1

Xi = F
n
2 and

2k
∑

j=1

xi,j =

2k
∑

j=1

P (xi,j) = 0, ∀1 ≤ i ≤ 2n−k .

A generic algorithm for finding a zero-sum partition of size 2κ, with 2κ ≥ 2n, consists in iteratively
applying the XHASH attack as follows: we first apply this method for finding a zero-sum of size 2n−1, which
defines a zero-sum partition of F

n
2 . Then, within both resulting sets of size 2n−1, the same technique is

applied for finding a zero-sum of size 2n−2. And the algorithm is iterated until a decomposition into zero-
sums of size 2κ is found. With this algorithm, we need to evaluate the permutation at all points except the
last 2κ − 2n points. Besides these evaluations of the permutation, the complexity of the algorithm can be
approximated by

(

(2n)3(2n−κ − 1)
)

, leading to an overall complexity of roughly
(

2n + 2n−κ(2n)3 − 2κ
)

.
It clearly appears that, for a randomly chosen permutation, the description of the zero-sums found by

such a generic algorithm requires the evaluation of the permutation at almost all points since the searching
technique is not deterministic. This makes a huge difference with zero-sum partitions coming from a structural
property of the permutation, which can be described by means of some close formula. Note that, structural
zero-sums like those described in this paper can be used for proving that some given permutations do not
satisfy the expected property, and this may only require the evaluation of the permutation on a few sets Xi.

3 Exploiting the degree of the nonlinear part

In the rest of the paper we focus on the search for zero-sum partitions coming from structural properties of
the permutation P , when P is an iterated permutation of the form

P = Rr ◦ . . . ◦R1,

where all Ri are simpler permutations over Fn
2 , named the round permutations. In most practical cases, all

Ri are derived from a unique keyed permutation for r different choices of the parameter. The first weakness
which has been exploited in [2] for constructing zero-sum partitions for some iterated permutations is the
low algebraic degrees of the round permutation and of its inverse.

3 In this paper, the degree of a Boolean function corresponds to the degree of its algebraic normal form. Moreover,
the degree of a vectorial function F : Fn

2 → F
m

2 is defined as the highest degree of its coordinates.
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3.1 Zero-sum partitions from higher-order derivatives

As previously mentioned, the algebraic degree of a permutation F provides some particular zero-sums, which
correspond to all affine subspaces of Fn

2 with dimension (deg(F ) + 1). This result comes from the following
property of higher-order derivatives of a function.

Definition 3. [17] Let F be a function from F
n
2 into F

m
2 . For any a ∈ F

n
2 the derivative of F with respect

to a is the function DaF (x) = F (x + a) + F (x). For any k-dimensional subspace V of Fn
2 , the k-th order

derivative of F with respect to V is the function defined by

DV F (x) = Da1
Da2

. . . Dak
F (x) =

∑

v∈V

F (x+ v), ∀x ∈ F
n
2 .

It is well-known that the degree of any first-order derivative of a function is strictly less than the degree
of the function. This simple remark, which is also exploited in higher-order differential attacks [13], implies
that for every subspace V of dimension (degF + 1),

DV F (x) =
∑

v∈V

F (x+ v) = 0, for every x ∈ F
n
2 .

The fact that the permutation used in a hash function does not depend on any secret parameter allows to
exploit the previous property starting from the middle, i.e., from an intermediate internal state. This property
was used by Aumasson and Meier [2] and also by Knudsen and Rijmen in the case of a known-key property
of a block cipher [14]. The only information needed for finding such zero-sums on the iterated permutation
using this first approach is an upper bound on the algebraic degrees of both the round transformation and
its inverse.

More precisely, we consider P = Rr ◦ . . . ◦ R1, and we choose some integer t, 1 ≤ t ≤ r. We define the
following functions involved in the decomposition of P : Fr−t consists of the last (r−t) round transformations,
i.e., Fr−t = Rr ◦ . . . ◦ Rt+1 and Gt consists of the inverse of the first t round transformations, i.e., Gt =
R−1

1 ◦ . . . ◦ R−1
t . Then, we can find many zero-sum partitions for P by the technique introduced in [2] and

described in the following proposition.

Proposition 2. Let d1 and d2 be such that deg(Fr−t) ≤ d1 and deg(Gt) ≤ d2. Let V be any subspace of Fn
2

of dimension d+1 where d = max(d1, d2), and let W denote the complement of V , i.e., V ⊕W = F
n
2 . Then,

the sets
Xa = {Gt(a+ z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2d+1 for the r-round permutation P .

Proof. Let a be any element in W . First, we prove that all input states x ∈ Xa sum to zero:
∑

x∈Xa

x =
∑

z∈V

Gt(a+ z) = DV Gt(a)

which is the value of a derivative of order (d+1) of a function with degree d2 ≤ d and thus it vanishes. Now,
the images of these input states under P correspond to the images of the intermediate states z under Fr−t.
Similarly, we have

∑

x∈Xa

P (x) =
∑

z∈V

Fr−t(a+ z) = DV Fr−t(a)

which is the value of a derivative of order (d+1) of a function of degree less than d. Thus, this sum vanishes,
implying that each Xa is a zero-sum. Since all Xa are the images of disjoint sets by the permutation Gt,
they are all disjoint and then they form a partition of Fn

2 . ⊓⊔

The permutations studied in [2] consist in iterating a low-degree round transformation. Then, the zero-sum
partitions described in [2] are obtained by choosing for V a subspace spanned by (d + 1) elements of the
canonical basis, where d = max(deg(Fr−t), deg(Gt)).

4



3.2 An improved bound on the degree based on the Walsh spectrum

It clearly appears from the description of the previous method that we are interested in estimating the degree
of a composed permutation and of its inverse. If F and G are two mappings from F

n
2 into F

n
2 , we can bound

the degree of the composition G◦F by deg(G◦F ) ≤ deg(G)deg(F ). Though, this trivial bound is often very
little representative of the real degree of the permutation, in particular if we are trying to estimate the degree
after a high number of rounds. In some special cases, exploring the spectral properties of the permutation
can lead to a better upper bound. In particular, it was shown by Canteaut and Videau [8] that the trivial
bound can be improved when the values occurring in the Walsh spectrum of F are divisible by a high power
of 2.

The Walsh spectrum of a vectorial function F : Fn
2 → F

n
2 consists of the Walsh spectra of all nonzero

linear combinations of its coordinates:
{

∑

x∈F
n
2

(−1)b·F (x)+a·x, b ∈ F
n
2 \ {0}, a ∈ F

n
2

}

,

where x · y denotes the dot product between two vectors x and y. The divisibility by a large power of 2 of
all elements in the Walsh spectrum of F may provide an upper bound on the degree of G ◦ F .

Theorem 1. [8] Let F be a function from F
n
2 into F

n
2 such that all values in its Walsh spectrum are divisible

by 2ℓ, for some integer ℓ. Then, for any G : Fn
2 → F

n
2 , we have

deg(G ◦ F ) ≤ n− ℓ+ deg(G).

From now on, we focus on a very common case where the Walsh spectrum of the round permutation is divisible
by a large power of 2 and when its nonlinear part, denoted by χ, consists of n/n0 parallel applications of a
small permutation χ0 over Fn0

2 . In this situation, any n-bit vector is seen as a collection of nr = n/n0 rows,
where each row is an element in F

n0

2 . Then, χ applies on each row separately. For implementation reasons,
this situation occurs for many iterated permutations used in cryptography. Then, since the Walsh spectrum
is invariant under composition with a linear transformation, for any α ∈ F

n
2 , there exists some β such that

F(R+ ϕα) = F(χ+ ϕβ) =

nr
∏

i=1

F(χ0 + ϕβi
) . (1)

Then, if all elements in the Walsh spectrum of χ0 are divisible by 2ℓ0 , we deduce that the Walsh spectrum
of the round transformation is divisible by 2nrℓ0 .

4 Exploiting the structure of the diffusion part

Besides the degree of the round transformation, a second element can be exploited for constructing zero-sum
partitions, similarly to the techniques used for mounting saturation attacks. Indeed, the fact that χ consists
of many parallel applications of a smaller function can be used for extending the previously described zero-
sum partitions to one additional round. Moreover, we can also exploit the fact that a few iterations of the
round permutation R are not enough for providing full diffusion. This leads to some multiset properties for
a small number of rounds.

In the following, we denote by Bi, 0 ≤ i < nr, the n0-dimensional subspaces corresponding to the rows,
i.e.,

Bi = 〈en0i, . . . , en0i+n0−1〉

where e0, . . . , en−1 denotes the canonical basis of Fn
2 and where the positions of the n bits in the internal

state are numbered such that the n0-bit rows correspond to n0 consecutive bits.
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4.1 One-round multiset property

First, we show how to extend a number of zero-sum partitions that have been found for t rounds, to t +
1 rounds, without increasing the complexity. The idea is the following: the zero-sum partition described in
Proposition 2 is obtained from a set of intermediate states after t rounds, which is a coset of a (d + 1)-
dimensional subspace V . Moreover, such a zero-sum partition is obtained for any choice of V . However, we
now focus on those subspaces V which correspond to a collection of any

⌈

(d+1)/n0

⌉

rows: V =
⊕

i∈I Bi, for

some set I ⊂ {0, . . . , nr} of size
⌈

(d+1)/n0

⌉

. Since χ applies to the rows separately, variables from different
rows are not mixed after the application of χ. This implies that χ(a+V ) = b+V , for some b. Then, we can
find some zero-sum partitions of size 2d+1 for the r-round permutation P as follows.

Proposition 3. Let d1 and d2 be such that deg(Fr−t−1) ≤ d1 and deg(Gt) ≤ d2. Let us decompose the round
transformation after t rounds into Rt+1 = A2 ◦ χ ◦ A1 where both A1 and A2 have degree 1. Let I be any
subset of {0, . . . , nr − 1} of size

⌈

(d+ 1)/n0

⌉

,

V =
⊕

i∈I
Bi

and W be its complement. Then, the sets

Xa = {(Gt ◦A
−1
1 )(a+ z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2k, with k = n0

⌈

d+1
n0

⌉

, for the r-round permutation P .

Proof. For any a, the sum of all input states in Xa is given by

∑

x∈Xa

x =
∑

z∈V

Gt ◦A
−1
1 (a+ z) = DV (Gt ◦A

−1
1 )(a) = 0

since deg(Gt◦A
−1
1 ) = deg(Gt) ≤ d. Using that χ(a+V ) = b+V , we obtain that the sum of the corresponding

outputs satisfies

∑

x∈Xa

P (x) =
∑

z∈V

Fr−t−1 ◦A2 ◦ χ(a+ z) =
∑

z∈V

Fr−t−1 ◦A2(b+ z)

= DV (Fr−t−1 ◦A2)(b) = 0

since deg(Fr−t−1 ◦A2) = deg(Fr−t−1) ≤ d. ⊓⊔

4.2 Multiset property on several rounds

Now, we consider some multiset properties on several rounds which arise both from the particular structure
of the round transformation and from the linear part, and we show how they can be exploited to further
extend the already known zero-sum partitions to more rounds. For the sake of clarity, we first describe a
2-round multiset property for Rounds (t+ 1) and (t+ 2). We decompose those two rounds into

Rt+2 ◦Rt+1 = A2 ◦ χ ◦A ◦ χ ◦A1

where A1, A2 and A have degree 1.

Theorem 2. Let d1 and d2 be such that deg(Fr−t−2) ≤ d1 and deg(Gt) ≤ d2. Let L denote the linear part
of the affine permutation A. Let W be a k-dimensional subspace of Fn

2 satisfying both following conditions

(i) there exists a set I ⊂ {0, . . . , nr − 1} such that

W ⊂
⊕

i∈I
Bi and |I| ≤ nr −

⌈d2 + 1

n0

⌉

.

6



(ii) there exists a set J ⊂ {0, . . . , nr − 1} such that

L(W ) ⊂
⊕

j∈J
Bj and |J | ≤ nr −

⌈d1 + 1

n0

⌉

.

Let V denote the complement of W . Then, the sets

Xa = {(Gt ◦A
−1
1 ◦ χ−1)(a+ z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2n−k for the r-round permutation P .

Proof. The definition of the sets Xa means that we choose the intermediate states z after the nonlinear layer
in Rt+1 in a coset of V . The required properties on W imply that there exist two subspaces Bb and Bf such
that

Bb =
⊕

i∈I

Bi ⊂ V and Bf =
⊕

j∈J

Bj ⊂ L(V )

with I = {0, . . . , nr − 1} \ I and J = {0, . . . , nr − 1} \ J , where the last relation comes from the fact that
L(V ) and L(W ) are complementary. From the second property, we deduce that A(V ) can be seen as a union
of cosets of Bf :

A(V ) =
⋃

b∈E
(b+Bf ) ,

where E is a subset of Fn
2 . Moreover, the same property holds for the image by A of any coset of V . Then,

since χ applies to the rows separately, variables from different rows are not mixed after the application of χ.
This implies that

χ(A(V )) =
⋃

b∈E′

(b+Bf ) ,

where E ′ is another subset of Fn
2 . By definition, the images by P of all elements in Xa correspond to the

images of a+ z, z ∈ V , by Fr−t−2 ◦A2 ◦ χ ◦A. It follows that their sum is given by
∑

z∈V

Fr−t−2 ◦A2 ◦ χ ◦A(a+ z) =
∑

b∈E′

∑

x∈Bf

(Fr−t−2 ◦A2)(b + x)

=
∑

b∈E′

DBf
(Fr−t−2 ◦A2)(b) = 0 .

Actually, this derivative vanishes since

dimBf ≥ n− n0|J | > d1 .

Now, we compute backwards the images of a+ V by Gt ◦A
−1
1 ◦ χ−1. Since V satisfies Bb ⊂ V , it can be

written as a union of cosets of Bb. As χ
−1 does not mix the rows, we deduce that

χ−1(a+ V ) =
⋃

b∈E′′

(b+Bb) ,

for some set E ′′ ⊂ F
n
2 . Then, the sum of the corresponding input states x ∈ Xa is given by
∑

x∈Xa

x =
∑

z∈V

(Gt ◦A
−1
1 ◦ χ−1)(a+ z) =

∑

b∈E′′

∑

x∈Bb

(Gt ◦A
−1
1 )(b + x)

=
∑

b∈E′′

DBb
(Gt ◦A

−1
1 )(b) = 0 .

Actually, this derivative vanishes since

dimBb ≥ n− n0|I| > d2 .

⊓⊔

7



χ−1 A F r−t ◦ A2

Bb ⊂ V
⋃

(b+Bf)
⋃

(b′ +Bf )
⋃

(b+Bb)

χGt ◦ A
−1

1

Fig. 1. General method with a 2-round multiset property

Figure 1 summarizes the steps of our method.

Remark 1. There is a simple necessary condition on the existence of some W as in the previous theorem.
We define the weight of any x ∈ F

n
2 with respect to the decomposition into rows, Hw(x), as the number of

rows on which x does not vanish. Then, a subspace W defined as in the previous theorem satisfies

∀x ∈ W, Hw(x) ≤ nr −
⌈d2 + 1

n0

⌉

and Hw(L(x)) ≤ nr −
⌈d1 + 1

n0

⌉

. (2)

Obviously, this condition is also sufficient when dimW = 1. In particular, the search for zero-sum parti-
tions by the method described in Theorem 2 can be avoided by choosing for the linear part of the round
transformation a function L such that

min
x 6=0

(Hw(x) +Hw(L(x))) > 2nr −
⌈d1 + 1

n0

⌉

−
⌈d2 + 1

n0

⌉

.

Now, we can obviously use a similar property of the diffusion not only for 2 rounds of the round trans-
formation, but for a higher number of rounds.

Theorem 3. Let d1 and d2 be such that deg(Fr−t−2) ≤ d1 and deg(Gt) ≤ d2. Let L denote the linear part
of the affine permutation A. Let W be a k-dimensional subspace of Fn

2 satisfying all following conditions for
two nonzero integers sb and sf :

(i) there exists a set I1 ⊂ {0, . . . , nr − 1} such that

W ⊂
⊕

i∈I1

Bi and |I1| ≤ nr −
⌈d2 + 1

n0

⌉

.

(ii) there exists a set J1 ⊂ {0, . . . , nr − 1} such that

L(W ) ⊂
⊕

j∈J1

Bj and |J1| ≤ nr −
⌈d1 + 1

n0

⌉

.

(iii) for all s, 1 ≤ s < sf , there exists a set Js+1 ⊂ {0, . . . , nr − 1} such that

L





⊕

j∈Js

Bj



 ⊂
⊕

j∈Js+1

Bj and |Jsf | ≤ nr −
⌈d1 + 1

n0

⌉

.

(iv) for all s, 1 ≤ s < sb, there exists a set Is+1 ⊂ {0, . . . , nr − 1} such that

L−1





⊕

j∈Is

Bj



 ⊂
⊕

j∈Is+1

Bj and |Isb | ≤ nr −
⌈d2 + 1

n0

⌉

.

Let V denote the complement of W . Then, the sets

Xa = {(Gt ◦A
−1
1 ◦ (χ−1 ◦A−1)sb−1 ◦ χ−1)(a+ z), z ∈ V }, a ∈ W

form a zero-sum partition of Fn
2 of size 2n−k for the (r + sb + sf − 2)-round permutation P .

It is worth noticing that there is no requirement on the sizes of the intermediate states I2, . . . , Isb−1 and
J2, . . . ,Jfb−1. However, by definition, the conditions on the sizes of Isb and Isf obviously imply that the
same bounds hold for the corresponding intermediate sets.
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5 Application to the Keccak-f permutation

5.1 The Keccak-f permutation

Keccak [4] is one of the fourteen hash functions selected for the second round of the SHA-3 competition. Its
mode of operation is the sponge construction. The inner primitive in Keccak is a permutation, composed
of several iterations of very similar round transformations. Within the Keccak-family, the SHA-3 candidate
operates on a 1600-bit state, which is represented by a 3-dimensional binary matrix of size 5× 5× 64. Then,
the state can be seen as 64 parallel slices, each one containing 5 rows and 5 columns. The permutation in
Keccak is denoted by Keccak-f [b], where b is the size of the state. So, for the SHA-3 candidate, b = 1600.

The number of rounds in Keccak-f [1600] was 18 in the original submission, and it has been updated
to 24 for the second round. Every round R consists of a sequence of 5 permutations modifying the state:

R = ι ◦ χ ◦ π ◦ ρ ◦ θ.

The functions θ, ρ, π, ι are transformations of degree 1 providing diffusion in all directions of the 3-dimensional
state. Then, keeping the same notation as in the previous section, we have A1 = π ◦ ρ ◦ θ, which is linear
and A2 = ι, which corresponds to the addition of a constant value. Therefore, the linear part of A = A1 ◦A2

corresponds to L = π ◦ ρ ◦ θ. The nonlinear layer, χ, is a quadratic permutation which is applied to each
row of the 1600-bit state. In other words, 320 parallel applications of χ0 are implemented in order to provide
confusion. The inverse permutation, denoted by χ−1, is a permutation of degree 3.

We need to define a numbering for the n = 1600 bits of the internal state of Keccak-f . We associate to
the bit of the state positioned at the intersection of the i-th row and the j-th column of the k-th slice, i.e., to
the element (i, j, k), 0 ≤ i ≤ 4, 0 ≤ j ≤ 4, 0 ≤ k ≤ 63, the number 25k + 5j + i. We recall that the elements
of the form (0, 0, z) are found in the center of each slice. Then, the 5-dimensional subspace corresponding to
the j-th row in the k-th slice, 0 ≤ j ≤ 4, 0 ≤ k ≤ 63, is defined by

B5k+j = 〈e25k+5j , e25k+5j+1, e25k+5j+2, e25k+5j+3, e25k+5j+4〉.

Aumasson and Meier [2] used the trivial bound on the degree of a composed function in order to find many
zero-sum partitions for 16 rounds of the Keccak-f permutation. Actually, the degree of the permutation
after 10 rounds is at most 210 = 1024 and the degree of the inverse after 6 rounds is at most 36 = 729. Thus,
they choose the intermediate states after t = 6 rounds in a coset of a subspace V of dimension 1025 and
compute 6 rounds backwards. This method leads to many zero-sum partitions of size 21025.

5.2 Zero-sum partitions for 18 rounds of Keccak-f

We first show that the degree of 7 rounds of the inverseKeccak-f permutation cannot exceed 1369 and thus
is much lower than the estimation given by the trivial bound min(37 = 2187, 1599). Actually, all elements
in the Walsh spectrum of the nonlinear permutation χ0 are divisible by 23. Since the Walsh spectra of a
permutation and of its inverse are the same, we deduce that the Walsh spectrum of χ−1

0 is also divisible by

23. It is worth noticing that 2
n+1

2 is the lowest possible divisibility for the Walsh spectrum of a quadratic
permutation of Fn

2 , n odd. Then, the fact that the Walsh spectrum of χ−1
0 is divisible by 23 holds for any

other choice for the quadratic permutation χ0 over F5
2. There are nr = 320 parallel applications of χ0. Then,

we deduce from (1) that the Walsh spectra of R and R−1 applied on the whole 1600-bit state are divisible
by 23×320 = 2960. Using that 6 rounds of the inverse of the round permutation have degree at most 36 = 729,
Theorem 1 leads to

deg(R−7) = deg(R−6 ◦R−1) ≤ 1600− 960 + deg(R−6) ≤ 1369 .

This new bound allows us to find zero-sum partitions for 17 rounds of the permutation, by choosing the
intermediate states after t = 7 rounds in the cosets of a subspace V of dimension 1370 and by computing
7 rounds backwards. Moreover, we can apply Proposition 3 with t = 7: by choosing V =

⊕

i∈I Bi where I
is any collection of 274 rows, we can find some zero-sum partitions of size 21370 for 18 rounds of Keccak-f .
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5.3 Zero-sum partitions for 19 rounds of Keccak-f

Now, we apply Theorem 2 with t = 7 to 19 rounds of Keccak-f . As previously explained, Fr−t−2 = F10

has degree at most 1024 and Gt = G7 has degree at most 1369. We then need to find a subspace W such
that there exist two sets of rows, I,J ⊂ {0, . . . , nr − 1} satisfying

W ⊂
⊕

i∈I
Bi with |I| ≤ 46 and L(W ) ⊂

⊕

j∈J
Bj with |J | ≤ 115 .

Here, we take for W the subspace spanned by the first 4 slices, i.e., W =
⊕19

i=0 Bi. Then, we can check
that there exists a subset J of size 114 such that L(W ) ⊂

⊕

j∈J Bj , implying that the second condition is
satisfied. The first condition obviously holds by definition of W . Since dimW = 5 × 20 = 100, we deduce
from Theorem 2 that we have found a zero-sum partition of size 21500 for 19 rounds of Keccak-f . It is worth
noticing that the previous situation occurs when W is the subspace spanned by any 4 consecutive slices.
Actually, all the step-mappings in the Keccak-f round permutation except ι are translation invariant in
the z axis direction. Therefore, we obtain 64 zero-sum partitions of this type for the 19-round Keccak-f .

Though, we can further improve the complexity of the 19-round distinguisher by increasing the dimension
of W , without at the same time increasing the cardinality of J , where L(W ) ⊂

⊕

j∈J Bj . In order to achieve
this, we add to W a number of linearly independent vectors whose images by L lie in

⊕

j∈J Bj for the set
J as before. The new considered subspace W is generated by the rows 0, . . . , 19 and by the following 39
linearly independent vectors.

e450 ⊕ e460, e450 ⊕ e465, e451 ⊕ e461, e451 ⊕ e466, e464 ⊕ e469,
e475 ⊕ e485, e475 ⊕ e490, e476 ⊕ e486, e476 ⊕ e491, e478 ⊕ e498,
e489 ⊕ e494, e650 ⊕ e660, e650 ⊕ e665, e651 ⊕ e666, e652 ⊕ e662,
e659 ⊕ e664, e662 ⊕ e672, e667 ⊕ e672, e668 ⊕ e673, e1100 ⊕ e1110,
e1102 ⊕ e1112, e1102 ⊕ e1117, e1103 ⊕ e1113, e1103 ⊕ e1118, e1105 ⊕ e1110,
e1106 ⊕ e1116, e1125 ⊕ e1135, e1127 ⊕ e1137, e1127 ⊕ e1142, e1138 ⊕ e1143,
e1150 ⊕ e1160, e1152 ⊕ e1162, e1162 ⊕ e1167, e1163 ⊕ e1168, e1175 ⊕ e1180,
e1175 ⊕ e1185, e1175 ⊕ e1190, e1177 ⊕ e1187, e1188 ⊕ e1193.

These 39 elements correspond to words whose support belongs to a single column and that have a Hamming
weight of 2. Actually, any word X with support belonging to a single column and having even weight
satisfies θ(X) = X . Then, if X is a word of this type, the weight of L(X), with respect to our definition in
Remark 1, is exactly 2. One can easily check that W ⊂

⊕

i∈I Bi, with |I| = 46 and L(W ) ⊂
⊕

j∈J Bj , with

|J | = 115. Since dimW = 5 × 20 + 39 = 139, Theorem 2 leads to 64 new zero-sum partitions of size 21461

for 19 rounds of Keccak-f .

5.4 Zero-sum partitions for 20 rounds of Keccak-f

For finding a zero-sum partition for 20 rounds of Keccak-f , we now apply Theorem 3 with sf = 2, i.e., we
compute one additional step forwards. Then, we need to find a subspace W such that there exist some sets
of rows, I, J1 and J2 with |I| ≤ 46 and |J2| ≤ 115 satisfying

W ⊂
⊕

i∈I
Bi, L(W ) ⊂

⊕

j∈J1

Bj and L





⊕

j∈J1

Bj



 ⊂
⊕

j∈J2

Bj .

As previously mentioned, the image by L of 4 consecutive slices involves 114 rows only. Then, we only have
to find a subspace W such that the first condition holds and that L(W ) belongs to the union of 4 consecutive
slices, namely slices s to s+3. For this search, we concentrate as before on the words with Hamming weight 2
whose support belongs to a single column. We want to find all words X of this form such that the two rows
that are affected by L(X) are positioned in at most two out of the four consecutive slices s to s + 3, for a
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fixed s. For this, we need to look at the translation offsets of ρ, which is the function translating the bits in
the z-direction. These offsets are given in Table 2(a). Let (x, y, z) and (x, y′, z) be the coordinates of the two
bits in the support of X . Let c1 and c2 be the offsets corresponding to the positions (x, y) and (x, y′). Then
the image of X by L will affect two slices at distance |c1 − c2|.

Suppose that we can find two translation offsets in the same column of Table 2(a) having a difference
smaller than or equal to 3, namely c1 = Offset(x0, y1), and c2 = Offset(x0, y2) with 0 ≤ (c2 − c1) ≤ 3. Then,
the word in the slice z0 = s− c1 mod 64 with support {(x0, y1, z0), (x0, y2, z0)} will have an image belonging
to the slices s and s+ (c2 − c1). The appropriate pairs of translation constants derived from Table 2(a) are
given in Table 2(b).

x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 25 39 3 10 43
y = 1 55 20 36 44 6
y = 0 28 27 0 1 62
y = 4 56 14 18 2 61
y = 3 21 8 41 45 15

(a) The translation offsets of ρ for the
SHA-3 candidates.

(y1, y2) (c1, c2) c2 − c1

x = 0 (0, 2) (0, 3) 3

x = 1 (0, 4) (1, 2) 1
(1, 3) (44, 45) 1

x = 2 (0, 4) (62, 61) 1

x = 3 (1, 4) (55, 56) 1
(0, 2) (28, 25) 3

(b) Appropriate pairs of off-
sets.

By using this technique, we find the following subspace W of dimension 14:

W = 〈 e1 ⊕ e21, e25 ⊕ e35, e26 ⊕ e46, e51 ⊕ e71, e102 ⊕ e122,
e127 ⊕ e147, e152 ⊕ e172, e258 ⊕ e273, e283 ⊕ e298, e308 ⊕ e323,
e531 ⊕ e541, e556 ⊕ e566, e581 ⊕ e591, e1003 ⊕ e1013〉.

Clearly W ⊂
⊕

i∈I Bi with |I| < 114 and we have computed that L(W ) belongs to the union of the
slices 1, 2, 3 and 4. Since dimW = 14 we deduce from Theorem 2 that we have found a zero-sum partition
of size 21586 for 20 rounds of Keccak-f . As previously explained, there are 64 such zero-sum partitions,
obtained by translating the previous W in the z-direction.

6 Application to the Hamsi-256 finalization permutation

Hamsi [16] is another candidate among the fourteen functions selected for the second round of the SHA-3
competition. It is based on a Davies-Meyer construction. It uses a finalization permutation Pf which operates
on a 512-bit internal state corresponding to the concatenation of the 256-bit chaining value and of a 256-bit
codeword resulting from the expansion of the last 32-bit message block. In Hamsi-256, Pf consists of 6 rounds
of a round transformation R = L ◦ S, where S corresponds to 128 parallel applications of a 4 × 4 Sbox of
degree 3. Using that three iterations of the round transformation have degree at most 33 = 27, Proposition 2
leads to zero-sum partitions of size 228, as reported in [1]. However, our techniques can be used for exhibiting
zero-sum partitions of smaller size.
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First, we define a numbering for the bits of the internal state. The j-th bit in the word which lies in the
k-th column and i-th row is numbered by 128k+4j+ i, where 0 ≤ j ≤ 31, 0 ≤ i ≤ 3 and 0 ≤ k ≤ 3. We also
define the subspace Bi, 0 ≤ i < 128 spanned by a column of the internal state: Bi = 〈e4i, e4i+1, e4i+2, e4i+3〉
(the columns of the internal state play the same role as the rows in Keccak).

Here, we choose the intermediate state after t = 3 rounds of Pf into the 19-dimensional subspace

V =

16
⊕

i=14

Bi ⊕ 〈e68, e237, e241, e245, e249, e507, e511〉 .

Then, we consider the sets Xa = {((R−1)2 ◦ S−1)(a + z), z ∈ V }. Actually, we apply the same technique
as in Theorem 2. Both V and S−1(V ) can be seen as the union of some cosets of B14 ⊕ B15 ⊕ B16. Since

two iterations of R−1 have degree at most 9, all elements in Xa sum to zero because dim(
⊕16

i=14 Bi) > 9.
Moreover, 〈e0, e4, e8, e12〉 ⊂ L(V ) and it has been observed in [1] that 3 rounds of R have degree 3 with
respect to the first four lsbs of the first word of the internal state. Therefore, since L(V ) can be seen as
a union of cosets of Bf = 〈e0, e4, e8, e12〉, and DBf

R3(x) = 0 for all x, we deduce that the images of all
elements in Xa under six rounds of R sum to zero. Many zero-sum partitions of size 219 can be constructed
by this method, since we only need that L(V ) contains the subspace spanned by the first four consecutive
bits of any word in the internal state.

Also, zero-sum partitions of size 210 can be easily found for Pf . Consider any 10 elements in a 32-bit
word of the state matrix after 3 rounds of the permutation and fix the other bits of the state to an arbitrary
value. Then 3 rounds of the permutation applied to this state have degree at most 9. This is because there is
only one variable per active Sbox, so every bit after the first round will be a linear function in the variables
considered. But 3 rounds of the inverse permutation applied to the state have also degree at most 9, as after
the application of L−1 there will be variables only in one word per column, implying again at most one active
bit per Sbox.

7 Conclusions

We have found zero-sum distinguishers for the finalization permutation of Hamsi-256 and for 20 rounds of
Keccak-f , pointing out that these permutations do not behave like random permutations. For Hamsi-256,
this property does not seem to lead to an attack on the hash function since the finalization permutation only
applies to the 2288 internal states, which can be obtained from the message expansion. For Keccak reduced
to 20 rounds (out of 24), even if the security of the hash function is not affected, our results contradict the
so-called hermetic sponge strategy.

Acknowledgments. We would like to thank Christophe De Cannière for his valuable comments and especially
for the indication of a better bound on the degree of iterated permutations. This new bound improves in
part the results on the Keccak hash function, presented in this paper.
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